13 research outputs found

    Fourier Bounds and Pseudorandom Generators for Product Tests

    Get PDF
    We study the Fourier spectrum of functions f : {0,1}^{mk} -> {-1,0,1} which can be written as a product of k Boolean functions f_i on disjoint m-bit inputs. We prove that for every positive integer d, sum_{S subseteq [mk]: |S|=d} |hat{f_S}| = O(min{m, sqrt{m log(2k)}})^d . Our upper bounds are tight up to a constant factor in the O(*). Our proof uses Schur-convexity, and builds on a new "level-d inequality" that bounds above sum_{|S|=d} hat{f_S}^2 for any [0,1]-valued function f in terms of its expectation, which may be of independent interest. As a result, we construct pseudorandom generators for such functions with seed length O~(m + log(k/epsilon)), which is optimal up to polynomial factors in log m, log log k and log log(1/epsilon). Our generator in particular works for the well-studied class of combinatorial rectangles, where in addition we allow the bits to be read in any order. Even for this special case, previous generators have an extra O~(log(1/epsilon)) factor in their seed lengths. We also extend our results to functions f_i whose range is [-1,1]

    Randomness Efficient Noise Stability and Generalized Small Bias Sets

    Get PDF

    Fourier Growth of Structured ??-Polynomials and Applications

    Get PDF
    We analyze the Fourier growth, i.e. the L? Fourier weight at level k (denoted L_{1,k}), of various well-studied classes of "structured" m F?-polynomials. This study is motivated by applications in pseudorandomness, in particular recent results and conjectures due to [Chattopadhyay et al., 2019; Chattopadhyay et al., 2019; Eshan Chattopadhyay et al., 2020] which show that upper bounds on Fourier growth (even at level k = 2) give unconditional pseudorandom generators. Our main structural results on Fourier growth are as follows: - We show that any symmetric degree-d m F?-polynomial p has L_{1,k}(p) ? Pr [p = 1] ? O(d)^k. This quadratically strengthens an earlier bound that was implicit in [Omer Reingold et al., 2013]. - We show that any read-? degree-d m F?-polynomial p has L_{1,k}(p) ? Pr [p = 1] ? (k ? d)^{O(k)}. - We establish a composition theorem which gives L_{1,k} bounds on disjoint compositions of functions that are closed under restrictions and admit L_{1,k} bounds. Finally, we apply the above structural results to obtain new unconditional pseudorandom generators and new correlation bounds for various classes of m F?-polynomials

    One-Tape Turing Machine and Branching Program Lower Bounds for MCSP

    Get PDF
    For a size parameter s: ? ? ?, the Minimum Circuit Size Problem (denoted by MCSP[s(n)]) is the problem of deciding whether the minimum circuit size of a given function f : {0,1}? ? {0,1} (represented by a string of length N : = 2?) is at most a threshold s(n). A recent line of work exhibited "hardness magnification" phenomena for MCSP: A very weak lower bound for MCSP implies a breakthrough result in complexity theory. For example, McKay, Murray, and Williams (STOC 2019) implicitly showed that, for some constant ?? > 0, if MCSP[2^{??? n}] cannot be computed by a one-tape Turing machine (with an additional one-way read-only input tape) running in time N^{1.01}, then P?NP. In this paper, we present the following new lower bounds against one-tape Turing machines and branching programs: 1) A randomized two-sided error one-tape Turing machine (with an additional one-way read-only input tape) cannot compute MCSP[2^{???n}] in time N^{1.99}, for some constant ?? > ??. 2) A non-deterministic (or parity) branching program of size o(N^{1.5}/log N) cannot compute MKTP, which is a time-bounded Kolmogorov complexity analogue of MCSP. This is shown by directly applying the Ne?iporuk method to MKTP, which previously appeared to be difficult. 3) The size of any non-deterministic, co-non-deterministic, or parity branching program computing MCSP is at least N^{1.5-o(1)}. These results are the first non-trivial lower bounds for MCSP and MKTP against one-tape Turing machines and non-deterministic branching programs, and essentially match the best-known lower bounds for any explicit functions against these computational models. The first result is based on recent constructions of pseudorandom generators for read-once oblivious branching programs (ROBPs) and combinatorial rectangles (Forbes and Kelley, FOCS 2018; Viola 2019). En route, we obtain several related results: 1) There exists a (local) hitting set generator with seed length O?(?N) secure against read-once polynomial-size non-deterministic branching programs on N-bit inputs. 2) Any read-once co-non-deterministic branching program computing MCSP must have size at least 2^??(N)

    Fourier Growth of Regular Branching Programs

    Get PDF
    We analyze the Fourier growth, i.e. the L? Fourier weight at level k (denoted L_{1,k}), of read-once regular branching programs. We prove that every read-once regular branching program B of width w ? [1,?] with s accepting states on n-bit inputs must have its L_{1,k} bounded by min{Pr[B(U_n) = 1](w-1)^k, s ? O((n log n)/k)^{(k-1)/2}}. For any constant k, our result is tight up to constant factors for the AND function on w-1 bits, and is tight up to polylogarithmic factors for unbounded width programs. In particular, for k = 1 we have L_{1,1}(B) ? s, with no dependence on the width w of the program. Our result gives new bounds on the coin problem and new pseudorandom generators (PRGs). Furthermore, we obtain an explicit generator for unordered permutation branching programs of unbounded width with a constant factor stretch, where no PRG was previously known. Applying a composition theorem of B?asiok, Ivanov, Jin, Lee, Servedio and Viola (RANDOM 2021), we extend our results to "generalized group products," a generalization of modular sums and product tests

    On the Power of Regular and Permutation Branching Programs

    Get PDF
    We give new upper and lower bounds on the power of several restricted classes of arbitrary-order read-once branching programs (ROBPs) and standard-order ROBPs (SOBPs) that have received significant attention in the literature on pseudorandomness for space-bounded computation. - Regular SOBPs of length n and width ?w(n+1)/2? can exactly simulate general SOBPs of length n and width w, and moreover an n/2-o(n) blow-up in width is necessary for such a simulation. Our result extends and simplifies prior average-case simulations (Reingold, Trevisan, and Vadhan (STOC 2006), Bogdanov, Hoza, Prakriya, and Pyne (CCC 2022)), in particular implying that weighted pseudorandom generators (Braverman, Cohen, and Garg (SICOMP 2020)) for regular SOBPs of width poly(n) or larger automatically extend to general SOBPs. Furthermore, our simulation also extends to general (even read-many) oblivious branching programs. - There exist natural functions computable by regular SOBPs of constant width that are average-case hard for permutation SOBPs of exponential width. Indeed, we show that Inner-Product mod 2 is average-case hard for arbitrary-order permutation ROBPs of exponential width. - There exist functions computable by constant-width arbitrary-order permutation ROBPs that are worst-case hard for exponential-width SOBPs. - Read-twice permutation branching programs of subexponential width can simulate polynomial-width arbitrary-order ROBPs

    Fractional Pseudorandom Generators from Any Fourier Level

    Get PDF
    We prove new results on the polarizing random walk framework introduced in recent works of Chattopadhyay {et al.} [CHHL19,CHLT19] that exploit L1L_1 Fourier tail bounds for classes of Boolean functions to construct pseudorandom generators (PRGs). We show that given a bound on the kk-th level of the Fourier spectrum, one can construct a PRG with a seed length whose quality scales with kk. This interpolates previous works, which either require Fourier bounds on all levels [CHHL19], or have polynomial dependence on the error parameter in the seed length [CHLT10], and thus answers an open question in [CHLT19]. As an example, we show that for polynomial error, Fourier bounds on the first O(logn)O(\log n) levels is sufficient to recover the seed length in [CHHL19], which requires bounds on the entire tail. We obtain our results by an alternate analysis of fractional PRGs using Taylor's theorem and bounding the degree-kk Lagrange remainder term using multilinearity and random restrictions. Interestingly, our analysis relies only on the \emph{level-k unsigned Fourier sum}, which is potentially a much smaller quantity than the L1L_1 notion in previous works. By generalizing a connection established in [CHH+20], we give a new reduction from constructing PRGs to proving correlation bounds. Finally, using these improvements we show how to obtain a PRG for F2\mathbb{F}_2 polynomials with seed length close to the state-of-the-art construction due to Viola [Vio09], which was not known to be possible using this framework

    Trade-Offs Between Entanglement and Communication

    Get PDF

    Pseudorandom Generators for Read-Once Monotone Branching Programs

    Get PDF
    corecore