

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Applications of Sparse Codes: Batched
Zigzag Fountain Codes and WOM Codes

저밀도부호의응용:
묶음지그재그파운틴부호와WOM부호

BY

Jun Bohwan

FEBRUARY 2017

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

Applications of Sparse Codes: Batched
Zigzag Fountain Codes and WOM Codes

저밀도부호의응용:
묶음지그재그파운틴부호와WOM부호

BY

Jun Bohwan

FEBRUARY 2017

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Applications of Sparse Codes: Batched
Zigzag Fountain Codes and WOM Codes

저밀도부호의응용:
묶음지그재그파운틴부호와WOM부호

지도교수노종선

이논문을공학박사학위논문으로제출함

2017년 2월

서울대학교대학원

전기컴퓨터공학부

전보환

전보환의공학박사학위논문을인준함

2017년 2월

위 원 장:
부위원장:
위 원:
위 원:
위 원:

Abstract

This dissertation contains the following two contributions on the applications of

sparse codes.

• Fountain codes

– Batched zigzag (BZ) fountain codes

– Two-phase batched zigzag (TBZ) fountain codes

• Write-once memory (WOM) codes

– WOM codes implemented by rate-compatible low-density generator ma-

trix (RC-LDGM) codes

First, two classes of fountain codes, called batched zigzag fountain codes and two-

phase batched zigzag fountain codes, are proposed for the symbol erasure channel. At a

cost of slightly lengthened code symbols, the involved message symbols in each batch

of the proposed codes can be recovered by low complexity zigzag decoding algorithm.

Thus, the proposed codes have low buffer occupancy during decoding process. These

features are suitable for receivers with limited hardware resources in the broadcasting

channel. A method to obtain degree distributions of code symbols for the proposed

codes via ripple size evolution is also proposed by taking into account the released

code symbols from the batches. It is shown that the proposed codes outperform Luby

transform codes and zigzag decodable fountain codes with respect to intermediate re-

covery rate and coding overhead when message length is short, symbol erasure rate is

i

low, and available buffer size is limited.

In the second part of this dissertation, WOM codes constructed by sparse codes

are presented. Recently, WOM codes are adopted to NAND flash-based solid-state

drive (SSD) in order to extend the lifetime by reducing the number of erasure opera-

tions. Here, a new rewriting scheme for the SSD is proposed, which is implemented

by multiple binary erasure quantization (BEQ) codes. The corresponding BEQ codes

are constructed by RC-LDGM codes. Moreover, by putting RC-LDGM codes together

with a page selection method, writing efficiency can be improved. It is verified via

simulation that the SSD with proposed rewriting scheme outperforms the SSD without

and with the conventional WOM codes for single level cell (SLC) and multi-level cell

(MLC) flash memories.

keywords: Fountain codes, low-density generator matrix (LDGM) codes, low-density

parity-check (LDPC) codes, NAND flash memory, solid-state drive (SSD), write-once

memory (WOM) codes.

student number: 2011-20923

ii

Contents

Abstract i

Contents iii

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Background . 1

1.2 Overview of Dissertation . 5

2 Sparse Codes 7

2.1 Linear Block Codes . 7

2.2 LDPC Codes . 9

2.3 Message Passing Decoder . 11

3 New Fountain Codes with Improved Intermediate

Recovery Based on Batched Zigzag Coding 13

3.1 Preliminaries . 17

iii

3.1.1 Definitions and Notation . 17

3.1.2 LT Codes . 18

3.1.3 Zigzag Decodable Codes . 20

3.1.4 Bit-Level Overhead . 22

3.2 New Fountain Codes Based on Batched Zigzag Coding 23

3.2.1 Construction of Shift Matrix 24

3.2.2 Encoding and Decoding of the Proposed BZ Fountain Codes . 25

3.2.3 Storage and Computational Complexity 28

3.3 Degree Distribution of BZ Fountain Codes 31

3.3.1 Relation Between Ψ(x) and Ω(x) 31

3.3.2 Derivation of Ω(x) via Ripple Size Evolution 32

3.4 Two-Phase Batched Zigzag Fountain Codes with Additional Memory 40

3.4.1 Code Construction . 41

3.4.2 Bit-Level Overhead . 46

3.5 Numerical Analysis . 49

4 Write-Once Memory Codes Using Rate-Compatible

LDGM Codes 60

4.1 Preliminaries . 62

4.1.1 NAND Flash Memory . 62

4.1.2 Rewriting Schemes for Flash Memory 62

4.1.3 Construction of Rewriting Codes by BEQ Codes 65

4.2 Proposed Rewriting Codes . 67

4.2.1 System Model . 67

iv

4.2.2 Multi-rate Rewriting Codes 68

4.2.3 Page Selection for Rewriting 70

4.3 RC-LDGM Codes . 74

4.4 Numerical Analysis . 76

5 Conclusions 80

Abstract (In Korean) 94

v

List of Tables

3.1 Degree distributions of BZ fountain codes with dm = 4 and k = 32. . 39

3.2 Coding overheads of TBZ fountain codes over memoryless BEC and

GE channel when symbol erasure rate is 0.2. 57

4.1 Constructed RC-LDPC codes . 77

4.2 Writing efficiency η with various θ for L = 128 79

vi

List of Figures

1.1 Block diagram of a point-to-point communication problem. 2

2.1 A Tanner graph of LDPC code. 10

3.1 Code symbols of ZD code. 22

3.2 A bitwise Tanner graph of ZD codes. 22

3.3 A symbol-wise Tanner graph of code symbols. 34

3.4 Desired ripple size evolutions for the conventional LT codes and the

proposed BZ fountain codes. 39

3.5 Coding overhead and bit-level overhead of TBZ codes when c1 and c2

are fixed. 51

3.6 Recovered message symbol ratio with β =∞. 52

3.7 Buffer occupancy ratio with β =∞. 53

3.8 Recovered message symbol ratio with β = 0.6. 54

3.9 Buffer occupancy ratio with β = 0.6. 55

3.10 Coding overheads of LT codes, ZD fountain codes, and TBZ fountain

codes for k ∈ {32, 64, 128, 256, 512} when the available buffer size is

unlimited/limited with β = 0.6. 56

vii

3.11 Coding overheads of LT codes, ZD fountain codes, and TBZ fountain

codes for various ε when the available buffer size is unlimited/limited

with β = 0.6, where the target symbol erasure rate is set to 0.2. 57

3.12 Comparison of the proposed TBZ fountain codes and LT codes using

the ISSR distributions and the DRSD with/without the RCSS algo-

rithm at the encoder with respect to μ for k = 100 and the unlimited

buffer size. 58

3.13 Comparison of the proposed TBZ fountain codes and LT codes using

the ISSR distributions and the DRSD with/without the RCSS algo-

rithm at the encoder with respect to γsucc when k = 100 and the size

of buffer is limited to 0.3 ≤ β ≤ 1. 59

4.1 Cycles of rewriting scheme in a block. 63

4.2 The LLH programming scheme for MLC flash memory. 64

4.3 Block diagram of rewriting (encoding) process by BEQ code. 67

4.4 Block diagram of reconstruction (decoding) process by BEQ code. . . 67

4.5 An example of cell state vector v =
(
p(0), p(1), p(2)

)
. 69

4.6 The protograph for the base matrix of R4JA code. 75

4.7 Block error rate of constructed LDPC codes, CA, CB , and CC in BEC. 78

4.8 Comparison of writing efficiency of the proposed scheme with those

of the conventional schemes. 78

viii

Chapter 1

Introduction

1.1 Background

The fundamental goal of digital communication is reliable transmission of informa-

tion such as speech, audio, and data from source to sink via noisy channel. When there

are a source and a sink, it is called point-to-point communication problem. In 1948,

Shannon [1] proved in a landmark paper that, by applying suitable encoding including

source and channel encoding, errors induced by a noisy channel can be removed to

any desired level without reducing the rate of information transmission, as long as the

information rate is less than the capacity of the channel. It is also shown that the point-

to-point communication problem can be decomposed into two separate problems, i.e.,

source and channel coding problems. The block diagram of the decomposed problem

is shown in Fig. 1.1. The first part is the source encoder which transforms given infor-

mation m into a bit stream u. It removes all redundancy from the source, which results

in the bit stream having the smallest size while reproduction of the source is still possi-

1

Figure 1.1: Block diagram of a point-to-point communication problem.

ble. In other words, it is impossible to compress the data such that the average number

of bits per symbol is less than the entropy of the source. Secondly, the channel en-

coder adds redundancy, called parity bits, to the given bit stream, where the parity bits

protect the bit stream from errors or erasures. Here, the encoded bit stream is called

a codeword and denoted as c . Then, the codeword is transmitted through the channel

such as wired, wireless, and storage medium. After that, the channel decoder receives

a vector r which may contain errors or erasures and tries to find which codeword was

sent over the channel. The estimated codeword and the corresponding information are

denoted by ĉ and û, respectively. Finally, the source decoder transforms the estimated

information bit stream into m̂ and delivers it to the sink.

Unfortunately, Shannon used a random coding technique which is good for proving

the channel capacity theorem, but hard to be implemented in practice. Thus, a number

of constructions of implementable codes, i.e., codes with low encoding and decoding

complexities, have been studied. A well known subclass of channel codes is a linear

block code which contains codewords generated by the linear combination of basis

2

and thus is defined by the corresponding generator or parity-check matrices.

In 1962, low-density parity-check (LDPC) codes are invented by Gallager [2] as

forward error correction (FEC) codes. However, their excellent potentials are undis-

covered due to the limits of implementation in the 1960s. At that time, the probabilis-

tic iterative decoding algorithm requiring high computational complexity was hard to

be applied and thus LDPC codes were almost forgotten and neglected over 35 years.

Turbo codes were first presented to the coding theorists by Berrou, Glavieux, and Thiti-

majshima [3] in 1993. They introduced a new family of convolutional codes built from

concatenation of two recursive systematic codes with an interleaver. The name was

derived from its iterative decoding algorithm, i.e., the part of decoded output is rein-

troduced at the input and processed again, like a turbo engine. After the appearance

of turbo codes, LDPC codes were rediscroved by McKay and Neal [4] in 1996. They

revealed that the iterative decoding algorithm for turbo codes was a special case of the

decoding algorithm for Gallager’s LDPC codes. Since then, LDPC codes have been

one of the main research area due to their capacity-approaching performance.

From early 2000, generalization of LDPC codes and theoretical analysis of their

performance have been studied by a number of researchers including Richardson, Ur-

banke, Luby, Mitzenmacher, Shokrollahi, and Spielman [5]–[8]. In addition to theoret-

ical interests in LDPC codes, they have been adopted in many communication systems

such as wireless metropolitan area network (WMAN), wireless local area network

(WLAN), 10GBase-T Ethernet, and digital video broadcasting [9]–[12].

Similarly, another subclass of sparse codes, low-density generator matrix (LDGM)

codes have been attracted attention [13], [14], where LDGM codes can be considered

as dual codes of LDPC codes. However, it is shown that LDGM codes are asymptot-

3

ically bad since poor distance properties cause high error floor problems [15]. While

maintaining the advantages of low complexity iterative decoding, the error floor prob-

lem of the LDGM codes can be solved by properly concatenating LDGM codes and

another codes, which results in compound or concatenated codes such as MacKay-

Neal (MN) codes [16].

Recently, alternative to fixed rate codes, concept of digital fountain is introduced

[17], which allows any number of heterogeneous clients to acquire data with optimal

efficiency even though channel state of each receiver is unknown to the transmitter. In

2002, Luby proposed practical fountain code with simple XOR operation [18], called

Luby transform (LT) codes. In view of sparse codes, LT codes can be considered as

LDGM codes. Therefore, LT codes may suffer from the error floor problem as men-

tioned earlier and thus raptor codes are invented by Shokrollahi [19], which are con-

catenation of the LT code and a precode.

While sparse codes such as LDPC codes, LDGM codes, and several fountain codes

are used as error correction codes (ECC), they also have been applied to various areas

due to their outstanding performance with low complexity decoding algorithm. The

research areas adopting sparse codes are described as follows:

• ECC for the conventional communication systems

• Quantum error correction in quantum computing [20]–[22]

• Cryptosystem [23]–[26]

• Data compression [27]–[31]

• Compressed sensing [32]–[34]

4

• Peak-to-average power ratio (PAPR) control in orthogonal frequency division

multiplexing (OFDM) systems [35]–[38]

• Write-once memory (WOM) codes [39], [40].

Especially in this dissertation, two classes of fountain codes defined by sparse

graphs with zigzag coding technique and WOM codes implemented by rate-compatible

(RC) LDGM codes are mainly discussed.

1.2 Overview of Dissertation

This dissertation is organized as follows. Chapter 2 introduces a well known subclass

of sparse graph codes, i.e., LDPC codes. Firstly, basic notions and definitions of lin-

ear code are given in Section 2.1 and Section 2.2 reviews concepts of LDPC codes.

Moreover, a simple message passing algorithm for LDPC code is briefly presented in

Section 2.3.

In Chapter 3, two new classes of fountain codes are proposed, which can be re-

garded as sparse LDGM codes. Section 3.1 overviews LT codes and ZD codes. BZ

fountain codes are proposed in Section 3.2. Degree distributions of code symbols for

the proposed BZ fountain codes are derived in Section 3.3. Further, the TBZ foun-

tain codes are proposed in Section 3.4. The performance improvement of the proposed

codes is verified via numerical analysis in Section 3.5.

In Chapter 4, WOM codes constructed by RC-LDGM codes are introduced. Sec-

tion 4.1 overviews characteristics of NAND flash memory, rewriting schemes for flash

memory, and the construction of rewriting codes with BEQ codes. In Section 4.2, a

5

new rewriting scheme for NAND flash memory is proposed and a construction of the

corresponding RC-LDGM codes is described in Section 4.3. The performance of the

proposed WOM codes is verified via simulation in Section 4.4.

6

Chapter 2

Sparse Codes

In this chapter, some preliminaries of linear codes, sparse codes such as LDPC codes,

and their message passing decoders are introduced. First, the basic concepts of linear

codes are described and background of LDPC codes which are well known sparse

codes are provided. Finally, a message passing decoder which has low complexity is

introduced.

2.1 Linear Block Codes

In this section, we review definitions of linear codes and their properties. Let Fq be the

finite field with q elements, where q is a prime power. Then a linear code is defined as

follows.

Definition 2.1 If C ⊆ F
n
q is a subspace of Fn

q , then C is said to be a linear code.

Since C is a subspace, there is a basis {c1, c2, . . . , ck}, where k is the dimension of

the subspace. It is known that any element in C, called codeword, can be represented

7

as the linear combination of k basis vectors. Hence, the code C, denoted by (n, k)q ,

can be defined by its generator matrix.

Definition 2.2 A matrix G ∈ F
k×n
q is said to be a generator matrix of C if its k rows

span C.

In other words, we have C = {c1, c2, . . . , cqk} and each codeword is given as ci =

miG, where mi is k-tuple vector, called message vector for i = 1, . . . , qk. Further,

the rate of a code C is denoted by R given as

R =
log |C|

n log |Fq| =
k

n
. (2.1)

Also, the code C can be described in terms of a parity-check matrix H ∈ F
(n−k)×n
q

such that Hcᵀ = 0ᵀ for all codewords c, where 0 denotes all zero row vector and (·)ᵀ

represents the transpose. With the parity-check matrix, we define a syndrome vector

of received vector y as follows.

Definition 2.3 A vector s = Hyᵀ is said to be the syndrome of given vector y.

Clearly, a linear code is a subspace of Fn
q and thus the dual or orthogonal space can be

defined.

Definition 2.4 If C ⊆ F
n
q is a linear code, then its dual code C⊥ is defined as

C⊥ =
{
z ∈ F

n
q |zcᵀ = 0, ∀c ∈ C

}
. (2.2)

With above definitions, some properties of linear code are described as the following

lemmas.

Lemma 2.5 A parity-check matrix H for a code C is a generator matrix for the dual

code C⊥.

8

Lemma 2.6 dim(C) + dim(C⊥) = n. Thus, if C is an (n, k)q code, then C⊥ is an

(n, n− k)q code.

Lemma 2.7
(
C⊥

)⊥
= C.

Here is a simple example of a linear code and its dual code.

Example 2.8 Let C = {000, 110, 011, 101} be a (3, 2)2 linear code. Then the gener-

ator matrix is given as

G =

⎡
⎢⎢⎣1 1 0

0 1 1

⎤
⎥⎥⎦ . (2.3)

Also the corresponding dual code C⊥ is

C⊥ =
{
(v1, v2, v3)|v1 + v2 = 0, v2 + v3 = 0, vi ∈ {0, 1} for i = 1, 2, 3

}
=

{
(0, 0, 0), (1, 1, 1)

}
. (2.4)

2.2 LDPC Codes

In this section, some preliminaries of LDPC codes are introduced. An LDPC code is

a linear code which is defined by its parity-check matrix consisting of mostly 0’s and

a few nonzero elements. Especially, when the finite field is F2, the number of 1’s in

the matrix is very small compared to that of 0’s, which results in a sparse matrix. An

alternative representation of LDPC code is a bipartite graph G = (V,C,E), generally

called Tanner graph, where V and C are sets of variable and check nodes and E is a set

of edges connecting two nodes from different sets, i.e., V and C . Generally, a variable

and a check nodes are represented as a circle and a square, respectively. Note that the

9

Figure 2.1: A Tanner graph of LDPC code.

number of edges in a node is called degree. An LDPC code who has variable and check

nodes with only degree dv and dc, respectively is called (dv , dc) regular LDPC codes.

Whereas, if the degrees of variable (check) nodes are different from each other, the

code is said to be irregular.

Example 2.9 A parity-check matrix of a binary (2, 3) regular LDPC code with length

6 is given as

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.5)

and the corresponding Tanner graph GH is shown in Fig. 2.1. Here, it can be checked

that V = {v1, v2, . . . , v6} and C = {c1, c2, c3, c4}.

10

2.3 Message Passing Decoder

In general, message passing decoding algorithm is used for LDPC codes, where its

operations can be represented by passing the messages along the edges in a Tanner

graph. It is also called iterative decoder since the outgoing messages from variable

(check) nodes are put again into check (variable) nodes iteratively. The decoder stops

until it finds a valid codeword or the number of iteration reaches the predetermined

maximum iteration number.

In this dissertation, binary erasure channel (BEC) is mainly considered and thus

a message passing algorithm for BEC is introduced. Note that a received bit is al-

ways correct if it is not erased. It is known that the message passing algorithm can be

divided into three parts, i.e., variable node update part, check node update part, and

decision part at each variable node. Let Mi,j and Ej,i be outgoing messages from the

ith variable node to the jth check node and from the jth check node to the ith variable

node, respectively. Initially, every variable node does not have any incoming messages.

Hence, the outgoing message of the ith variable node is the same as its received value

if ith bit is not erased, otherwise, the message is set as ∗, where ∗ denotes an erasure.

Note that variable node sends the same outgoing messages to all neighboring check

nodes. Now, the jth check node receives dj incoming messages, where dj is the num-

ber of neighbors of the jth check node. When only one message, passed from the ith

variable node, among dj incoming messages of the jth check node is an erasure, the

check node calculates the value of unknown (erased) bit by adding all messages ex-

cept for Mi,j and sends the recovered value Ej,i as a new outgoing message. However,

when there are more than one incoming messages with ∗ at the check node, the check

11

node cannot recover erased bits. Thus, the check node sends the outgoing message as

∗. Finally, for the erased variable node, if any received message from the neighboring

check node is not ∗, the erased bit at the variable node is recovered by the incoming

message.

Remark 2.10 When a message passing algorithm is performed sequentially, it is called

peeling decoder. It is known that the performance of parallel and sequential message

passing algorithms are the same in BEC.

12

Chapter 3

New Fountain Codes with Improved Intermediate

Recovery Based on Batched Zigzag Coding

Fountain codes are capacity-approaching codes which provide efficient transmission

over point-to-multipoint channels. Luby transform (LT) codes [18] and Raptor codes

[19] are the most popular practical fountain codes with low encoding and decoding

complexities. In contrast to fixed rate codes, a fountain encoder generates k message

symbols into sufficiently many code symbols and transmits them to multiple receivers

without knowing their individual channel states until all receivers recover the k mes-

sage symbols. Each receiver collects at least k code symbols and decodes them to

recover all the message symbols with high probability.

To generate code symbols in LT codes, an encoder starts by randomly selecting

the degree of each code symbol from a given degree distribution. Then the encoder

selects the corresponding number of distinct message symbols uniformly at random

and performs bitwise XOR operation on them. The code symbols of conventional LT

codes are decoded by iteratively performing bitwise XOR operation on the received

13

code symbols with the recovered neighboring message symbols. Each decoder has two

types of storages, ripple and buffer, which intermediately store the recovered message

symbols and the received code symbols that are not fully decoded yet, respectively.

The ratio of the number of received code symbols to k is called coding overhead,

which is one of the important performance criteria of LT codes. In order to reduce the

coding overhead of LT codes, lots of research have been done. Since the coding over-

head of LT codes is clearly related to the degree distribution and the size of the ripple,

various degree distributions have been researched by using an analytic tool called rip-

ple size evolution, which represents the expected ripple size during the decoding pro-

cess [41]. In order to keep the average ripple size one, Luby proposed the ideal soliton

distribution (ISD) [18] but a small variance of adding released code symbols into the

ripple can cause decoding failure. To resolve this drawback, the robust soliton distribu-

tion (RSD) was proposed [18] to keep the average ripple size as a constant value larger

than one. On the other hand, Sørensen et al. [41] proposed a new method to obtain

degree distributions with decreasing ripple size. They show that the decreasing ripple

size distribution (DRSD) provides a significant improvement of coding overhead. In

addition, the degree distributions of LT codes which improve their performance are

also studied in [42]–[44].

When code symbols with degree larger than one remain in the buffer and the rip-

ple is empty, standard iterative decoding fails. Recently, a new class of fountain codes

adopting zigzag decodable (ZD) structure was proposed in [45]–[47]. Using not only

bitwise XOR operation but also bit-level shift operation, these fountain codes give us

a performance improvement in terms of coding overhead. If all selected message sym-

bols are bitwisely shifted and then combined by bitwise XOR operation when gener-

14

ating a code symbol, we can make the leftmost or the rightmost bit of the code symbol

depend on only one of the selected message symbols. These bits can help decoding

process further, which is called zigzag decoding. It is known that the ZD structures are

adopted in various applications other than the fountain codes, e.g., wireless networks,

distributed storage systems, and index coding [48]–[52].

Generally, most of the fountain codes are designed to minimize the coding over-

head but they do not consider the intermediate symbol recovery rate (ISRR), which

is defined as the ratio of the number of recovered message symbols to the number of

total message symbols when the number of received code symbols is less than k. Low

ISRR implies that the decoder has to store a lot of code symbols in the buffer during

decoding process. Low ISRR is fatal for the receivers with limited memory and com-

putational power due to their extremely low cost requirements such as electronic shelf

labels in warehouse [53] and smart sensors, which are key ingredients in Internet of

Things (IoT) [54]–[56]. At an intermediate stage of decoding, if the number of unde-

coded code symbols reaches the capacity of the buffer, the decoder randomly selects

and discards one code symbol from the buffer. Then it receives a new code symbol.

Clearly, the limitation of the buffer size causes the increase of the coding overhead.

There have been several works on the ISRR [57]–[63]. An upper bound of ISRR

was derived and asymptotically optimal degree distributions for the ISRR were found

in [57]. Talari and Rahnavard [59] designed degree distributions employing genetic

algorithms to have the optimal ISRR. However, high portion of low degree code sym-

bols, e.g., degrees one and two, causes high coding overhead. They also proposed

the rateless coded symbol sorting (RCSS) algorithm for further ISRR improvement,

which additionally requires O(k2) encoding complexity. Other approaches for im-

15

proving ISRR and reducing the usage of buffer were introduced in [60]–[63]. In these

fountain coding schemes, the receivers frequently use feedbacks in order to inform the

current decoding status to the transmitter, which makes it possible to search the op-

timal degree. However, for point-to-multipoint communication systems, it is not easy

to use many feedback transmissions. Further, feedback signals from different receivers

may collide with each other in wireless channel and the frequent retransmissions cause

significant power consumption in the receivers.

In this chapter, a new class of fountain codes called batched zigzag (BZ) fountain

codes is proposed to improve the ISRR without feedback. In terms of batched cod-

ing, encoding based on common message symbols is first introduced in batched sparse

codes [64], which are concatenation of fountain codes and random linear codes over

large finite field. On the contrary, in the proposed BZ fountain codes, batches are gen-

erated based on a common subset of message symbols with the bit-level shift and the

bitwise XOR operations so that they can be zigzag decodable. It is noted that the bit-

level shift operation in the proposed codes gives rise to a small amount of additional

overhead, called bit-level overhead, which causes the effect of slightly lengthening

each code symbol. We also analyze their bit-level overhead and computational com-

plexity. While ZD fountain codes in [45] do not also consider ISRR performance, the

proposed BZ fountain codes are designed to have a higher ISRR by generating zigzag

decodable batches. Also, we extend the ripple size evolution analysis of LT codes in

[41] to the proposed codes so that we derive new degree distributions for BZ fountain

codes.

In order to reduce the coding overhead further, we modify the proposed BZ foun-

tain codes to two-phase batched zigzag (TBZ) fountain codes. Encoding procedures of

16

the TBZ fountain codes are separated into two phases by the stored indices of the pre-

viously selected message symbols for generation of code symbols. At the first phase,

the encoder picks previously unselected message symbols to generate the next code

symbols and constructs batches with various sizes as in the BZ fountain codes. At the

second phase, subsets of message symbols are randomly selected from the entire mes-

sage symbols and batches with size one are generated. It is noted that information of all

previously encoded symbols is stored in [65] but the memory at the encoder of TBZ

fountain code stores whether message symbols are selected or not for the previous

generation, which is much simpler.

Finally, the contributions of this chapter are summarized as follows: i) we proposed

BZ fountain codes to improve ISRR, ii) we obtained a proper degree distribution for

the proposed codes by using ripple size evolution analysis, iii) we also proposed TBZ

fountain codes by splitting encoding procedure into two phases. We verify by numeri-

cal analysis that the proposed BZ fountain codes improve ISRR and the proposed TBZ

fountain codes outperform LT codes and ZD fountain codes [45] with respect to ISRR

and coding overhead when the available buffer size is limited.

3.1 Preliminaries

3.1.1 Definitions and Notation

We consider broadcasting k binary l-tuple message symbols from one transmitter

to multiple receivers over symbol erasure channel with symbol erasure rate ε. Let

mi = (mi,1,mi,2, . . . , mi,l) denote the ith message symbol, where mi,j ∈ {0, 1}

17

for i = 1, . . . , k and j = 1, . . . , l. The ith message symbol can also be represented in

a polynomial form as

mi(z) = mi,1 +mi,2z + · · ·+mi,lz
l−1. (3.1)

Obviously, this setting can be seen as a transmission of k sequential packets each of

which consists of l bits. We assume that each receiver has so strict memory limit that

it can store at most kβ code symbols in the buffer, where 0 < β < 1.

Let γ and μ denote the ratios of the number of received code symbols and recov-

ered message symbols to the number of message symbols k, respectively. In a fountain

code setting, collecting arbitrary kγ code symbols at each receiver leads to recovering

all message symbols with high probability, i.e., μ = 1 for γ ≥ γsucc. Here, we call

γsucc as coding overhead. For capacity-achieving fountain codes, we have γsucc = 1.

Degree of a code symbol c is the number of involved message symbols in the

encoder and the corresponding message symbols are called neighbors of c, denoted

by N (c). The degree of code symbols is drawn from a certain degree distribution

Ω(x) =
∑k

d=1 Ωdx
d, where Ωd is the probability that a code symbol has degree d.

3.1.2 LT Codes

In this subsection, we will briefly overview LT codes. An encoder of LT codes sequen-

tially generates code symbols until every receiver recovers the k message symbols as

follows. First, sample a degree d of code symbol from a given degree distribution.

Secondly, choose d distinct message symbols uniformly at random out of k message

symbols and perform bitwise XOR operation on the d chosen message symbols. The

decoder of LT codes iterates the following procedures until all message symbols are

18

recovered.

Step 1) Store a newly received code symbol in the buffer.

Step 2) If the received code symbol is degree-one, add the neighboring message sym-

bol into the ripple and go to Step 5). Otherwise, go to Step 1).

Step 3) Store a newly received code symbol in the buffer and perform bitwise XOR

operations with already recovered neighboring message symbols if any.

Step 4) If the degree of the newly received code symbol becomes one, called released

code symbol, add the remaining neighbor of the code symbol into the ripple.

Step 5) If the ripple is not empty, select a message symbol randomly from the ripple.

Otherwise, go to Step 8).

Step 6) Perform bitwise XOR operations with the selected message symbol on every

code symbol in the buffer who has the message symbol as a neighbor. Move

the selected message symbol from the ripple to the memory of the recovered

message symbols. The message symbol is called recovered.

Step 7) Find the released code symbols in the buffer and move the corresponding

message symbols to the ripple if any. Then go to Step 5).

Step 8) Stop if all message symbols are successfully recovered. Otherwise, go to Step

3).

19

3.1.3 Zigzag Decodable Codes

In this subsection, we introduce ZD codes. These codes use not only bitwise XOR

but also bit-level shift operation. As a result, the length of the code symbol is slightly

larger than that of the message symbol l.

Definition 3.1 A d-tuple vector sdi = (si,1, . . . , si,d) is a shift vector of the ith code

symbol ci, where si,j is a nonnegative integer representing the shift value of the jth

neighbor of ci for j = 1, . . . , d. A matrix ST×d =

[(
sd1

)ᵀ (
sd2

)ᵀ · · ·
(
sdT

)ᵀ
]ᵀ

denotes a shift matrix of T code symbols, where (·)ᵀ denotes the transpose.

Clearly, the shift vector of the conventional LT coding is all-zero shift vector, denoted

by sd(0) = (0, 0, . . . , 0) for degree-d code symbol. In general, it can be assumed that

the minimum shift value in the shift vector sdi is equal to zero. The maximum shift

value in sdi is defined as sdmax,i = maxj{si,j}. Then sdmax,i represents the number of

additional bits for the ith code symbol due to the shift and XOR operations. Also, let

δ = maxd,i {sdmax,i} be the maximum number of additional bits for all code symbols.

Definition 3.2 ([45]) For a given δR and d, let ŝd = (ŝ1, . . . , ŝd) be a nonnegative in-

teger vector such that ŝi is selected from [0, δR] uniformly at random for i = 1, . . . , d.

Find the minimum value in ŝd, i.e., ŝmin = mini∈{1,...,d} {ŝi} and subtract the min-

imum value from all elements in ŝd. Then it is called a random shift vector, that is,

sd(R) = (ŝ1 − ŝmin, . . . , ŝd − ŝmin).

From the shift matrix ST×d = [si,j], the generator matrix of the ZD codes is defined

20

as

GT×d(z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zs1,1 zs1,2 · · · zs1,d

zs2,1 zs2,2 · · · zs2,d

...
...

. . .
...

zsT,1 zsT,2 · · · zsT,d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.2)

The zigzag encoding of d message symbols results in T code symbols and it can be

represented in a matrix form as

[
c1(z) . . . cT (z)

]ᵀ
= GT×d(z)

[
mI1(z) . . . mId(z)

]ᵀ
(3.3)

where Ij is an index of the jth neighbor of the code symbols for j = 1, . . . , d satisfying

1 ≤ I1 < · · · < Id ≤ k.

Nozaki [45] proposed the decoding algorithm for the fountain codes based on ZD

codes using bitwise Tanner graph. First, the bitwise Tanner graph of the received code

symbols is constructed. Then the LT decoding which is described in the previous sub-

section is applied bitwisely. We call the code symbols zigzag decodable if every in-

volved message symbol is successfully recovered by bitwise LT decoding.

Example 3.3 Consider the ZD code with T = d = 3, and l = 5. Also the shift matrix

is set as S3×3 =

[
(0, 1, 2)ᵀ (1, 2, 0)ᵀ (1, 0, 0)ᵀ

]ᵀ
, where clearly δ = 2. The code

symbols c1, c2, and c3 are graphically described in Fig. 3.1 and the corresponding

bitwise Tanner graph Gb = (Mb, Cb, Eb) is shown in Fig. 3.2, where Mb and Cb are

sets of message and code bit nodes, respectively, and Eb is a set of edges such that

(m, c) ∈ Eb for m ∈ Mb and c ∈ Cb. The circle and the square nodes represent

message and code bit nodes, respectively. Clearly, these code symbols are zigzag de-

codable, i.e., we can decode them in the following order, m1,1, m3,1, m3,2, m2,1, etc.

21

Figure 3.1: Code symbols of ZD code.

Figure 3.2: A bitwise Tanner graph of ZD codes.

3.1.4 Bit-Level Overhead

Let L(C)
Ω be a random variable which represents the length of code symbol of the

fountain code C with zigzag coding when Ω(x), l, and δ are given. Let r be the number

of additional bits for code symbols of C and let R(C)
Ω denote a random variable of r such

that L(C)
Ω = l +R

(C)
Ω .

22

Definition 3.4 A bit-level overhead of the fountain code C with degree distribution

Ω(x) is defined as

η =
E

[
L
(C)
Ω

]
l

(3.4)

where E[·] denotes the expectation and 1 ≤ η ≤ 1 + δ/l.

Obviously, for the conventional LT codes, η = 1 because δ = 0. On the other hand,

all code symbols in the ZD fountain codes proposed in [45] are generated by sd(R) and

thus the expected length of the code symbols is derived in the following lemma.

Lemma 3.5 ([46], Corollary 1) Consider ZD fountain codes with Ω(x), l, and δR.

Then the expected length of the code symbols is given as

E

[
L
(ZD)
Ω

]
= l + δR − 2

δR∑
i=1

Ω

(
i

δR + 1

)
. (3.5)

3.2 New Fountain Codes Based on Batched Zigzag Coding

We can construct a set of code symbols using the same subset of message symbols,

called batch, i.e., C = {c1, . . . , cT }, where N (c1) = · · · = N (cT). The size and the

degree of a batch denote the number of code symbols and the number of message sym-

bols involved in each code symbol in the batch, respectively. We consider the fountain

codes such that a transmitter generates code symbols in the form of batches and broad-

casts them to a number of receivers. Clearly, with only bitwise XOR operation on any

subset of message symbols, we can generate batches of size one. Here, we propose

23

new fountain codes, called batched zigzag fountain codes such that we can generate

batches with size larger than or equal to one by using the bit-level shift and XOR op-

erations on subsets of the message symbols, that is, adopting the zigzag coding for

batches. Batched zigzag encoding and decoding denote the encoding of batches hav-

ing zigzag structures and the decoding of batches with the zigzag decoding algorithm

to recover all the involved message symbols, respectively.

3.2.1 Construction of Shift Matrix

There are various types of shift matrices for the zigzag encoding. Here we introduce a

d× d shift matrix which can be used in the proposed codes.

Definition 3.6 ([50]) A d × d shift matrix denoted by S
(EV)
d×d = [si,j] is called an ex-

tended Vandermonde shift matrix for 1 ≤ i ≤ d and 1 ≤ j ≤ d, where si,j =

pi + (i− q)(j − 1), q = 	d/2
, and

pi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(q − i)(d − 1), if i ≤ q

0, otherwise.

(3.6)

It is shown that for any d, every code symbol obtained by arbitrary square subma-

trix of S(EV)
d×d is zigzag decodable [50]. Further, by using S

(EV)
d×d , Chen et al. [50] reduce

δ by at least 50% compared to the shift matrix proposed in [49]. Hence, the decoder

can recover all neighboring message symbols from any t already recovered neighbors

and d− t received coded symbols in the same batch generated by S
(EV)
d×d .

24

Algorithm 3.1: Encoding of BZ fountain codes

Input: k, {m1(z), . . . ,mk(z)}, Ψ(x), dm, S = {S2, . . . , Sdm}

Initialization: I ← {1, . . . , k}

Step 1) Sample a degree d from Ψ(x).

Step 2) If 1 ≤ d ≤ dm, T ← d. Otherwise, T ← 1.

Step 3) Select d indices of message symbols from I uniformly at random. Isel ←

{I1, . . . , Id}.

Step 4) If T > 1, ST×d = [sj,w]← Sd. Otherwise, ST×d ← sd(0).

Step 5) C(z)← GT×d(z)

[
mI1(z) · · · mId(z)

]ᵀ
, where the entry of GT×d(z) is

gj,w = zsj,w for j = 1, . . . , T and w = 1, . . . , d.

Step 6) Stop if every receiver successfully recovers the k message symbols. Other-

wise, go to Step 1).

3.2.2 Encoding and Decoding of the Proposed BZ Fountain Codes

Now we propose a new class of fountain codes based on batched zigzag coding as

follows. Encoding and decoding procedures of the proposed BZ fountain codes are

described in Algorithms 3.1 and 3.2, where Ψ(x), dm, and S denote the batch degree

distribution, the maximum size of batch, and the set of predetermined d × d shift

matrices for 2 ≤ d ≤ dm, respectively. Here, the batch degree distribution Ψ(x) is

given as
∑k

d=1 Ψdx
d, where Ψd is the probability that the batch has degree d.

25

With Algorithm 3.1, d code symbols are generated from the same subset of mes-

sage symbols for 2 ≤ d ≤ dm at one time and single code symbol is generated for

d = 1 or d > dm. Then the encoder broadcasts the generated code symbols one by one

in the batches. The decoding algorithm for the proposed BZ fountain codes uses both

the LT decoding and the zigzag decoding for the batches. Clearly, all the code symbols

in the batch are zigzag decodable if all code symbols in the same batch are received

without any erasures. Now we consider the case that t code symbols are erased in the

channel when a batch C of size d is transmitted. Since the proposed decoding algo-

rithm does not have any difference from the conventional LT decoding for t = d− 1,

we focus on the case of 1 ≤ t ≤ d− 2 for d ≥ 3. A batch C is zigzag decodable when

the following two cases occur.

• Case 1) t = 1; Let mcur be a message symbol currently selected from the ripple.

If mcur ∈ N (C), then we remove mcur from C by XOR with its code symbols

to decrease the number of unrecovered message symbols to d − 1. Then, the

batch of size d− 1 with degree d− 1 is zigzag decodable and the corresponding

d− 1 message symbols are newly added into the ripple.

• Case 2) 2 ≤ t ≤ d − 2; Assume that t − 1 message symbols out of d message

symbols in N (C) are already recovered. If mcur ∈ N (C), then the batch of

size d− t with degree d− t is zigzag decodable and the remaining d− t message

symbols are added into the ripple.

When the ripple becomes empty, a conventional LT decoder halts its decoding process

and receives a new code symbol. On the other hand, for the BZ fountain codes, the

recovery of message symbols can be additionally done by zigzag decoding, which

26

implies the increase of the ripple size and further recovery of the message symbols

from the given number of the received code symbols. Consequently, the proposed BZ

fountain codes have the improved ISRR.

Now, we derive the expected length of code symbols for the proposed BZ fountain

codes. Throughout the chapter, we assume that the extended Vandermonde shift matrix

S
(EV)
d×d is used as the predetermined shift matrix Sd. Here we derive the expected length

of code symbols using the code symbol degree distribution Ω(x) rather than the batch

degree distribution Ψ(x), whose relation will be derived in the next section.

Theorem 3.7 Consider BZ fountain codes with code symbol degree distribution Ω(x),

l, dm, and the set of predetermined shift matrices S =
{
S
(EV)
2×2 , . . . ,S

(EV)
dm×dm

}
. Then

the expected length of code symbols is given as

E

[
L
(BZ)
Ω

]
= l +

dm∑
d=2

h(d)Ωd (3.7)

where h(d) denotes the expected number of additional bits for the degree-d code sym-

bol given by

h(d) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d(d−1)
4 , if d is even

(d2−1)(d−1)
4d , if d is odd

(3.8)

and the maximum number of additional bits for a code symbol δ is
⌊
dm/2

⌋
(dm − 1).

Proof. For 2 ≤ d ≤ dm, there are three types of rows in S
(EV)
d×d , i.e., decreasing,

constant, and increasing rows. The ith row belongs to decreasing, constant, and in-

creasing rows if i is less than, equal to, and larger than 	d/2
, respectively. It is easy to

check that sdmax,i =
∣∣	d/2
 − i

∣∣ (d− 1) for 1 ≤ i ≤ dm. Since there are total d code

27

symbols, h(d) can be written as

h(d) =
d− 1

d

⎛
⎝�d/2�−1∑

i=1

(d/2
 − i
)
+

d∑
i=�d/2�+1

(
i− 	d/2
)

⎞
⎠ (3.9)

which results in (3.8). Furthermore, we can show that

δ = max
d,i
{sdmax,i} =

⌊
dm/2

⌋
(dm − 1) (3.10)

by the definition. �

3.2.3 Storage and Computational Complexity

In this subsection, we analyze the storage and computational complexities of the pro-

posed BZ fountain codes. In order to recover all message symbols, a receiver needs

to store kγsucc code symbols, where each code symbol has E
[
L
(BZ)
Ω

]
bits in average.

For the worst case, the length of all received code symbols is equal to l + δ. Thus, the

BZ fountain codes require at most kγsucc · (l + δ) bits when buffer size is unlimited.

To compute the overall encoding and decoding complexities, we need to check the

size (number of edges) of the bitwise Tanner graph for received code symbols. If the

code symbol degree distribution is fixed to Ω(x), then there are kγsucc · E
[
L
(BZ)
Ω

]
·

Ω′(1) edges in the bitwise Tanner graph while it is given as kγsucc · l · Ω′(1) in LT

codes, where Ω′(x) denotes the derivative of Ω(x). Since δ =
⌊
dm/2

⌋
(dm − 1), we

choose dm small enough, e.g., dm ≤ 5, which results in δ ≤ 8. Thus, by setting

l strictly larger than δ, e.g., l ≥ 50, the increased computational complexity of the

proposed codes is negligible compared to that of the conventional LT codes when the

same degree distribution is applied.

28

Algorithm 3.2: Decoding of BZ Fountain Codes

Step 1) Store a newly received code symbol in the buffer.

Step 2) If the received code symbol is degree-one, add the neighboring message sym-

bol into the ripple and go to Step 6).

Step 3) If a batch is received without any erasure, perform the zigzag decoding to the

batch and add all the neighboring message symbols into the ripple. Then go

to Step 6). Otherwise, go to Step 1).

Step 4) Store a newly received code symbol in the buffer and perform bitwise XOR

operations with already recovered neighboring message symbols.

Step 5) If the current degree of the code symbol is one, add the remaining neighbor

of the code symbol, i.e., the message symbol into the ripple.

Step 6) If the ripple is not empty, select a message symbol randomly from the ripple.

Otherwise, go to Step 9).

Step 7) Perform bitwise XOR operations with the selected message symbol to every

code symbol in the buffer who has the message symbol as a neighbor. Move

the selected message symbol from the ripple to the memory of the recovered

message symbols.

29

Algorithm 3.2: Decoding of BZ Fountain Codes (continued)

Step 8) Find the released code symbols in the buffer and if any, move the correspond-

ing code symbols, i.e., the message symbols to the ripple. Go to Step 6).

Step 9) Perform the zigzag decoding to the batches in the buffer. If there are zigzag

decodable batches, add all the neighboring message symbols into the ripple

and go to Step 6).

Step 10) Stop if all message symbols are successfully recovered. Otherwise, go to

Step 4).

30

3.3 Degree Distribution of BZ Fountain Codes

3.3.1 Relation Between Ψ(x) and Ω(x)

In Algorithm 3.1, an encoder generates an unlimited sequence of batches using the

batch degree distribution Ψ(x). For a sampled degree d, 1 ≤ d ≤ dm, the size of the

batch is equal to d, which means that d code symbols with the same neighbors are

generated simultaneously. As a result, d code symbols with degree d are generated.

Using this property, the code symbol degree distribution Ω(x) can be derived from the

given batch degree distribution Ψ(x).

Assume that an encoder generates B batches with Ntot code symbols. For the

degree d, 1 ≤ d ≤ dm, there are d code symbols of degree d in each batch of size d.

Therefore, we have Ωd = BdΨd/Ntot. For d > dm, we have BΨd batches composed

of single code symbol of degree d and thus Ωd = BΨd/Ntot. Since Ω(1) = 1, it can

be written as
k∑

d=1

Ωd =
B

Ntot

⎛
⎝1 +

dm∑
d=2

(d− 1)Ψd

⎞
⎠ = 1. (3.11)

Here, θ is defined as

θ =
Ntot

B
. (3.12)

We can easily check that θ ≥ 1 and we have

Ωd =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dΨd
θ , if 1 ≤ d ≤ dm

Ψd
θ , otherwise.

(3.13)

31

3.3.2 Derivation of Ω(x) via Ripple Size Evolution

In [41], they analyzed the ripple size evolution for LT codes and obtained DRSD. In

this chapter, we extend this approach to obtain a code symbol degree distribution for

the proposed BZ fountain codes. Since code symbols in the same batch are designed to

be zigzag decodable, code symbol degree distributions of the BZ fountain codes should

be determined by the target channel parameter. Hence, the proposed BZ fountain codes

are designed for the given symbol erasure rate while the conventional fountain codes

are designed for the successful transmission oblivious of individual channel states.

As a result, universality in channel parameters does not work in BZ fountain codes.

However, we consider applications whose channel parameter does not vary much in

our scenario. Assume that decoding process starts after receiving n code symbols for

the purpose of ripple analysis, where n = kγsucc. In each step of decoding process,

one message symbol is selected from the ripple for decoding of the received code

symbols in the buffer and then, it is removed from the ripple and becomes the recovered

message symbol. Let L be the number of unrecovered message symbols, L = k, k −

1, . . . , 0. Let Q(L) denote the desired number of message symbols which are added

into the ripple in the (k − L)th decoding step in order to keep the desired ripple size.

For the proposed BZ fountain codes, Q(L) is composed of Q(L)
LT and Q

(L)
B as

Q(L) = Q
(L)
LT +Q

(L)
B (3.14)

where Q
(L)
LT and Q

(L)
B are for the LT decoding and the batched zigzag decoding, re-

spectively. Let R(L) be the ripple size at the end of the (k−L)th decoding step. Then,

we have a simple relation as

R(L) = R(L+1) − 1 +Q(L) (3.15)

32

for L < k and R(L) = Q(L) for L = k.

First, we analyze the ripple size evolution of LT decoding based on a symbol-

wise Tanner graph Gs = (M,C,E), where M and C are sets of message and code

symbol nodes, respectively, and E is a set of edges between M and C . We assume

for simplicity that degree-d code symbols with the same neighbors occur only when

they belong to the same batch for 2 ≤ d ≤ dm. In this setting, code symbols with the

same neighbors can be assumed to be redundant in terms of the symbol-wise Tanner

graph and thus the code symbols of each batch are represented by one code symbol

node, called effective code symbol. Thus, when there are n code symbol nodes in Gs,

the number of effective code symbol nodes is given as

|C ′| = n

k∑
d=1

Ωd

E
[
Wd,ε

] (3.16)

where E[Wd,ε] is the expected number of successfully received code symbols in a batch

of degree d for the symbol erasure rate ε. Here, we have

E
[
Wd,ε

]
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∑d

w=1w
(dw)(1−ε)wεd−w

1−εd
, if 2 ≤ d ≤ dm

1, otherwise.

(3.17)

Example 3.8 Suppose that batches of the proposed BZ fountain codes are given as

{C1, . . . ,C5} with {m1, . . . ,m8}. Let dm = 3. The corresponding symbol-wise Tan-

ner graph is shown in Fig. 3.3. In the Tanner graph, the white, the black, and the

gray nodes denote erased, effective, and redundant code symbol nodes at the receiver,

respectively. While the total number of successfully received code symbols is 6, the

number of effective code symbols is 4.

33

Figure 3.3: A symbol-wise Tanner graph of code symbols.

In LT codes, the total number of released code symbols depends on the code sym-

bol degree distribution Ω(x) and the probability that a code symbol is released and

added into the ripple. This probability is derived in the following lemma.

Lemma 3.9 ([41], Lemma 1) Let q(d, L,R) be the probability that a code symbol of

degree d is released and added into the ripple, when L out of k message symbols

remain unrecovered for the given ripple size R at the beginning of the each decoding

step. Then we have

q(d, L,R) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if d = 1, L = k,R = 0

(L−(R−1)
1)(11)
(k2)

, if d = 2, 1 ≤ R ≤ L ≤ k − 1

(k−(L+1)
d−2)(11)(

L−(R−1)
1)

(kd)
, if 3 ≤ d ≤ k,

1 ≤ R ≤ L ≤ k − d+ 1

0, otherwise.

(3.18)

34

Using Lemma 3.9, the total number of the code symbols which are released and

added into the ripple for the given ε, is

Q
(L)
LT =

k∑
d=1

nΩd

E
[
Wd,ε

] · q (d, L,R(L+1)
)

(3.19)

for 1 ≤ L ≤ k, where we set that the ripple is initially empty, i.e., R(k+1) = 0.

Secondly, we analyze the effects caused by batched zigzag decoding. Similar to

Lemma 3.9, the probability that the message symbols in a batch are released and added

into the ripple is shown in the following lemma.

Lemma 3.10 Let qB(d, L,R, t) be the probability that the message symbols in a batch

of code symbols of degree d are released and added into the ripple when t code symbols

are erased from the channel and L out of k message symbols remain unrecovered for

the given ripple size R at the beginning of each decoding step. Then qB(d, L,R, t) is

given as

qB(d, L,R, t) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if 2 ≤ d ≤ dm, L = k,R = 0, t = 0

(k−(L+1)
t−1)(11)(

L−(R−1)
d−t)

(kd)
, if 2 ≤ d ≤ dm,

1 ≤ t ≤ min (d− 2, k − L),

L− (R − 1) ≥ d− t

0, otherwise.

(3.20)

Proof. As in the proof in [41, Lemma 1], we derive probabilities that t− 1 neigh-

bors belong to k − (L+ 1) recovered message symbols, one neighbor is the currently

35

processing symbols at the (k−L)th decoding step, and the last d− t neighbors belong

to the L− (R− 1) unprocessed message symbols not in the ripple. �

Note that d− t received code symbols of degree d with t known message symbols

compose a complete batch and d − t new message symbols are released and added

into the ripple. Thus, the number of message symbols which are released and added

into the ripple with the batched zigzag decoding at the (k−L)th decoding step can be

written as follows:

Q
(L)
B (d) =⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
nΩd · ρ(d, 0, ε)qB(d, L, 0, 0), for L = k

nΩd ·
(

d−2∑
t=1

ρ(d, t, ε)qB

(
d, L,R(L+1), t

))
, for L < k

(3.21)

where ρ(d, t, ε) is the conditional probability that there are t erasures in the received

batch of degree d for the given ε as

ρ(d, t, ε) =

(d
t

)
(1− ε)d−tεt

1− εd
. (3.22)

Consequently, the overall expected number of message symbols that are added into the

ripple at the (k − L) decoding step is derived as

Q(L) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nΩ1 +
∑dm

d=2 nΩd · ρ(d, 0, ε), for L = k

∑k
d=1 nΩd

[
q(d,L,R(L))

E[Wd,ε]

+
∑d−2

t=1 ρ(d, t, ε)qB

(
d, L,R(L+1), t

)]
, for L < k.

(3.23)

36

The desired ripple size evolution of the BZ fountain codes is set as

R(L) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
c1L

1/c2 , if c1L
1/c2 ≤ L

L, otherwise

(3.24)

where c1 > 0 and c2 > 1 are suitably chosen design parameters.

Plugging (3.24) into (3.15) gives the number of message symbols required to be

released and added into the ripple. To obtain the code symbol degree distribution Ω(x)

satisfying Q(L) in (3.23), we use the nonnegative least square approximation as used in

[41]. Here, we have two more design parameters, i.e., dm and ε. Thus, we fix ε and find

a suitable 3-tuple vector (dm, c1, c2), which results in the minimum coding overhead.

Finally, Ψ(x) can be easily obtained from Ω(x) by using (3.13).

Note that there is a difference between (3.24) and that in [41] for some values of

c2. The condition of design parameter c2 is changed from c2 > 2 to c2 > 1. While

LT codes require d − 2 already recovered message symbols out of d neighbors to

release a degree-d code symbol, the BZ fountain codes need t− 1 recovered message

symbols. Since t − 1 < d − 2, the addition of the recovered messages into the ripple

for the proposed codes is much faster than that of LT codes at the early decoding

process. Hence, the initial ripple size of the BZ fountain codes can be larger than that

of LT codes when the symbol erasure rate is low. In this point of view, we choose the

condition of the design parameter c2 > 1 for the desired ripple size evolution.

Selecting the proper portion of degree-one code symbols is very important because

it determines the initial ripple size of the conventional LT codes. If the probability of

degree-one code symbols is too small, the ripple size may become zero before all the

message symbols are recovered. In other words, it is vulnerable to decoding failure. On

37

the contrary, high probability of degree-one code symbols results in weak connection,

which degrades recovery ratio at the late decoding steps. However, for the proposed

codes, the initial ripple size is determined by not only degree-one code symbols but

also degree-d code symbols, 2 ≤ d ≤ dm. Using this property, we can reduce the

portion of degree-one code symbols and have additional room for code symbols with

high degrees.

Example 3.11 Degree distributions of LT codes and the BZ fountain code are ob-

tained for k = 32. Using the method in [41], the optimized design parameters of

DRSD for LT codes are obtained as c1 = 1.2 and c2 = 2.4 and the corresponding

degree distribution as Ω(DRSD)(x)= 0.1206x + 0.4190x2 + 0.1095x3 + 0.1464x4 +

0.0635x6 + 0.0182x7 + 0.1228x15. On the other hand, the degree distributions for

the proposed BZ fountain codes are obtained with dm = 4 and various target sym-

bol erasure rates are considered, i.e., ε ∈ {0.1, 0.2, 0.5, 0.9}. Numerically optimized

(c1, c2) for the given ε is (1.0, 1.1), (1.0, 1.2), (1.0, 3.5), and (1.0, 3.8), respectively

and the obtained degree distributions Ω(ε)(x) are shown in Table 3.1. We can see that

Ω1 of the proposed BZ fountain codes is much smaller than that of DRSD, which is

almost negligible. The corresponding ripple size evolutions are shown in Fig. 3.4. We

can check that the initial ripple size increases as ε becomes smaller.

38

Table 3.1: Degree distributions of BZ fountain codes with dm = 4 and k = 32.

ε Ω(ε)(x)

0.1 0.0001x + 0.5575x2 + 0.4424x5

0.2 0.0002x + 0.5577x2 + 0.3939x5 + 0.0482x16

0.5 0.0003x+0.2625x2+0.5340x3+0.0740x9+0.0493x10+0.0341x23+

0.0458x24

0.9 0.0409x+0.4606x2 +0.1445x3+0.0858x4+0.0985x5+0.0598x12+

0.0421x13 + 0.0408x26 + 0.0270x27

0

5

10

15

20

25

30

0 10 20 30

R
ip

pl
e

si
ze

Decoding step

LT code
BZ fountain code, e=0.1
BZ fountain code, e=0.2
BZ fountain code, e=0.5
BZ fountain code, e=0.9

ϵ =0.1
ϵ =0.2
ϵ =0.5
ϵ =0.9

Figure 3.4: Desired ripple size evolutions for the conventional LT codes and the pro-

posed BZ fountain codes.

39

3.4 Two-Phase Batched Zigzag Fountain Codes with Addi-

tional Memory

In Section 3.2, we proposed the BZ fountain codes. With slightly additional bit-level

overhead, decoding process of the proposed BZ fountain codes contains both the LT

decoding and the BZ decoding, which gives improved ISRR. However, the recovered

message symbol ratio slowly increases around γ = 1 and it leads to performance

degradation with respect to the coding overhead. This phenomenon is due to the fact

that the BZ fountain codes consistently generate redundant code symbols for the de-

coder. In other words, the encoder is apt to continuously generate inefficient batches

with already recovered neighbors (message symbols) especially at the late decoding

steps, where producing batches of d code symbols with the same neighbors repeatedly

for 2 ≤ d ≤ dm may be wasteful.

Similar to the drawback of the BZ fountain codes, the conventional LT codes also

suffer from high chance of receiving redundant code symbols at the late decoding

steps, especially for short k. In [65], two main reasons are identified for this phe-

nomenon. Firstly, some of particular message symbols may not have been selected as

neighbors of code symbols until γ becomes large. Secondly, even though some mes-

sage symbols are involved, the message symbols can be included only in high degree

code symbols. Hence, some message symbols remain unrecovered and the decoder has

to receive more code symbols. To resolve this drawback, LT codes with added memory

(LTAM) scheme was proposed in [65] such that the encoder selects distinct d message

symbols, which previously have not been selected for encoding. Also in [66], the au-

thors used instantaneous degrees of the message symbols for encoding. Similarly, we

40

apply these approaches to the BZ fountain codes.

3.4.1 Code Construction

Now we propose two-phase batched zigzag fountain codes to reduce the coding over-

head of the BZ fountain codes. The proposed TBZ fountain codes separate the encod-

ing procedure into two phases as described in Algorithm 3.3, that is, the first encoding

phase is from Step 1) to Step 5) and the second encoding phase is from Step 6) to Step

10). Note that the encoding phase is determined by the additional memory which stores

indices of the selected message symbols for the previously generated code symbols.

When all message symbols are selected at least once as neighbors of batches with size

larger than one, the encoder switches the encoding phase from the first phase to the

second phase. In Algorithm 3, δR is set to dm − 1. Moreover, the TBZ fountain codes

use Algorithm 3.2 for their decoding procedure. Since encoding procedure of the first

phase of TBZ fountain codes is similar to that of the BZ fountain codes, we use code

symbol and batch degree distributions obtained in Subsection 3.3.2.

One of key features of the TBZ fountain codes is that the encoder has additional

memory I ′. Using I ′, the message symbols which have not been selected for the pre-

viously generated code symbols are preferentially selected at Step 3). This approach

ensures that all message symbols are involved in the batches of size T > 1 at least

once. Since neighbors of all batches of size T > 1 are new to the receiver at the first

phase except the last batch, there are no redundant code symbols. Further, I ′ leads to a

transition of code symbol degree distribution. At the first phase, the encoder uses Ψ(x)

for the degree of batches while the degree distribution of the generated code symbols

is Ω(x), which is derived from Ψ(x). However, we keep the size of all batches as one

41

Algorithm 3.3: Encoding of TBZ Fountain Codes

Input: k, {m1(z), . . . ,mk(z)}, Ψ(x), dm, δR, S = {S2, . . . , Sdm}

Initialization: I ← {1, . . . , k}, I ′ ← ∅

(First phase)

Step 1) Sample a degree d from Ψ(x).

Step 2) If 1 ≤ d ≤ dm, T ← d. Otherwise, T ← 1.

Step 3) If T > 1, r ← |I \ I ′|.

If r ≥ d, select distinct d indices of message symbols Isel =

{I1, . . . , Id} from I \ I ′ uniformly at random.

Otherwise, select distinct r indices of message symbols I(1)sel =

{I1, . . . , Ir} ← I \ I ′ and select the remaining d − r indices I(2)sel =

{Ir+1, . . . , Id} from I ′ uniformly at random.

Isel ← I(1)sel ∪ I(2)sel .

I ′ ← I ′ ∪ Isel and ST×d = [sj,w]← Sd.

Otherwise, select distinct d indices of message symbols from I uniformly at

random.

Isel ← {I1, . . . , Id} and ST×d = [sj,w]← sd(R).

Step 4) C(z) ← GT×d(z)

[
mI1(z) · · · mId(z)

]ᵀ
, where entry of GT×d(z) is

gj,w = zsj,w for j = 1, . . . , T and w = 1, . . . , d.

Step 5) Stop if every receiver successfully recovers the k message symbols.

Otherwise, if |I ′| < k, go to Step 1). If |I ′| = k, go to Step 6).

42

Algorithm 3: Encoding of TBZ Fountain Codes (continued)

(Second phase)

Step 6) Sample a degree d from Ψ(x).

Step 7) T ← 1.

Step 8) Select distinct d indices of message symbols from I uniformly at random.

Isel ← {I1, . . . , Id} and ST×d = [s1,w]← sd(R).

Step 9) C(z) ← GT×d(z)

[
mI1(z) · · · mId(z)

]ᵀ
, where entry of GT×d(z) is

gj,w = zsj,w for j = 1, . . . , T and w = 1, . . . , d.

Step 10) Stop if every receiver successfully recovers the k message symbols.

Otherwise, go to Step 6).

43

with the random degrees at the second phase. Thus, generation of code symbols at the

second phase simply follows Ψ(x). In other words, code symbol degree distribution

changes from Ω(x) to Ψ(x).

Another key feature of the proposed TBZ fountain codes is applying the shift vec-

tor sd(R) to batches of size one, which improves performance of the coding overhead as

investigated in [45]. It is known that code symbols with sd(R) have higher chance to be

released than those with sd(0). Since neighbors of batches of size one are randomly se-

lected without considering the selection history, they can help recovering incompletely

received batches with T > 1. Thus, applying the random shift vector accelerates the

message recovering process.

Proposition 3.12 Consider TBZ fountain codes with code symbol degree distribution

Ω(x) when symbol erasure rate is ε. Then the ratio of the number of received code

symbols generated at the first phase to the number of message symbols is given as

γ1 =
1− ε∑dm
d=2 Ωd

. (3.25)

Proof. Suppose that B batches with Ntot code symbols are generated at the first

phase. We compute the total number of generated code symbols in the batches of size

T > 1. In Algorithm 3, we maintain the memory for the selected message symbol

history. Therefore, unselected message symbols are picked first. It implies that total

number of code symbols in the batches of size T > 1 is equal to k+ dm − r ≈ k, that

is,

B

dm∑
d=2

dΨd = k. (3.26)

44

Since a decoder receives Ntot(1− ε) = kγ1 code symbols, we have (3.25) from (3.12)

and (3.13). �

Proposition 3.13 If the code degree distribution Ω(x) satisfies

dm∑
d=2

d− 1

d
Ωd ≤ 1

2
(3.27)

then Ψd ≤ Ωd for 2 ≤ d ≤ dm and Ψd ≥ Ωd for d = 1 or d > dm.

Proof. If Ω(x) satisfies (3.27), then we can write as 1−1/θ ≤ 1/2, which becomes

θ ≤ 2 from (3.12). From (3.13), we have Ψd ≤ Ωd for 2 ≤ d ≤ dm. Also, we can

easily check d = 1 and d > dm since θ ≥ 1. �

The above condition on the code symbol degree distribution Ω(x) leads to in-

creasing the fraction of high degree code symbols at the second phase, which ensures

stronger connection between message symbols and code symbols. Although the frac-

tion of degree-one code symbols is also increased, it is less affected if we keep Ω1

small enough. In [41], it is shown that low and high degree code symbols are more

likely to be released at the early and late decoding processes, respectively. Therefore,

changing from the first phase to the second phase at the late decoding steps in the

proposed TBZ fountain codes is effective for decoding performance improvement.

Example 3.14 Consider a code symbol degree distribution Ω(x) for the TBZ fountain

codes for dm = 4 and k = 128, which is given as Ω(x) = 0.0002x + 0.5476x2 +

0.2897x5+0.0762x19 +0.0863x20. Then the corresponding batch degree distribution

is Ψ(x) = 0.0004x + 0.3770x2 +0.3989x5 + 0.1049x19 +0.1188x20. From Propo-

sition 3.13, it is shown that Ψd ≥ Ωd except for d = 2. With Proposition 3.12, the

45

decoder receives the code symbols generated at the first phase until it collects kγ1

code symbols, where γ1 = 0.91 for the target erasure rate ε = 0.5. From numerical

analysis, we have γ̃1 = 0.90 for the receiver which has code symbols generated in

both the first and second phases when the buffer is unlimited, i.e., β = ∞. In fact,

the average coding overhead obtained from the simulation is γsucc = 1.08. For the

high symbol erasure rate, the number of released code symbols by the batched zigzag

decoding at the first phase decreases. Hence, the decoder also uses code symbols gen-

erated in the second phase. Indeed, they are the same as those of ZD fountain codes

using the code symbol degree distribution which gives higher average degree. They

compensate the coding overhead performance degradation. Therefore, changing from

the first phase to the second phase at late decoding process is effective for the decoding

performance improvement.

Remark 3.15 As the portion of high degree code symbols increases due to switching

of encoding phase in TBZ fountain codes, the encoding and decoding complexities also

increase.

Remark 3.16 While standard LT decoding and inactivation decoding can be easily

parallelized, BZ and TBZ fountain codes do not support parallel decoding.

3.4.2 Bit-Level Overhead

We derive the average length of the code symbols for the proposed TBZ fountain

codes. Since there are two encoding phases in the proposed codes, we analyze them

separately.

46

At first, we study on the effect of adopting the random shift vector in TBZ fountain

codes. For a code symbol c with degree d and the number of additional bits r, we have

the shift vector sd = (s1, . . . , sd), where 0 ≤ sj ≤ r for j = 1, . . . , d. Let au be the

number of sj = u in sd, where
∑r

u=0 au = d. Then, a vector a = (a0, . . . , ar) denotes

the distribution of shift values in sd. We define a set of (r + 1)-tuple vectors as

Ar,d =

{
a
∣∣∣ r∑
u=0

au = d, 1 ≤ a0, ar

}
(3.28)

where clearly, 0 ≤ au ≤ d − 2 for 1 ≤ u ≤ r − 1. Let g(r, d) be the number of shift

vectors with r for the given d. Then g(r, d) is given as

g(r, d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, for all d and r = 0

0, for d = 1and 1 ≤ r ≤ δR

∑
a∈Ar,d

d!∏r
u=0 au!

, otherwise.

(3.29)

Theorem 3.17 Consider the TBZ fountain codes with Ω(x), l, dm, δR = dm − 1, and

the set of predetermined shift matrices S =
{
S
(EV)
2×2 , . . . ,S

(EV)
dm×dm

}
. Then the average

length of code symbols at the first phase is derived as

E

[
L
(TBZ,1)
Ω

]
=E

[
L
(BZ)
Ω

]
+ E

[
L
(ZD)
Ω

]
− l

−
dm−1∑
r=1

[
rf(r, dm)

]
(3.30)

where

f(r, k) =

k∑
d=1

(δR + 1− r)g(r, d)

(δR + 1)d
Ωd. (3.31)

47

Proof. First, let R and D denote the random variable of additional bits for code

symbol and degree of code symbol for TBZ fountain codes, respectively. Then we

divide the number of additional bits into two parts as

E[R] =

dm∑
d=2

E[R|D = d]Ωd +
k∑

d=dm+1

E[R|D = d]Ωd

︸ ︷︷ ︸
Δ

. (3.32)

The first term leads to E

[
L
(BZ)
Ω

]
− l. Again the second term can be split into

Δ = E

[
L
(ZD)
Ω

]
− l −

dm∑
d=1

Ωd

dm−1∑
r=1

rPr[R = r|D = d]. (3.33)

The conditional probability that for the given d, the number of additional bits is r is

given as

Pr[R = r|D = d] =
(δR + 1− r)g(r, d)

(δR + 1)d
. (3.34)

Thus, (3.33) leads to the last three terms in (3.17). �

For the second phase, since the encoding is the same as that of the ZD fountain

codes, we have E

[
L
(TBZ,2)
Ω

]
= E

[
L
(ZD)
Ψ

]
.

Theorem 3.18 Consider the TBZ fountain codes with Ω(x), l, dm, δR = dm − 1, and

the set of predetermined shift matrices S =
{
S
(EV)
2×2 , . . . ,S

(EV)
dm×dm

}
. Then the average

length of code symbols is given as

E

[
L
(TBZ)
Ω

]
=l + κ

(
E

[
R

(TBZ,1)
Ω

]
− l

)

+ (1− κ)

(
E

[
L
(TBZ,2)
Ω

]
− l

)
(3.35)

for γ1 < γsucc, where κ = γ1/γsucc and

E

[
L
(TBZ)
Ω

]
= E

[
L
(TBZ,1)
Ω

]
(3.36)

48

for γ1 ≥ γsucc.

Proof. Using Theorem 3.17 and (3.25), it is not difficult to prove it. �

3.5 Numerical Analysis

We show that the proposed TBZ fountain codes outperform LT codes and ZD fountain

codes [45] with a lower buffer occupation at the receiver when symbol erasure rate is

low. Since it is hard to analytically compute the coding overhead, we employ Monte

Carlo simulation. We verify that the proposed TBZ fountain codes have low coding

overhead and high ISRR.

We set l = 50 for all simulations. The DRSD is used for both LT codes and ZD

fountain codes. On the other hand, the degree distributions obtained from the proposed

method in Subsection 3.3.2 are applied to BZ and TBZ fountain codes.

Due to additional bits at the encoding process, the proposed codes have the bit-

level overhead larger than one, i.e., η > 1. Hence, we adjust the received code symbol

ratio as γ′ = γη for fair comparison. Let b denote the ratio of the number of stored

code symbols in the buffer to k. Similarly, b is adjusted as b′ = bη for all simulations.

Despite these adjustments, we still want to use notations γ and b together with η instead

of γ′ and b′ for the rest of the chapter.

For improved performance of the proposed BZ and TBZ fountain codes, we ob-

tain degree distributions for different dm ∈ {2, 3, 4, 5} when k = 128, ε = 0.2, and

(c1, c2) = (1.2, 1.1). We use the set of extended Vandermonde shift matrices for the

proposed BZ and TBZ fountain codes. Clearly, dm and the obtained degree distribution

49

determine the bit-level overhead. Fig. 3.5 shows that as dm increases, the coding over-

head decreases and the bit-level overhead increases. We try to keep the upper bound

of bit-level overhead small. Thus, we fix dm = 4 for all simulations. It is reason-

able because the coding overhead is not considerably improved for dm > 4. For fair

comparison, we also apply δR = dm − 1 to ZD fountain codes.

Assume that the buffer size is limited to kβ. When buffer is full, LT codes and

ZD fountain codes randomly discard a code symbol and receive a new code symbol.

For BZ and TBZ fountain codes, we can also discard a code symbol randomly, called

random discarding approach. Furthermore, we can apply a strategy for the proposed

fountain codes so that a code symbol in the batch which has the largest number of

erased code symbols is randomly discarded, called batch discarding approach, since

its batch is most unlikely zigzag decodable.

In Fig. 3.6–Fig. 3.9, μ and b of LT codes, ZD fountain codes, BZ fountain codes,

and TBZ fountain codes are compared with respect to γ for k = 32 and ε = 0.2. Here,

BZ and TBZ fountain codes (p) and (r) represent BZ and TBZ fountain codes with the

proposed batch discarding and random discarding approaches, respectively when the

buffer size is limited. Design parameters for the proposed BZ and TBZ fountain codes

are set to (dm, ε, c1, c2) = (4, 0.2, 1.0, 1.2). In Fig. 3.6, both BZ and TBZ fountain

codes outperform LT codes and ZD codes for 0 < γ < 0.97 and TBZ fountain codes

boost up the speed of message symbol recovery for γ > 0.89 due to the random shift

vectors. Although ZD fountain codes show good coding overhead for γ > 1, it has low

ISRR for γ < 0.8 as the conventional LT codes. In Fig. 3.7, we can see that the peak

value of b for the proposed codes decreases from 0.59 to 0.44 for the improved ISRR.

Next, we simulate the same codes when the size of the buffer is limited, i.e, β = 0.6.

50

1.00

1.05

1.10

1.15

1.20

2 3 4 5

C
od

in
g

ov
er

he
ad

 /
B

it-
le

ve
l o

ve
rh

ea
d

dm

Coding overhead
Bit-level overhead, simulation
Bit-level overhead, upper bound

Figure 3.5: Coding overhead and bit-level overhead of TBZ codes when c1 and c2 are

fixed.

The corresponding results are shown in Fig. 3.8 and Fig. 3.9. While the recovery ratios

of LT codes and ZD fountain codes degrade due to discarding code symbols which

cannot be stored in the buffer, those of the proposed codes are less affected. We can

see how the proposed batch discarding approach gives additional performance gain.

For ε = 0.2, coding overheads for various k and unlimited/limited buffers are

shown in Fig. 3.10. With optimized design parameters, TBZ fountain codes have the

smallest coding overhead for unlimited buffer size cases. We verify that the proposed

TBZ fountain codes outperform LT codes and ZD fountain codes when storing at most

0.6k code symbols at the decoder. Even though ZD fountain codes also have similar

performance without any constraint, the performance of ZD fountain codes degrades

down to that of LT codes when the buffer size is strictly limited, while TBZ fountain

51

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
ec

ov
er

ed
 m

es
sa

ge
 sy

m
bo

l r
at

io
 μ

Received code symbol ratio γ

LT code
ZD fountain code
BZ fountain code
TBZ fountain code

Figure 3.6: Recovered message symbol ratio with β =∞.

codes have only small degradation of coding overhead. In fact, TBZ fountain code

outperforms short ZD fountain code with k′ = 0.6k and β′ = 1 when k is small, i.e.,

k ≤ 256. Moreover, in order to use short length of message symbols, the message

symbols should be divided into smaller subpackets, each of which is transmitted se-

quentially. Since we focus on broadcasting scenarios with many receivers, increasing

the number of subpackets can cause overall latency problem.

The coding overhead of the TBZ fountain codes depends on the channel parame-

ter. We fix the target symbol erasure rate to 0.2 but simulate for various ε at k = 64.

Simulation results in Fig. 3.11 show that for the unlimited buffer size, the coding over-

head of TBZ fountain code does not change much for 0.01 ≤ ε ≤ 0.6, which is similar

to those of LT codes and ZD fountain codes. For the limited cases, around the target

symbol erasure rate 0.2, i.e., 0.01 ≤ ε ≤ 0.3, the coding overhead of the proposed

52

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

B
uf

fe
r o

cc
up

an
cy

 ra
tio

 b

Received code symbol ratio γ

LT code
ZD fountain code
BZ fountain code
TBZ fountain code

Figure 3.7: Buffer occupancy ratio with β =∞.

code is almost constant and is better than those of LT codes and ZD fountain codes.

However, when the symbol erasure rate becomes higher, the decoder rarely receives

complete batches, which prevents batched zigzag decoding. Moreover, the fraction of

degree-one code symbol is very small in the obtained code symbol degree distribution.

Hence, the size of ripple frequently becomes zero and coding overhead performance

degrades severely. Nonetheless, the simulation results show the robustness of the TBZ

fountain codes around the target symbol erasure rate, which means that the proposed

codes are useful in applications whose channel parameter does not vary much.

Here, we compare the performance of the TBZ fountain codes over channels with

memory. The Gilbert-Elliott (GE) channel model has two states, a good and a bad

states. Let εg and εb denote the symbol erasure rates of the good and bad states, re-

spectively. The transition probability ps1,s2 represents the transition probability from

53

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
ec

ov
er

ed
 m

es
sa

ge
 sy

m
bo

l r
at

io
 μ

Received code symbol ratio γ

LT code
ZD fountain code
BZ fountain code (p)
BZ fountain code (r)
TBZ fountain code (p)
TBZ fountain code (r)

Figure 3.8: Recovered message symbol ratio with β = 0.6.

state s1 to state s2, where si ∈ {g,b} for i = 1, 2. We set the parameters of the GE

channel as pg,g = pb,b = 0.9 and pg,b = pb,g = 0.1. When average symbol erasure

rate is fixed to 0.2 and the symbol erasure rate of good state is εg = 0.01 or εg = 0.1,

the coding overheads of TBZ fountain codes over memoryless BEC and GE channel

are shown in Table 3.2, where TBZ fountain codes are designed with the target erasure

rate 0.2 for k = 32. When the channel is in bad state, most of batches are received

incompletely. However, batches can be received without any erasure with high prob-

ability when a receiver stays in good channel state. Using batched zigzag decoding,

the corresponding message symbols are easily recovered. In this sense, TBZ fountain

codes can be applied to GE channel. However, since TBZ fountain codes are not uni-

versal, the performance of the proposed codes will be bad when channel is stuck in a

bad state for a long time at the first phase. In other words, if some receivers start to

54

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

B
uf

fe
r o

cc
up

an
cy

 ra
tio

 b

Received code symbol ratio γ

LT code
ZD fountain code
BZ fountain code (p)
BZ fountain code (r)
TBZ fountain code (p)
TBZ fountain code (r)

Figure 3.9: Buffer occupancy ratio with β = 0.6.

receive the code symbols at a later time, the performance of TBZ fountain codes will

be degraded, which is not the case of the conventional fountain codes [17].

Now, we verify improvement on the coding overhead for TBZ fountain codes to

LT codes with the ISRR distribution and the RCSS algorithm in [59]. Fig. 3.12 shows

the recovered message symbol ratio μ with respect to the received code symbol ratio γ

for k = 100. ISRR distributions with 3 different weighted vectors show almost optimal

performance. However, due to the lack of high degrees in these codes, every distribu-

tion suffers from poor coding overhead. We can see that the intermediate recovery per-

formance of TBZ fountain codes is between LT codes with the ISRR distribution and

those with the general DRSD distribution without the RCSS algorithm. Consequently,

while LT codes using the ISRR distributions and the RCSS algorithm require stor-

ing all neighbors of code symbols at the encoder and computing transmission priority,

55

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 100 200 300 400 500

C
od

in
g

ov
er

he
ad

 γ
su

cc

Number of message symbols k

LT code, unlimited
LT code, beta=0.6
ZD fountain code, unlimited
ZD fountain code, beta=0.6
Short ZD fountain code
TBZ fountain code, unlimited
TBZ fountain code, beta=0.6

β=0.6

β=0.6

β=0.6

Figure 3.10: Coding overheads of LT codes, ZD fountain codes, and TBZ foun-

tain codes for k ∈ {32, 64, 128, 256, 512} when the available buffer size is unlim-

ited/limited with β = 0.6.

TBZ fountain codes have improved message symbol recovery ratio without sacrificing

coding overhead. In Fig. 3.13, similar simulations are performed for various β. Since

LT codes with the ISRR distribution have almost optimal recovery, they use very small

amount of buffer to store unreleased code symbols, which show the robustness against

β. However, their coding overheads are much higher than those of the TBZ fountain

codes.

56

1.0

1.2

1.4

1.6

1.8

2.0

0 0.1 0.2 0.3 0.4 0.5 0.6

C
od

in
g

ov
er

he
ad

 γ s
uc

c

Symbol erasure rate ϵ

LT code, unlimited
LT code, beta=0.6
ZD fountain code, unlimited
ZD fountain code, beta=0.6
TBZ fountain code, unlimited
TBZ fountain code, beta=0.6

β=0.6

β=0.6

β=0.6

Figure 3.11: Coding overheads of LT codes, ZD fountain codes, and TBZ fountain

codes for various ε when the available buffer size is unlimited/limited with β = 0.6,

where the target symbol erasure rate is set to 0.2.

Table 3.2: Coding overheads of TBZ fountain codes over memoryless BEC and GE

channel when symbol erasure rate is 0.2.

Memoryless BEC GE channel

unlimited β = 0.6
εg = 0.01, εb = 0.39 εg = 0.1, εb = 0.3

unlimited β = 0.6 unlimited β = 0.6

1.1258 1.2403 1.1487 1.2357 1.1262 1.2414

57

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
ec

ov
er

ed
 m

es
sa

ge
 sy

m
bo

l r
at

io

Received code symbol ratio

LT code, W=(0,0,1) with RCSS
LT code, W=(0,1,0) with RCSS
LT code, W=(1,1,1) with RCSS
LT code, DRSD with RCSS
LT code, DRSD without RCSS
TBZ fountain code

Figure 3.12: Comparison of the proposed TBZ fountain codes and LT codes using the

ISSR distributions and the DRSD with/without the RCSS algorithm at the encoder

with respect to μ for k = 100 and the unlimited buffer size.

58

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
od

in
g

ov
er

he
ad

 s
uc

c

Available buffer ratio

LT code, W=(0,0,1) with RCSS
LT code, W=(0,1,0) with RCSS
LT code, W=(1,1,1) with RCSS
LT code, DRSD with RCSS
LT code, DRSD without RCSS
TBZ fountain code

Figure 3.13: Comparison of the proposed TBZ fountain codes and LT codes using the

ISSR distributions and the DRSD with/without the RCSS algorithm at the encoder

with respect to γsucc when k = 100 and the size of buffer is limited to 0.3 ≤ β ≤ 1.

59

Chapter 4

Write-Once Memory Codes Using Rate-Compatible

LDGM Codes

NAND flash memory has been widely used in various storage systems due to its out-

standing features over hard disk drives (HDDs) such as higher storage density, lower

power consumption, and better random read/write behavior. Especially, NAND flash-

based solid-state drives (SSDs) have become one of the popular storage device. By

injecting charge in a floating gate of a cell, a binary information can be stored, which

is called single level cell (SLC) flash memory. In order to increase the storage den-

sity, more than one bit data is stored in one cell by precise programming scheme. It

is called as multi-level cell (MLC) or triple-level cell (TLC) flash memory, if two or

three bits of information are stored in a cell, respectively. Unfortunately, flash mem-

ory suffers from wearing out phenomenon due to frequent programming and erasing

(P/E) operations, which degrades reliability and the lifetime of the storage device [67].

This drawback becomes more fatal for MLC flash memory, because it has multi-level

states in the cells. To solve this problem, strong error correction codes such as con-

60

catenation of Bose-Chaudhuri-Hocquenghem (BCH) codes [68] and low-density par-

ity check (LDPC) codes [69] are studied to guarantee reliability of flash memory. As an

another approach, rewriting scheme for the flash memory was introduced recently to

reduce the number of erasure operations. This approach reduces the factor of reliability

degradation.

Write-once memory (WOM) codes are originally introduced in [70] for write-once

memory such as punch cards or compact disc and their capacities are studied in [71].

Clearly, WOM codes allow multiple writes on the same cell without invoking block

erasure operation. Recently, low complexity WOM codes are constructed by polar

codes and low-density generator matrix (LDGM) codes in [72] and [40], respectively.

In [40] encoding of WOM code is regraded as solving a binary erasure quantization

(BEQ) problem by an LDGM code with a simple message passing algorithm. However,

the encoder will fail when the probability of initial state in an invalid page is lower than

the rate of rewriting code. In that case, the corresponding page cannot be reused for

the second write and it needs to be erased.

In this chapter, a rewriting scheme is proposed for the flash memory is by multi-rate

BEQ codes, which are implemented by rate-compatible (RC) LDGM codes. By ad-

justing rate of rewriting code, we can reuse invalid pages more efficiently. RC-LDGM

codes are constructed from protographs with desired rates, each of which is optimized

by computer search. In addition, we select pages from predetermined candidate pages

for the second write. Since the encoder of WOM code is able to recognize whether a

new message can be written over the selected pages or not, invalid pages in the block

can be reused further if combinations of the selected pages and their ordering are care-

fully chosen.

61

4.1 Preliminaries

4.1.1 NAND Flash Memory

First physical characteristics of NAND flash memory is reviewed. In the NAND flash

memory, charge can be injected into a floating gate in a cell, called programming

operation and removed from the cell by erasure operation. When charge is captured

in the floating gate, the transistor will be turned on if a voltage above threshold voltage

is applied at the control gate. If there is no charge in the floating gate, then the transistor

cannot be turned on with the same voltage. Thus, states of the cell can be distinguished

by measuring current, which is read operation.

A NAND flash memory has asymmetry property between program and erasure

operations due to its manufactured feature. The flash memory unit for reading and

programming operations is called page, which is composed of cells. The size of page

may vary from 1KB to 16KB [67]. On the other hand, a block is the unit of erasure

operation and it may contain 64–384 pages. Note that each page in a block must be

erased before writing new messages, which causes wearing out the flash memory [73].

Hence, as the number of P/E cycles increases, raw bit error rate (RBER) of the memory

device increases, which results in the limitation of device lifetime. Therefore, reducing

the number of erasure operations is one of key approaches to extend the lifetime of the

flash memory.

4.1.2 Rewriting Schemes for Flash Memory

Recently, rewriting schemes for the flash memory by WOM codes have been re-

searched [74]–[77]. Yadgar et al. [74] proposed a rewriting scheme with polar code,

62

Figure 4.1: Cycles of rewriting scheme in a block.

called the reusable SSD, in which invalid pages are reused for the second write. At

the first write, two messages m1,1 and m1,2 are written in two clean pages. When the

messages are updated, the erasure operations are not invoked immediately but only

the statuses of the corresponding pages are changed to invalid. While the pages wait

for block erasure operation in the conventional scheme, the reusable SSD takes advan-

tage of invalid pages for rewriting. In other words, block erasure is not invoked and

new message m2 for the second write is encoded by the WOM encoder and rewritten

over two invalid pages. After that, the status of page pair becomes valid again. If we

want to update m2, the status of page pair is changed to invalid and then these pages

wait for the block erasure operation. Finally, the block is erased when the number of

invalid pages exceed predetermined value. Hence the length of P/E cycle in a block

is increased from 3 to 5, which is shown in Fig. 4.1. As a result, it is known that the

number of erasures is reduced by 33% in most cases of SLC flash-based SSD.

Generally, the low-high programming is used to avoid programming interference

for MLC flash memory, i.e., low page is programmed first and then high page is pro-

63

Figure 4.2: The LLH programming scheme for MLC flash memory.

grammed. Unlike the low page, the value of high page which increases the level of

cell depends on that of low page. More precisely, if the value of low page is ‘1’ then

‘0’ increases the cell level while ‘1’ programs the cell when the value is ‘0’ at the

low page. In addition, some transitions cannot be implemented in MLC flash memory

even though they are not violating the WOM constraint with alphabet size four. Thus,

adopting WOM codes to both pages in MLC is troublesome. To resolve this drawback,

[76] and [77] suggested the low-low-high (LLH) programming which reuses only low

pages and the corresponding state transitions of LLH are shown in Fig. 4.2. It is shown

that the rewriting with LLH programming scheme gives 20% reduction in erasures.

64

4.1.3 Construction of Rewriting Codes by BEQ Codes

In this subsection, we briefly overview BEQ problem and the construction of rewriting

codes by BEQ codes.

Definition 4.1 A binary erasure channel function BEC : {0, 1}n×{0, 1}n→ {0, 1, ∗}n

is defined as follows. Let z and v be a binary vector and an erasure location vector,

respectively. For i = 1, . . . , n, the ith component of r = BEC(z,v) is given as

ri = BEC(z,v)i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
zi, if vi = 0

∗, if vi = 1

(4.1)

where ∗ denotes an erasure.

Definition 4.2 Let D(r, r̂) be a distortion function between a binary n-tuple vector

with erasures r and a binary n-tuple vector r̂. Then we have

D(r, r̂) =

n∑
i=1

di (4.2)

where di is given as

di =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if ri = ∗

0, if ri �= ∗, ri = r̂i

1, otherwise.

(4.3)

In [78], they introduced a binary erasure quantizer Q(r) which is defined by a

binary linear code CQ with a generator matrix GQ and a parity-check matrix HQ.

The erasure quantizer Q(r) compresses the vector r into the vector u without any

65

distortion, i.e., D(r,uGQ) = 0, which results in a valid codeword uGQ ∈ CQ. Here,

CQ is called a BEQ code. It is known that an LDGM code, a dual of LDPC code,

can be used as a BEQ code. Clearly, BEQ problem with LDGM code is dual of BEC

problem with LDPC code, which can be solved by well known simple message passing

algorithm, called belief propagation decoder. Thus, complexity of the binary erasure

quantizer is linear.

In [40], they proposed a rewriting code CR which is a collection of all cosets of

BEQ code CQ in F
n
2 . In order to rewrite arbitrary k bit message onto the given n cells,

a new message vector m is transformed into n tuple vector z = m
(
H−1

Q

)ᵀ
, where

H−1
Q is called a transform matrix and (·)ᵀ denotes the transpose. Then z is converted to

the erased vector r by the BEC function with given cell state vector (erasure location

vector) v. The erased vector r is compressed via the binary erasure quantizer Q(·) and

then the corresponding codeword and z is added to make a rewriting vector (new cell

state vector) x, which is a codeword of WOM code. The block diagrams of rewriting

and reconstruction are shown in Fig. 4.3 and Fig. 4.4.

Here, the rates of the first and the second writes are R1 = 1 and R2 = k/n, re-

spectively. Also the sum-rate is Rsum = R1+R2 = 1+k/n. It is known that when R1

is fixed to 1, capacity of two-write WOM code is known as (1, 0.5). Thus, if we use

a parity-check matrix of a capacity achieving LDPC code over binary erasure chan-

nel as a generator matrix of BEQ code, the rewriting capacity can be asymptotically

achieved.

66

Figure 4.3: Block diagram of rewriting (encoding) process by BEQ code.

Figure 4.4: Block diagram of reconstruction (decoding) process by BEQ code.

4.2 Proposed Rewriting Codes

4.2.1 System Model

In this chapter, we focus on two writes on SLC flash memory and further extend to

MLC flash memory using LLH programming scheme. It is assumed that there are L

logical pages in a block and the size of each page is k bits. Let ε denote the probability

that cell is in initial state, that is, Pr[v = 1] = ε. Further, it is considered that only

information bits, systematic part of error correction code, are stored in the logical page

and the parity bits are stored in spare page. It is also assumed that the second writing

is invoked after sufficient elapsed time from the first write, which means that prepro-

cessing can be done before request of the second write. Moreover, if an LDGM code

is applied as a BEQ code in practical system, there exists performance degradation

due to its finite length. In other words, the rewriting rate has to be reduced slightly.

67

Therefore, at least two invalid pages and extra α page is used for each writing request,

where 0 < α < 1.

4.2.2 Multi-rate Rewriting Codes

In [40], only a single LDGM code is used as a linear BEQ code, which implies the

fixed rewriting code rate. Thus, when the portion of 1’s (initial states) in a cell state

vector is below target ε̂, the new message cannot be written over the cell state vector.

Therefore, those pages will not be used for rewriting and have to be thrown away.

In the communication systems, erasure patterns are randomly generated in BEC

and occasionally they cause decoding failures even though error correction codes are

used. The encoder is not able to recognize decoding failure until it receives a feed-

back from the receiver. With the feedback signal, the encoder generates and transmits

additional parity bits, called incremental redundancy hybrid automatic repeat request

(IR-HARQ). Similarly, when the binary erasure quantizer in the encoder is not able

to find any valid codeword in the BEQ code for a given cell state vector, the encoder

of WOM code recognizes encoding failure. Then we may apply modified encoding

procedure. For example, by reducing the rewriting code rate, the encoder can further

utilize invalid pages.

Here, a new encoding scheme using β + 1 multi-rate LDGM codes as BEQ codes

is proposed, that is, C(0)Q , C(1)Q , · · · , C(β)Q , where β is nonnegative integer. For i =

0, . . . , β, the rewriting code rate of C(i)Q is R2,i. For simplicity, it is assumed that

R2,β < · · · < R2,0. First, a cell state vector is divided into β + 3 parts, i.e., a cell

68

Figure 4.5: An example of cell state vector v =
(
p(0), p(1), p(2)

)
.

state vector which contains invalid pages can be represented as

v =
(
p(0), p(1), p(2), . . . , p(β+2)

)
(4.4)

where sizes of p(0) and p(i) are α page and one page, respectively for i = 1, . . . , β+2.

An example of cell state vector with α = 1/8 and β = 0 is shown in Fig. 4.5.

Definition 4.3 If the encoder succeeds rewriting over the given cell state vector, then

the cell state vector is said to be rewritable.

Now, one of performance criteria for SSD with WOM code, called writing effi-

ciency, is defined as follows.

Definition 4.4 Assume that L pages are in a block and t writes are allowed. Then

writing efficiency is defined as

η =

∑t
i=1W

(i)

L
(4.5)

69

where W (i) is the expected number of one-page messages written at the ith write.

In this scenario, only two writes are used, i.e., t = 2, and β + 1 multi-rate BEQ

codes are applied at the second writing. Thus, we have

W (2) =

β∑
i=0

Wi (4.6)

where Wi is the expected number of one-page messages written by the ith BEQ code

C(i)Q at the second writing. Note that the best case is when all rewritings are successful

with the highest rate. In other words, only 2 + α pages are required for every one-

page message. As a result, the number of maximum rewriting of one-page messages is

Wmax =
⌊

L
2+α

⌋
and we have

β∑
i=0

Wi(2 + i) + 	αWmax
 ≤ L. (4.7)

4.2.3 Page Selection for Rewriting

In this subsection, a new page selection scheme is proposed. While high quality of

channels cannot be chosen in conventional communication systems, rewritable cell

state vectors can be selected from a number of combinations since there are at most

L invalid pages in a block. Thus, by carefully selecting cell state vectors, the writing

efficiency can be enhanced.

Assume that the status of the lth page is changed from valid to invalid, for 1 ≤

l ≤ L′, where L′ = L− 	αWmax
. Then it can be checked whether the lth page is a

rewritable candidate or not for the second write.

Remark 4.5 A sufficient condition for a cell state vector to be rewritable is that the

cell state vector does not contain any local stopping sets in each part p(i).

70

Above condition can be easily checked by the message passing algorithm. First, we

construct a temporary cell state vector v〈l〉,i for the lth page given as

v〈l〉,i =
(
1αk, p

(1)
i , p

(2)
i , . . . , p

(2+β)
i

)
(4.8)

where p
(j)
i is a k-tuple binary vector and

p
(j)
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
pl,old, if j = i

1k, otherwise

(4.9)

for i, j = 1, . . . , 2 + β and pl,old is the k-tuple binary vector written at the first write

in the lth page. Here, the corresponding erased vector is given as

r〈l〉,i = BEC(0n,v〈l〉,i) (4.10)

where n = (α+2+β)k and 1n and 0n denote all one and all zero vectors with length

n. Then the quantization algorithm is applied to each erased vector r〈l〉,i. Finally, a

(2 + β)-tuple vector q〈l〉 = (q〈l〉,1, . . . , q〈l〉,2+β) is given as

q〈l〉,i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, if Q

(
r〈l〉,i

)
= Failure

1, otherwise

(4.11)

for i = 1, . . . , (2 + β) and the quantization Q
(
r〈l〉,i

)
is performed with BEQ code

C(2+β)
Q and represented in Algorithm 4.1.

Let θ be the maximum trial number for each BEQ code C(i)Q for rewriting, where

i = 0, . . . , β. Initially, i is set to 0 and then p(0) and p(i) are randomly selected from the

predetermined fragmented page and one-page invalid pages, respectively. For simplic-

ity, it is assumed that the indices of p(1) and p(2) are given as l1 and l2. From Lemma

71

Algorithm 4.1 Quantization with BEQ Code [40]
Input: m, v, CQ

1: z←m
(
H−1

Q

)ᵀ

2: r← BEC(z,v)

3: u← Q(r)

4: if D(r,uGQ) = 0 then

5: x← uGQ + z

6: return x

7: else

8: return Failure

9: end if

4.5, the selected page p(j) should satisfy q〈lj〉,j = 1 for j = 1, 2. Finally, the BEC

function and quantization with C(i)Q are applied to the constructed cell state vector v.

A valid output is returned if quantization is successful. On the other hand, if the quan-

tizer fails, fragments of cell state vector are selected again and the previous steps are

repeated. In other words, the encoder increases i by 1 and repeats above procedures.

The proposed scheme is described precisely in Algorithm 4.2.

72

Algorithm 4.2 Procedure of the Second Writing

Input: mnew, α, β, θ, L,
{
C(0)Q , . . . , C(β)Q

}
,
(
q〈1〉, . . . ,q〈L′〉

)
1: isSucc← false

2: for i = 0 to β do

3: for t = 1 to θ do

4: Randomly select l0 from the fragments and p(0) ← p〈l0〉

5: for j = 0 to 2 + i do

6: Randomly select lj satisfying q〈lj〉,j = 1 and p(j) ← pj

7: end for

8: v←
(
p(0), p(1), . . . , p(i+2)

)
9: x← output of Algorithm 4.1 with mnew, v, G(i)

Q as inputs

10: if (x �= Failure) then

11: isSucc← true

12: break

13: end if

14: end for

15: if (isSucc = true) then

16: return x

17: end if

18: end for

19: return Failure

73

4.3 RC-LDGM Codes

It is clear that a generator matrix of LDGM code is the same as the parity-check matrix

of LDPC code. Thus, construction of good LDGM code is equivalent to that of LDPC

code, which has been intensively studied for decades. Especially, protograph-based

construction, a subclass of multi-edge-type LDPC codes, is introduced and shown that

it has excellent error correcting performance and low complexity [79]. In order to

implement structured LDPC codes with multi-rate, RC-LPDC codes have attracted at-

tention. More than two codes have rate-compatible property if codewords of the higher

rate code are embedded in the codewords of the lower rate codes. Recently, construc-

tion of protograph-based RC-LDPC codes by extending and puncturing approaches

is studied in [80]–[83]. Generally, it is done by exhaustive computer search, where

limiting search space is major concern. In [83], raptor-like structure is adopted and

shown that the corresponding RC-LDPC codes have outstanding performance while

providing wide rate-compatibility.

Similarly, we construct protograph-based raptor-like RC-LDGM codes using com-

puter search with PEXIT analysis over BEC, which is EXIT analysis for protograph

[84]. The protograph which has the best BP threshold is selected from the all candi-

dates. First, we start with the base matrix of well designed R4JA code with rate 1/2

[85] represented by

BR4JA =

⎡
⎢⎢⎣2 2 1 1

1 1 3 1

⎤
⎥⎥⎦ (4.12)

and the corresponding protograph is shown in Fig. 4.6. By setting the maximum par-

74

Figure 4.6: The protograph for the base matrix of R4JA code.

allel edges to p, the base matrix for the desired rate 1/3 is given as

B1/3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 1 1 0 0

1 1 3 1 0 0

x1 x2 x3 x4 1 0

x5 x6 x7 x8 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.13)

where 0 ≤ xi ≤ p for i = 1, 2, . . . , 8. Using the computer search, x1 = 1, x3 =

3, x7 = 3, and otherwise xi = 0 are found when p = 3. Similarly, the protograph

of code with the lowest rate for β = 2, B1/4, is constructed successively, which is

represented as

B1/4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

BR4JA 0 0

B1 I2 0

B2 02 I2

⎤
⎥⎥⎥⎥⎥⎥⎦ . (4.14)

Here, B2 is obtained as

B2 =

⎡
⎢⎢⎣1 0 3 0

1 0 3 0

⎤
⎥⎥⎦ . (4.15)

Then, the first step of lifting algorithm is applied to avoid parallel edges in the base

matrix. For example, it becomes 24×32 matrix B′
1/4 when lifting factor 4 is used. Note

75

that the required set of rates for the proposed rewriting scheme is
{
R2,0, · · · , R2,β

}
={

1
2+α , · · · , 1

2+β+α

}
. Thus, B′

1/4 needs to be extended again. With the protograph hav-

ing R2,0 is constructed based on the lifted version of BR4JA. The desired protograph

B′
8/17 for β = 0 is represented as

B′
8/17 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 x2 · · · x16

x17

B′
R4JA

x18

...

x24

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.16)

where 0 ≤ xi ≤ 1 for i = 1, . . . , 24 and the computer search is applied. Finally,

the second step of lifting algorithm, called circulant progressive edge growth (CPEG)

algorithm [86], is applied to guarantee the girth of code.

4.4 Numerical Analysis

In this chapter, the parameters for the proposed scheme are set as k = 8192, L = 128,

α = 1/8, and β = 2. The parity-check matrices of RC-LDPC codes, HA, HB, and

HC , are constructed from Section 4.3, each of which has the lifting factor as 1024 for

CPEG and the girth larger than or equal to 8. The rates and thresholds of constructed

LDPC codes, CA, CB , and CC , are shown in Table 4.1. In addition, BER performance

of each LDPC code is shown in Fig. 4.7. These parity-check matrices are used as the

generator matrices of BEQ codes, i.e., G(0)
Q = HA, G(1)

Q = HB, and G
(2)
Q = HC .

The performance of writing efficiency of the proposed scheme is compared with

76

Table 4.1: Constructed RC-LDPC codes

Code CA CB CC

Rate 0.471 0.320 0.242

Threshold 0.470 0.642 0.734

those of the conventional schemes, i.e., without WOM code, with Rivest-Shamir 〈4〉2/3

WOM code [70], and with WOM code which has fixed rewriting rate [40]. The simu-

lation results are shown in Fig. 4.8. It is shown that the proposed scheme outperforms

SSD with simple Rivest-Shamir WOM code when ε > 0.52.

In addition, it is verified that the page selection scheme, i.e., constructing rewritable

cell state vector, improves rewriting capability. The simulation result of the proposed

scheme with various θ for ε = 0.53 is shown in Table 4.2. As θ increases, the writing

efficiency also increases. Therefore, more write request can be done before invok-

ing the block erasure operation at a cost of increasing iteration number, which causes

higher computational complexity. However, it is assumed that there is enough time for

preparing the second writes. Thus, we can reduce the erasure operation in SSD storage

device by carefully choosing θ.

Furthermore, when the proposed rewriting scheme is implemented for MLC using

LLH programming, we have ηMLC = 1.234 for the best case. Even though the gain

for rewriting scheme is decreased, the proposed scheme still has advantage over the

conventional scheme which does not use WOM codes.

77

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

B
lo

ck
 e

rr
or

 ra
te

Erasure probability

Code A

Code B

Code C

Figure 4.7: Block error rate of constructed LDPC codes, CA, CB , and CC in BEC.

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0.20 0.30 0.40 0.50 0.60 0.70 0.80

W
rit

in
g

ef
fic

ie
nc

y

ϵ

Proposed scheme
With WOM code (Gad et al.)
With WOM code (Rivest-Shamir)
Without WOM code

Figure 4.8: Comparison of writing efficiency of the proposed scheme with those of the

conventional schemes.

78

Table 4.2: Writing efficiency η with various θ for L = 128

θ W0 W1 Iter. η

1 19.17 26.90 1.59 1.3599

3 32.38 18.06 2.56 1.3941

5 37.96 14.36 3.35 1.4088

10 42.37 11.40 5.07 1.4201

20 45.37 9.42 7.38 1.4281

* W2 for all θ is equal to zero.

79

Chapter 5

Conclusions

In this dissertation, research on the sparse codes and their applications are presented.

Specially, fountain and WOM codes which are constructed by sparse graphs are stud-

ied.

In Chapter 2, some preliminaries for spare codes are overviewed. In order to utilize

their excellent properties, a simple message passing algorithm is also introduced.

In Chapter 3, fountain codes for receivers with limited hardware are proposed.

Generally, well designed fountain codes with respect to coding overhead such as LT

codes and ZD fountain codes have poor ISRR. Thus, they have to store lots of unre-

covered code symbols in the buffer during decoding process. In this chapter, two new

classes of fountain codes based on the batched zigzag coding for receivers with small

buffer size, called BZ fountain codes and TBZ fountain codes are proposed. A method

to obtain code symbol degree distributions for the proposed codes via the ripple size

evolution is also proposed. By carefully generating batches of size larger than one to

be zigzag decodable, the proposed fountain codes have improved intermediate recov-

80

ery at low symbol erasure rates. Consequently, the coding overhead performance of

the proposed codes is little affected by the restriction of buffer size. It is verified that

the proposed codes outperform the conventional fountain codes via numerical analysis

with respect to intermediate recovery and coding overhead when message symbol is

short, symbol erasure rate is low, and the buffer size is limited.

In Chapter 4, WOM codes with message passing algorithm are introduced. While

NAND flash memory has many advantages such as high storage density and low la-

tency, it can be worn out due to frequent erasure operations. Thus, reducing the num-

ber of erasure operations can be one of key approach to extend lifetime of NAND

flash-based SSD. In this chapter, a rewriting scheme with multi-rate BEQ codes is pro-

posed. Also by selecting invalid pages and ordering those pages appropriately to make

cell state vectors rewritable, writing efficiency is improved. It is verified via numerical

analysis that SSD with the proposed rewriting scheme outperforms SSD without and

with conventional WOM codes with respect to writing efficiency.

81

Bibliography

[1] C. E. Shannon, “A mathematical theory of communications,” Bell Syst. Tech. J.

vol. 27, pp. 379–423, pp. 623–656, Jul., Oct. 1948.

[2] R. G. Gallager, “Low density parity check codes,” IRE Trans. Inform. Theory,

vol. IT-8, pp. 21–28, Jan. 1962.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-

correcting codes and decoding: Turbo codes,” in Proc. IEEE Int. Conf. Commun.,

May 1993, pp. 1064–1070.

[4] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low den-

sity parity check codes,” Electron. Lett., vol. 32, no. 18, pp. 1645–1646, Aug.

1996.

[5] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check

codes under message passing decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2,

pp. 599-618, Feb. 2001.

[6] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Im-

proved low-density parity-check codes using irregular graphs,” IEEE Trans. Inf.

Theory, vol. 47, no. 2, pp. 585–598, Feb. 2001.

82

[7] S.-Y. Chung, G. D. Forney, Jr., T. J. Richardson, and R. L. Urbanke, “On the

design of low-density parity-check codes within 0.0045 dB of the Shannon limit,”

IEEE Commun. Lett., vol. 5, no. 2, pp. 58–60, Feb. 2001.

[8] T. J. Richardson and R. L. Urbanke, “Efficient encoding of low-density parity-

check codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 638–656, Feb. 2001.

[9] IEEE, “IEEE standards for local and metropolitan area network. Part 16: Air

interface for fixed broadband wireless access systems,” IEEE Std 802.16-2009,

May 2009.

[10] IEEE, “IEEE standards for information technology - Telecommunications and

information exchange between systems - Local and metropolitan area networks

- Specific requirements. Part 11: Wireless LAN medium access control (MAC)

and physical layer (PHY) specifications. Amendment 5: Enhancement for higher

throughput,” IEEE Std 802.11n-2009, Oct. 2009.

[11] IEEE, “IEEE standards for information technology - Telecommunications and

information exchange between systems - Local and metropolitan area networks -

Specific requirements. Part 3: Carrier sense multiple access with collision de-

tection (CSMA/CD) access method and physical layer specification. Amend-

ment 1: Physical layer and management parameters for 10 Gb/s operation, type

10GBASE-T,” IEEE Std 802.3an-2006, Sep. 2006.

[12] ETSI, “Digital video broadcasting (DVB); Second generation framing structure,

channel coding and modulation systems for broadcasting, interactive services,

83

news gathering and other broadband satellite applications (DVB-S2),” EN 302

307 v1.2.1, Aug. 2009.

[13] L. Ping, S. Chan, and K. L. Yeung, “Iterative decoding of multi-dimensional

concatenated single parity check codes,” in Proc. IEEE Int. Conf. Commun. (ICC)

Jun. 1998, pp. 131–135.

[14] T. R. Oenning and J. Moon, “A low-density generator matrix interpretation of

parallel concatenated single bit parity codes,” IEEE Trans. Magn., vol. 37, pp.

737–741, Mar. 2001.

[15] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,”

IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399–431, Mar. 1999.

[16] D. J. C. MacKay and R. M. Neal, “Good codes based on very sparse matrices,” in

Cryptography and Coding 5th IMA Conf., C. Boyd, Ed., Lecture Notes in Com-

puter Science, no. 1025. Berlin, Germany: Springer, 1995, pp. 100–111.

[17] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital fountain ap-

proach to reliable distribution of bulk data”, in Proc. ACMSIGCOMM, Jan. 1998,

pp. 56–67.

[18] M. Luby, “LT codes,” in Proc. 43rd Annu. IEEE Symp. Found. Comput. Sci., Nov.

2002, pp. 271–282.

[19] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2551–

2567, Jun. 2006.

84

[20] D.J.C. MacKay, G. Mitchison, and P. L. McFadden, “Sparse-graph codes for

quantum error correction,” IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2315-

2330, Oct. 2004.

[21] I. B. Djordjevic , “Quantum LDPC codes from balanced incomplete block de-

signs,” IEEE Commun. Lett., vol 12, no. 5, pp. 389–391, May. 2008.

[22] P. Tan and Jing Li, “Efficient quantum stabilizer codes: LDPC and LDPC-

convolutional constructions,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 476–

491, Dec. 2009.

[23] A. Thangaraj, S. Dihidar, A. R. Calderbank, S. W. McLaughlin, and J.-M.

Merolla, “Applications of LDPC codes to the wiretap channel,” IEEE Trans. Inf.

Theory, vol. 53, no. 8, pp. 2933–2945, Aug. 2007.

[24] M. Baldi, M. Bianchi, and F. Chiaraluce, “Coding with scrambling, concatena-

tion, and HARQ for the AWGN wire-tap channel: A security gap analysis,” IEEE

Trans. Inf. Forensics Security, vol. 7, no. 3, pp. 883–894, Jun. 2012.

[25] D. Klinc, J. Ha, S. W. McLaughlin, J. Barros, and B.-J. Kwak, “LDPC codes for

the Gaussian wiretap channel,” IEEE Trans. Inf. Forensics Security, vol. 6, no. 3,

pp. 532–540, Sep. 2011

[26] M. Baldi, M. Bodrato, and F. Chiaraluce, “Security and complexity of the

McEliece cryptosystem based on quasi-cyclic low-density parity-check codes,”

IET Information Security, vol. 7, no. 3, pp. 212–220, Sep. 2013.

85

[27] A.D. Liveris, Z. Xiong, and C. N. Georghiades, “Compression of binary sources

with side information at the decoder using LDPC codes,” IEEE Commun. Lett.,

vol. 6, no. 10, pp. 440-442, Oct. 2002.

[28] Y. Matsunaga and H. Yamamoto, “A coding theorem for lossy data compression

by LDPC codes,” IEEE Trans. Inf. Theory, vol. 49, no. 9, pp. 2225–2229, Sep.

2003.

[29] G. Caire, S. Shamai, and S. Verdu, “Universal data compression with LDPC

codes,” in Proc. 3rd Int. Symp. Turbo Codes and Related Topics, Sep. 2003, pp.

55–58.

[30] C.-F. Lan, A. D. Liveris, K. Narayanan, Z. Xiong, and C. Georghiades, “Slepian-

Wolf coding of multiple M -ary sources using LDPC codes,” in Proc. Data Com-

pression Conference (DCC), Mar. 2004, p. 549.

[31] S. Miyake, “Lossy data compression over Zq by LDPC code,” in Proc. IEEE Int.

Symp. Inf. Theory (ISIT), Jul. 2006, pp. 813–816.

[32] A. G. Dimakis, R. Smarandache, and P. O. Vontobel, “LDPC codes for com-

pressed sensing,” IEEE Trans. Inf. Theory, vol. 58, no. 5, pp. 3093–3114, May

2012.

[33] F. Zhang and H. D. Pfister, “Verification decoding of high-rate LDPC codes with

applications in compressed sensing,” IEEE Trans. Inf. Theory, vol. 58, no. 8, pp.

5042–5058, Aug. 2012.

86

[34] W. Z. Lu, K. Kpalma, and J. Ronisn, “Sparse binary matrices of LDPC codes for

compressed sensing,” in Proc. Data Compression Conference (DCC), Apr. 2012,

p. 405.

[35] L. Li and D. Qu, “Joint decoding of LDPC code and phase factors for OFDM

systems with PTS PAPR reduction,” IEEE Trans. Veh. Technol., vol. 62, no. 1.,

pp. 444–449, Jan. 2013

[36] L. Li, D. Qu, and T. Jiang, “Partition optimization in LDPC-coded OFDM sys-

tems with PTS PAPR reduction,” IEEE Trans. Veh. Technol., vol. 63, no. 8, pp.

4108–4113, Oct. 2014.

[37] D. Qu, L. Li, and T. Jiang, “Invertible subset LDPC code for PAPR reduction in

OFDM systems with low complexity,” IEEE Trans. Wireless Commun., vol. 13,

no. 4, pp. 2204–2213, Apr. 2014.

[38] S. Shu, D. Qu, L. Li, and T. Jiang, “Invertible subset QC-LDPC codes for PAPR

reduction of OFDM signals,” IEEE Trans. Broadcast., vol. 61, no. 2, pp. 290–

298, Jun. 2015.

[39] S. Kumar, A. Vem, K. Narayanan, and H. D. Pfister, “Spatially-coupled codes for

write-once memories,” in Proc. Allerton Conf. Commun., Control, Comput., Oct.

2015, pp. 125–131.

[40] E. E. Gad, W. Huang, Y. Li, and J. Bruck, “Rewriting flash memories by message

passing,” in Proc. Int. Symp. on Information Theory (ISIT), Jul. 2015, pp. 646–

650.

87

[41] J. H. Sørensen, P. Popovski, and J. Østergaard, “Design and analysis of LT codes

with decreasing ripple size,” IEEE Trans. Commun., vol. 60, no. 11, pp. 3191–

3197, Nov. 2012.

[42] H. Zhu, G. Zhang, and G. Li, “A novel degree distribution algorithm of LT codes,”

in Proc. IEEE Int. Conf. Commun. Technol., Nov. 2008, pp. 221–224.

[43] K.-K. Yen, Y.-C. Liao, C.-L. Chen, and H.-C. Chang, “Modified robust soliton

distribution (MRSD) with improved ripple size for LT codes,” IEEE Commun.

Lett., vol. 17, no. 5. pp. 976–979, May 2013.

[44] Y. Zhao, F. C. M. Lau, Z. Zhu, and H. Yu, “Scale-free Luby transform codes,”

Int. J. Bifurcation and Chaos, vol. 22, no. 4, pp. 1250094-1–11, Apr. 2012.

[45] T. Nozaki, “Fountain codes based on zigzag decodable coding,” in Proc. Int.

Symp. Inf. Theory Appl. (ISITA), Oct. 2014, pp. 274–278.

[46] ——, “Zigzag decodable fountain codes,” [Online]. Available:

http://arxiv.org/abs/1605.09125v1

[47] J. Qureshi, C. H. Foh, and J. Cai, “Primer and recent developments on fountain

codes,” Recent Adv. Commun. Netw. Technol., vol. 2, pp. 2–11, 2013.

[48] S. Gollakota and D. Katabi, “Zigzag decoding: Combating hidden terminals in

wireless networks,” in Proc. ACM SIGCOMM Conf. Data. Commun., Oct. 2008,

pp. 159–170.

88

[49] C. W. Sung and X. Gong, “A zigzag-decodable code with the MDS property for

distributed storage systems,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul.

2013, pp. 341–345.

[50] J. Chen, H. Li, H. Hou, B. Zhu, T. Zhou, L. Lu, and Y. Zhang, “A new zigzag

MDS code with optimal encoding and efficient decoding,” in Proc. IEEE Int.

Conf. Big Data, Oct. 2014, pp. 1–6.

[51] H. Hou, K. W. Shum, M. Chen, and H. Li, “BASIC regenerating code: Binary

addition and shift for exact repair,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),

Jul. 2013, pp.1621–1625.

[52] J. Qureshi, C. H. Foh, and J. Cai, “Optimal solution for the index coding problem

using network coding over GF(2),” in Proc. IEEE Conf. Sensor, Mesh, Ad Hoc

Commun., Netw. (SECON), Jun. 2012, pp. 209–217.

[53] C. Zhou, P. Mei, L. Huang, K. Liu, and Y. Wen, “An electronic shelf label system

based on WSN,” in Proc. Int. Conf. Syst. Eng. Modeling (ICSEM), 2013, pp.

913–916.

[54] K. Alsmearat, M. Al-Ayyoub, and M. B. Yasseinz, “A new broadcast scheme

for sensor networks,” in Proc. IEEE/ACS Int. Conf. Comput. Syst. Applicat.

(AICCSA), Nov. 2014, pp. 824–828.

[55] R. Kumar, A. Paul, U. Ramachandran, and D. Kotz, “On improving wireless

broadcast reliability of sensor networks using erasure codes,” in Proc. Second

Int. Conf. Mobile Ad-hoc Sensor Netw., Dec. 2006, pp. 155–170.

89

[56] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “In-

ternet of things: A survey on enabling technologies, protocols and applications,”

IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 2347–2376, 4th Quarter 2015.

[57] S. Sanghavi, “Intermediate performance of rateless codes,” in Proc. IEEE Inf.

Theory Workshop, Sep. 2007, pp. 478–482.

[58] S. Kim and S. Lee, “Improved intermediate performance of rateless codes,” in

Proc. Int. Conf. Adv. Commun. Technol., Feb. 2009, pp. 1682–1686.

[59] A. Talari and N. Rahnavard, “On the intermediate symbol recovery rate of rate-

less codes,” IEEE Trans. Commun., vol. 60, no. 5, pp. 1237–1242, May 2012.

[60] A. Beimel, S. Dolev, and N. Singer, “RT oblivious erasure correcting,”

IEEE/ACM Trans. Netw., vol. 15, no. 6, pp. 1321–1332, Dec. 2007.

[61] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein, “Growth codes: Maximizing

sensor network data persistence,” in Proc. ACM SIGCOMM Conf. Appl., Tech-

nol., Archit., Protocols Comput. Commun., Oct. 2006, pp. 255–266.

[62] N. Thomos, R. Pulikkoonattu, and P. Frossard, “Growth codes: Intermediate per-

formance analysis and application to video,” IEEE Trans. Commun., vol. 61, no,

11, pp. 4710–4721, Nov. 2013.

[63] Y. Cassuto and A. Shokrollahi, “Online fountain codes with low overhead,” IEEE

Trans. Inf. Theory, vol. 61, no. 6, pp. 3137–3149, Jun. 2015.

[64] S. Yang and R. W. Yeung, “Batched sparse codes,” IEEE Trans. Inf. Theory, vol.

60, no. 9, pp. 5322–5346, Sep. 2014.

90

[65] X. Wang, A. Willig, and G. Woodward, “Improving fountain codes for short mes-

sage lengths by adding memory,” in Proc. IEEE Int. Conf. Intell. Sensors, Sensor

Netw. Inf. Process., Apr. 2013, pp. 189–194.

[66] K. F. Hayajneh, S. Yousefi, and M. Valipour, “Improved finite-length Luby-

transform codes in the binary erasure channel,” IET Commun., vol. 9, no. 8, pp.

1122–1130, May 2015.

[67] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P. H. Siegel,

and J. K. Wolf, “Characterizing flash memory: Anomalies, observations, and ap-

plications,” in IEEE/ACM Int. Symp. on Microarchitecture (MICRO), Dec. 2009,

pp. 24–33.

[68] H. Choi, W. Liu, and W. Sung, “VLSI implementation of BCH error correction

for multilevel cell NAND flash memory,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 18, no. 5, pp. 843–847, May 2010.

[69] J. Kim and W. Sung, “Rate-0.96 LDPC decoding VLSI for soft-decision error

correction of NAND flash memory,” IEEE Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 22, no. 5, pp. 1004–1015, May 2014.

[70] R. L. Rivest and A. Shamir, “How to reuse a write-once memory,” Inf. Contr.,

vol. 55, no. 1–3, pp. 1–19, Dec. 1982

[71] C. Heegard, “On the capacity of permanent memory,” IEEE Trans. Inf. Theory,

vol. 31, no. 1, pp. 34–42, Jan. 1985.

[72] D. Burshtein and A. Strugatski, “Polar write once memory codes,” IEEE Trans.

Inf. Theory, vol. 59, no. 8, pp. 5088–5101, Aug. 2013.

91

[73] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee, and H.-J. Song, “A survey

of flash translation layer,” J. Syst. Archit., vol. 55, no. 5–6, pp. 332–343, May

2009.

[74] G. Yadgar, E.Yaakobi, and A. Schuster “Write once, get 50% free: Saving SSD

erase costs using WOM codes,” in Proc. File and Storage Technologies (FAST),

Feb. 2015, pp. 257–271.

[75] A. N. Jacobvitz, R. Calderbank, and D. J. Sorin, “Writing cosets of a convo-

lutional code to increase the lifetime of flash memory,” in Proc. Allerton Conf.

Commun., Control, Comput., Oct. 2012, pp.308–318.

[76] F. Margaglia and A. Brinkmann, “Improving MLC flash performance and en-

durance with extended P/E cycles,” in Proc. Mass Storage Systems and Tech-

nologies (MSST), May 2015, pp. 1–12.

[77] F. Margaglia, G, Yadgar, E. Yaakobi, Y. Li, A. Schuster, and A. Brinkmann, “The

devil is in the details: Implementing flash page reuse with WOM codes,” in Proc.

USENIX Conf. on File and Storage Technologies (FAST), Feb. 2016, pp. 95–109.

[78] E. Martinian and J. S. Yedidia, “Iterative quantization using codes on graphs,” in

Proc. Allerton Conf. Commun., Control, Comput., Oct. 2003.

[79] J. Thorpe, “Low-density parity-check (LDPC) codes constructed from pro-

tographs,” Proc. IPN Progr. Rep. 42-154, JPL, Aug. 2003.

[80] D. Divsalar, S. Donlinar, C. R. Jones, and K. Andrews, “Capacity-approaching

protograph codes,” IEEE J. Sel. Areas Commun., vol. 27, no. 6, pp. 876–888,

Aug. 2009.

92

[81] T. Nguyen, A. Nosratinia, and D. Divsalar, “The design of rate-compatible pro-

tograph LDPC codes,” IEEE Trans. Commun., vol. 60, no. 10, pp. 2841–2850,

Oct. 2012.

[82] T. V. Nguyen and A. Nosratinia, “Rate-compatible short-length protograph

LDPC codes,” IEEE Commun. Lett., vol. 17, no. 5, pp. 948–951, May 2013.

[83] T.-Y. Chen, K. Vakilinia, D. Divsalar, and R. D. Wesel, “Protograph-based raptor-

like LDPC codes,” IEEE Trans. Commun., vol. 63, no. 5, pp. 1522–1532, May

2015.

[84] G. Liva and M. Chiani, “Protograph LDPC code design based on EXIT chart

analysis,” in Proc. IEEE GLOBECOM, Nov. 2007, pp. 3250–3254.

[85] D. Divsalar, C. Jones, S. Dolinar, J. Thorpe, “Protograph based LDPC codes with

minimum distance linearly growing with block size,” in Proc. IEEE GLOBE-

COM, Nov. 2005, pp. 1152–1156.

[86] Z. Li and B. V. Kumar, “A class of good quasi-cyclic low-density parity check

codes based on progressive edge growth graph,” in Proc. Conf. Rec. 38th Asilo-

mar Conf. Signals, Syst. Comput., Nov. 2004, pp. 1990-1994.

93

초록

본논문은저밀도부호의응용에관한것이며,다음과같은두가지연구결과를

포함하고있다.

• 파운틴부호

– 묶음지그재그파운틴부호제안

– 이단묶음지그재그파운틴부호제안

• 일회쓰기가능메모리 (WOM)부호

– 비율호환형 (RC)저밀도생성행렬 (LDGM)부호를이용한WOM부호

구현

먼저,묶음지그재그파운틴부호와이단계묶음지그재그파운틴부호라고불리

는두가지파운틴부호종류가심볼소실채널을위해제안된다.부호심볼의길이를

약간늘임으로써제안한부호의각각의묶음에포함되어있는메세지심볼들이낮은

복잡도를가지는지그재그복호알고리즘에 의해복원될수있다.따라서제안하는

부호는복호과정동안낮은버퍼사용량을보인다.이러한특징은하드웨어자원의

제한이 있는 수신기로 구성된 브로드캐스팅 채널에 적합하다. 또한 묶음으로부터

94

해제되는 부호 심볼을 고려하는 리플 크기 진화 기법을 통해 제안한 부호의 부호

심볼의차수분포를구하는기법을제안한다.메세지길이가짧고,심볼소실확률이

낮으며사용가능한버퍼크기가제한되어있을때,제안하는부호가루비변형부호

와지그재그파운틴부호에비해중간복호성능과부호오버헤드측면에서우수한

성능을가짐을보인다.

두 번째로, WOM 부호를 저밀도 부호인 LDGM 부호를 이용해 구현하는 것에

대해 소개한다. 최근에 삭제 과정의 횟수를 줄여 메모리 장치의 수명을 늘리기 위

해WOM부호가낸드플래시기반솔리드스테이트드라이브 (SSD)에적용되었다.

본논문에서는 SSD를위한 다수의 이진 소실 양자화 (BEQ)부호를 기반으로 새로

운다시쓰기기법을제안하며사용되는 BEQ부호는 RC-LDGM부호로생성된다.

나아가 RC-LDGM 부호와 페이지 선택 기법을 함께 사용함으로써 쓰기 효율이 증

가한다.제안하는다시쓰기기법을사용하는 SSD는단일레벨셀 (SLC)및다레벨

셀 (MLC) 플리시 메모리에서 WOM 부호를 사용하지 않는 SSD와 기존의 WOM

부호를사용하는 SSD보다성능이우수함을확인한다.

주요어:파운틴부호,저밀도생성행렬부호,저밀도패리티체크부호,낸드플래시

메모리,솔리드스테이트드라이브,일회쓰기가능메모리부호.

학번: 2011-20923

95

	1 Introduction
	1.1 Background
	1.2 Overview of Dissertation

	2 Sparse Codes
	2.1 Linear Block Codes
	2.2 LDPC Codes
	2.3 Message Passing Decoder

	3 New Fountain Codes with Improved Intermediate Recovery Based on Batched Zigzag Coding
	3.1 Preliminaries
	3.1.1 Definitions and Notation
	3.1.2 LT Codes
	3.1.3 Zigzag Decodable Codes
	3.1.4 Bit-Level Overhead

	3.2 New Fountain Codes Based on Batched Zigzag Coding
	3.2.1 Construction of Shift Matrix
	3.2.2 Encoding and Decoding of the Proposed BZ Fountain Codes
	3.2.3 Storage and Computational Complexity

	3.3 Degree Distribution of BZ Fountain Codes
	3.3.1 Relation Between $\Psi(x)$ and $\Omega(x)$
	3.3.2 Derivation of $\Omega(x)$ via Ripple Size Evolution

	3.4 Two-Phase Batched Zigzag Fountain Codes with Additional Memory
	3.4.1 Code Construction
	3.4.2 Bit-Level Overhead

	3.5 Numerical Analysis

	4 Write-Once Memory Codes Using Rate-Compatible LDGM Codes
	4.1 Preliminaries
	4.1.1 NAND Flash Memory
	4.1.2 Rewriting Schemes for Flash Memory
	4.1.3 Construction of Rewriting Codes by BEQ Codes

	4.2 Proposed Rewriting Codes
	4.2.1 System Model
	4.2.2 Multi-rate Rewriting Codes
	4.2.3 Page Selection for Rewriting

	4.3 RC-LDGM Codes
	4.4 Numerical Analysis

	5 Conclusions
	Bibliography
	초록

<startpage>13
1 Introduction 1
 1.1 Background 1
 1.2 Overview of Dissertation 5
2 Sparse Codes 7
 2.1 Linear Block Codes 7
 2.2 LDPC Codes 9
 2.3 Message Passing Decoder 11
3 New Fountain Codes with Improved Intermediate Recovery Based on Batched Zigzag Coding 13
 3.1 Preliminaries 17
 3.1.1 Definitions and Notation 17
 3.1.2 LT Codes 18
 3.1.3 Zigzag Decodable Codes 20
 3.1.4 Bit-Level Overhead 22
 3.2 New Fountain Codes Based on Batched Zigzag Coding 23
 3.2.1 Construction of Shift Matrix 24
 3.2.2 Encoding and Decoding of the Proposed BZ Fountain Codes 25
 3.2.3 Storage and Computational Complexity 28
 3.3 Degree Distribution of BZ Fountain Codes 31
 3.3.1 Relation Between $\Psi(x)$ and $\Omega(x)$ 31
 3.3.2 Derivation of $\Omega(x)$ via Ripple Size Evolution 32
 3.4 Two-Phase Batched Zigzag Fountain Codes with Additional Memory 40
 3.4.1 Code Construction 41
 3.4.2 Bit-Level Overhead 46
 3.5 Numerical Analysis 49
4 Write-Once Memory Codes Using Rate-Compatible LDGM Codes 60
 4.1 Preliminaries 62
 4.1.1 NAND Flash Memory 62
 4.1.2 Rewriting Schemes for Flash Memory 62
 4.1.3 Construction of Rewriting Codes by BEQ Codes 65
 4.2 Proposed Rewriting Codes 67
 4.2.1 System Model 67
 4.2.2 Multi-rate Rewriting Codes 68
 4.2.3 Page Selection for Rewriting 70
 4.3 RC-LDGM Codes 74
 4.4 Numerical Analysis 76
5 Conclusions 80
Bibliography 82
초록 94
</body>

