19 research outputs found

    Zigzag Decodable Fountain Codes

    Full text link
    This paper proposes a fountain coding system which has lower space decoding complexity and lower decoding erasure rate than the Raptor coding systems. The main idea of the proposed fountain code is employing shift and exclusive OR to generate the output packets. This technique is known as the zigzag decodable code, which is efficiently decoded by the zigzag decoder. In other words, we propose a fountain code based on the zigzag decodable code in this paper. Moreover, we analyze the overhead for the received packets, decoding erasure rate, decoding complexity, and asymptotic overhead of the proposed fountain code. As the result, we show that the proposed fountain code outperforms the Raptor codes in terms of the overhead and decoding erasure rate. Simulation results show that the proposed fountain coding system outperforms Raptor coding system in terms of the overhead and the space decoding complexity.Comment: 11 pages, 15 figures, submitted to IEICETransactions, Oct. 201

    저밀도 부호의 응용: 묶음 지그재그 파운틴 부호와 WOM 부호

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2017. 2. 노종선.This dissertation contains the following two contributions on the applications of sparse codes. Fountain codes Batched zigzag (BZ) fountain codes – Two-phase batched zigzag (TBZ) fountain codes Write-once memory (WOM) codes – WOM codes implemented by rate-compatible low-density generator matrix (RC-LDGM) codes First, two classes of fountain codes, called batched zigzag fountain codes and two-phase batched zigzag fountain codes, are proposed for the symbol erasure channel. At a cost of slightly lengthened code symbols, the involved message symbols in each batch of the proposed codes can be recovered by low complexity zigzag decoding algorithm. Thus, the proposed codes have low buffer occupancy during decoding process. These features are suitable for receivers with limited hardware resources in the broadcasting channel. A method to obtain degree distributions of code symbols for the proposed codes via ripple size evolution is also proposed by taking into account the released code symbols from the batches. It is shown that the proposed codes outperform Luby transform codes and zigzag decodable fountain codes with respect to intermediate recovery rate and coding overhead when message length is short, symbol erasure rate is low, and available buffer size is limited. In the second part of this dissertation, WOM codes constructed by sparse codes are presented. Recently, WOM codes are adopted to NAND flash-based solid-state drive (SSD) in order to extend the lifetime by reducing the number of erasure operations. Here, a new rewriting scheme for the SSD is proposed, which is implemented by multiple binary erasure quantization (BEQ) codes. The corresponding BEQ codes are constructed by RC-LDGM codes. Moreover, by putting RC-LDGM codes together with a page selection method, writing efficiency can be improved. It is verified via simulation that the SSD with proposed rewriting scheme outperforms the SSD without and with the conventional WOM codes for single level cell (SLC) and multi-level cell (MLC) flash memories.1 Introduction 1 1.1 Background 1 1.2 Overview of Dissertation 5 2 Sparse Codes 7 2.1 Linear Block Codes 7 2.2 LDPC Codes 9 2.3 Message Passing Decoder 11 3 New Fountain Codes with Improved Intermediate Recovery Based on Batched Zigzag Coding 13 3.1 Preliminaries 17 3.1.1 Definitions and Notation 17 3.1.2 LT Codes 18 3.1.3 Zigzag Decodable Codes 20 3.1.4 Bit-Level Overhead 22 3.2 New Fountain Codes Based on Batched Zigzag Coding 23 3.2.1 Construction of Shift Matrix 24 3.2.2 Encoding and Decoding of the Proposed BZ Fountain Codes 25 3.2.3 Storage and Computational Complexity 28 3.3 Degree Distribution of BZ Fountain Codes 31 3.3.1 Relation Between Ψ(x)\Psi(x) and Ω(x)\Omega(x) 31 3.3.2 Derivation of Ω(x)\Omega(x) via Ripple Size Evolution 32 3.4 Two-Phase Batched Zigzag Fountain Codes with Additional Memory 40 3.4.1 Code Construction 41 3.4.2 Bit-Level Overhead 46 3.5 Numerical Analysis 49 4 Write-Once Memory Codes Using Rate-Compatible LDGM Codes 60 4.1 Preliminaries 62 4.1.1 NAND Flash Memory 62 4.1.2 Rewriting Schemes for Flash Memory 62 4.1.3 Construction of Rewriting Codes by BEQ Codes 65 4.2 Proposed Rewriting Codes 67 4.2.1 System Model 67 4.2.2 Multi-rate Rewriting Codes 68 4.2.3 Page Selection for Rewriting 70 4.3 RC-LDGM Codes 74 4.4 Numerical Analysis 76 5 Conclusions 80 Bibliography 82 초록 94Docto

    Cross-Sender Bit-Mixing Coding

    Full text link
    Scheduling to avoid packet collisions is a long-standing challenge in networking, and has become even trickier in wireless networks with multiple senders and multiple receivers. In fact, researchers have proved that even {\em perfect} scheduling can only achieve R=O(1lnN)\mathbf{R} = O(\frac{1}{\ln N}). Here NN is the number of nodes in the network, and R\mathbf{R} is the {\em medium utilization rate}. Ideally, one would hope to achieve R=Θ(1)\mathbf{R} = \Theta(1), while avoiding all the complexities in scheduling. To this end, this paper proposes {\em cross-sender bit-mixing coding} ({\em BMC}), which does not rely on scheduling. Instead, users transmit simultaneously on suitably-chosen slots, and the amount of overlap in different user's slots is controlled via coding. We prove that in all possible network topologies, using BMC enables us to achieve R=Θ(1)\mathbf{R}=\Theta(1). We also prove that the space and time complexities of BMC encoding/decoding are all low-order polynomials.Comment: Published in the International Conference on Information Processing in Sensor Networks (IPSN), 201

    THE INFLUENCE OF THE PACKET SIZE ON END TO END DELAY OF VIDEO DATA CODED WITH RAPTORQ CODES AND NETWORK CODES IN VEHICULAR ADHOC NETWORKS

    Get PDF
    The transmission of video files in Vehicular Adhoc Networks (VANETs) has become very prevalent as commuters prefer video data during travel. The delay with which the data is received becomes very significant as video packets received after their scheduled deadlines become useless. The performance of the network may significantly be reduced on such packet drops especially with mobile networks. This work aims at the reduction of end to end delay of video packets by applying the two techniques- Network Coding (NC) and RaptorQ (RQ) codes. The techniques are implemented in four VANET scenarios and an extensive analysis is done by varying the packet sizes during the transmission of three files of various sizes. The End to End Delay (EED) and Packet Delivery Ratio (PDR) are measured and plotted for all scenarios. The results show the influence of packet size on these parameters considered and the suitability of the techniques applied. The observations also show that RQ proves better for smaller files and NC suits better when the file size increases

    rStream: Resilient and Optimal Peer-to-Peer Streaming with Rateless Codes

    Full text link

    Modern Random Access for Satellite Communications

    Full text link
    The present PhD dissertation focuses on modern random access (RA) techniques. In the first part an slot- and frame-asynchronous RA scheme adopting replicas, successive interference cancellation and combining techniques is presented and its performance analysed. The comparison of both slot-synchronous and asynchronous RA at higher layer, follows. Next, the optimization procedure, for slot-synchronous RA with irregular repetitions, is extended to the Rayleigh block fading channel. Finally, random access with multiple receivers is considered.Comment: PhD Thesis, 196 page
    corecore