994 research outputs found

    Phase Retrieval with Application to Optical Imaging

    Get PDF
    This review article provides a contemporary overview of phase retrieval in optical imaging, linking the relevant optical physics to the information processing methods and algorithms. Its purpose is to describe the current state of the art in this area, identify challenges, and suggest vision and areas where signal processing methods can have a large impact on optical imaging and on the world of imaging at large, with applications in a variety of fields ranging from biology and chemistry to physics and engineering

    Reconstruction of Digital Hologram by use of the Wavelet Transform

    Get PDF

    FOF: Learning Fourier Occupancy Field for Monocular Real-time Human Reconstruction

    Full text link
    The advent of deep learning has led to significant progress in monocular human reconstruction. However, existing representations, such as parametric models, voxel grids, meshes and implicit neural representations, have difficulties achieving high-quality results and real-time speed at the same time. In this paper, we propose Fourier Occupancy Field (FOF), a novel powerful, efficient and flexible 3D representation, for monocular real-time and accurate human reconstruction. The FOF represents a 3D object with a 2D field orthogonal to the view direction where at each 2D position the occupancy field of the object along the view direction is compactly represented with the first few terms of Fourier series, which retains the topology and neighborhood relation in the 2D domain. A FOF can be stored as a multi-channel image, which is compatible with 2D convolutional neural networks and can bridge the gap between 3D geometries and 2D images. The FOF is very flexible and extensible, e.g., parametric models can be easily integrated into a FOF as a prior to generate more robust results. Based on FOF, we design the first 30+FPS high-fidelity real-time monocular human reconstruction framework. We demonstrate the potential of FOF on both public dataset and real captured data. The code will be released for research purposes

    Collective oscillations in optical matter

    Get PDF
    Atom and nanoparticle arrays trapped in optical lattices are shown to be capable of sustaining collective oscillations of frequency proportional to the strength of the external light field. The spectrum of these oscillations determines the mechanical stability of the arrays. This phenomenon is studied for dimers, strings, and two-dimensional planar arrays. Laterally confined particles free to move along an optical channel are also considered as an example of collective motion in partially-confined systems. The fundamental concepts of dynamical response in optical matter introduced here constitute the basis for potential applications to quantum information technology and signal processing. Experimental realizations of these systems are proposed.Comment: 4 figures. Optics Express (in press

    Defects in Jackiw-Teitelboim Quantum Gravity

    Full text link
    We classify and study defects in 2d Jackiw-Teitelboim gravity. We show these are holographically described by a deformation of the Schwarzian theory where the reparametrization mode is integrated over different coadjoint orbits of the Virasoro group. We show that the quantization of each coadjoint orbit is connected to 2d Liouville CFT between branes with insertions of Verlinde loop operators. We also propose an interpretation for the exceptional orbits. We use this perspective to solve these deformations of the Schwarzian theory, computing their partition function and correlators. In the process, we define two geometric observables: the horizon area operator Φh\Phi_h and the geodesic length operator L(γ)L(\gamma). We show this procedure is structurally related to the deformation of the particle-on-a-group quantum mechanics by the addition of a chemical potential. As an example, we solve the low-energy theory of complex SYK with a U(1) symmetry and generalize to the non-abelian case.Comment: 66 pages, v4: clarifications added, typos corrected, matches published versio

    Primary beam effects of radio astronomy antennas -- II. Modelling the MeerKAT L-band beam

    Get PDF
    After a decade of design and construction, South Africa's SKA-MID precursor MeerKAT has begun its science operations. To make full use of the widefield capability of the array, it is imperative that we have an accurate model of the primary beam of its antennas. We have taken available L-band full-polarization 'astro-holographic' observations of three antennas and a generic electromagnetic simulation and created sparse representations of the beams using principal components and Zernike polynomials. The spectral behaviour of the spatial coefficients has been modelled using discrete cosine transform. We have provided the Zernike-based model over a diameter of 10 deg averaged over the beams of three antennas in an associated software tool (EIDOS) that can be useful in direction-dependent calibration and imaging. The model is more accurate for the diagonal elements of the beam Jones matrix and at lower frequencies. As we get more accurate beam measurements and simulations in the future, especially for the cross-polarization patterns, our pipeline can be used to create more accurate sparse representations of MeerKAT beams.Comment: 16 pages, 18 figures. This is a pre-copyedited, author-produced PDF of an article accepted for publication in MNRAS following peer review. The version of record [K. M. B. Asad et al., 2021] is available online at: https://doi.org/10.1093/mnras/stab10
    • …
    corecore