280,697 research outputs found

    Four Degrees of Separation, Really

    Full text link
    We recently measured the average distance of users in the Facebook graph, spurring comments in the scientific community as well as in the general press ("Four Degrees of Separation"). A number of interesting criticisms have been made about the meaningfulness, methods and consequences of the experiment we performed. In this paper we want to discuss some methodological aspects that we deem important to underline in the form of answers to the questions we have read in newspapers, magazines, blogs, or heard from colleagues. We indulge in some reflections on the actual meaning of "average distance" and make a number of side observations showing that, yes, 3.74 "degrees of separation" are really few

    Conference Discussion of the Nuclear Force

    Full text link
    Discussion of the nuclear force, lead by a round table consisting of T. Cohen, E. Epelbaum, R. Machleidt, and F. Gross (chair). After an invited talk by Machleidt, published elsewhere in these proceedings, brief remarks are made by Epelbaum, Cohen, and Gross, followed by discussion from the floor moderated by the chair. The chair asked the round table and the participants to focus on the following issues: (i) What does each approach (chiral effective field theory, large Nc, and relativistic phenomenology) contribute to our knowledge of the nuclear force? Do we need them all? Is any one transcendent? (ii) How important for applications (few body, nuclear structure, EMC effect, for example) are precise fits to the NN data below 350 MeV? How precise do these fits have to be? (iii) Can we learn anything about nonperturbative QCD from these studies of the nuclear force? The discussion presented here is based on a video recording made at the conference and transcribed afterward.Comment: Discussion at the 21st European Conference on Few Body Problems (EFP21) held at Salamanca, Spain, 30 Aug - 3 Sept 201

    Physical degrees of freedom in stabilized brane world models

    Full text link
    We consider brane world models with interbrane separation stabilized by the Goldberger-Wise scalar field. For arbitrary background, or vacuum configurations of the gravitational and scalar fields in such models, we construct the second variation Lagrangian, study its gauge invariance, find the corresponding equations of motion and decouple them in a suitable gauge. We also derive an effective four-dimensional Lagrangian for such models, which describes the massless graviton, a tower of massive gravitons and a tower of massive scalars. It is shown that for a special choice of the background solution the masses of the graviton excitations may be of the order of a few TeV, the radion mass of the order of 100 GeV, the inverse size of the extra dimension being tens of GeV. In this case the coupling of the radion to matter on the negative tension brane is approximately the same as in the unstabilized model with the same values of the fundamental five-dimensional energy scale and the interbrane distance.Comment: 17 pages, LaTeX, corrected typos, amended the normalization constants of the scalar modes and their coupling constants to matte

    Unexorcized ghost in DGP brane world

    Get PDF
    The braneworld model of Dvali-Gabadadze-Porrati realizes the self-accelerating universe. However, it is known that this cosmological solution contains a spin-2 ghost. We study the possibility of avoiding the appearance of the ghost by slightly modifying the model, introducing the second brane. First we consider a simple model without stabilization of the separation of the brane. By changing the separation between the branes, we find we can erase the spin-2 ghost. However, this can be done only at the expense of the appearance of a spin-0 ghost instead. We discuss why these two different types of ghosts are correlated. Then, we examine a model with stabilization of the brane separation. Even in this case, we find that the correlation between spin-0 and spin-2 ghosts remains. As a result we find we cannot avoid the appearance of ghost by two-branes model.Comment: 19 pages, 1 figur

    Decoupling a Fermion Whose Mass Comes from a Yukawa Coupling: Nonperturbative Considerations

    Get PDF
    Perturbative analyses seem to suggest that fermions whose mass comes solely from a Yukawa coupling to a scalar field can be made arbitrarily heavy, while the scalar remains light. The effects of the fermion can be summarized by a local effective Lagrangian for the light degrees of freedom. Using weak coupling and large N techniques, we present a variety of models in which this conclusion is shown to be false when nonperturbative variations of the scalar field are considered. The heavy fermions contribute nonlocal terms to the effective action for light degrees of freedom. This resolves paradoxes about anomalous and nonanomalous symmetry violation in these models. Application of these results to lattice gauge theory imply that attempts to decouple lattice fermion doubles by the method of Swift and Smit cannot succeed, a result already suggested by lattice calculations.Comment: 31 page

    Viking lander design and systems integration

    Get PDF
    Malfunction protection requires redundancy planning and mechanization in Viking lander design and systems integration in order to maximize the chance of getting the data back through the Orbiter. Various subsystems are discussed that protect the downlink to man on the ground in the framework of systems integration and insure the basic objectives of Viking: to land on a planet and to acquire data from its surface

    When Effective Field Theories Fail

    Get PDF
    In this talk, I describe and defend four non-standard claims about four effective field theories, and try to extract some lessons about the limits of effective field theory. The four theses (and a capsule diagnosis given in parentheses) are: 1) Kaon loops are not a reliable part of chiral perturbation theory (dimensional regularization does not know about the chiral scale), 2) Regge physics is inappropriately missing from SCET (an infinite set of scales are needed) 3) There is likely a barrier in the use of EFT in general relativity in the extreme infrared (curvature effects build up) and 4) Gauge non-invariant operators should be included in describing physics beyond the Standard Model (as they could probe the idea of emergent gauge symmetry and falsify string theory).Comment: Opening talk at the International Workshop on Effective Field Theories, Valencia, 2-6 February 2009. 15 pages, 6 figure
    • …
    corecore