16,075 research outputs found

    Probabilistic foundations of quantum mechanics and quantum information

    Full text link
    We discuss foundation of quantum mechanics (interpretations, superposition, principle of complementarity, locality, hidden variables) and quantum information theory.Comment: Contextual probabilistic viewpoint to quantum cryptography projec

    Contextual viewpoint to quantum stochastics

    Get PDF
    We study the role of context, complex of physical conditions, in quantum as well as classical experiments. It is shown that by taking into account contextual dependence of experimental probabilities we can derive the quantum rule for the addition of probabilities of alternatives. Thus we obtain quantum interference without applying to wave or Hilbert space approach. The Hilbert space representation of contextual probabilities is obtained as a consequence of the elementary geometric fact: cos⁥\cos-theorem. By using another fact from elementary algebra we obtain complex-amplitude representation of probabilities. Finally, we found contextual origin of noncommutativity of incompatible observables

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    An Essay on the Double Nature of the Probability

    Full text link
    Classical statistics and Bayesian statistics refer to the frequentist and subjective theories of probability respectively. Von Mises and De Finetti, who authored those conceptualizations, provide interpretations of the probability that appear incompatible. This discrepancy raises ample debates and the foundations of the probability calculus emerge as a tricky, open issue so far. Instead of developing philosophical discussion, this research resorts to analytical and mathematical methods. We present two theorems that sustain the validity of both the frequentist and the subjective views on the probability. Secondly we show how the double facets of the probability turn out to be consistent within the present logical frame

    Linear representations of probabilistic transformations induced by context transitions

    Get PDF
    By using straightforward frequency arguments we classify transformations of probabilities which can be generated by transition from one preparation procedure (context) to another. There are three classes of transformations corresponding to statistical deviations of different magnitudes: (a) trigonometric; (b) hyperbolic; (c) hyper-trigonometric. It is shown that not only quantum preparation procedures can have trigonometric probabilistic behaviour. We propose generalizations of C{\bf C}-linear space probabilistic calculus to describe non quantum (trigonometric and hyperbolic) probabilistic transformations. We also analyse superposition principle in this framework.Comment: Added a physical discussion and new reference

    von Neumann-Morgenstern and Savage Theorems for Causal Decision Making

    Full text link
    Causal thinking and decision making under uncertainty are fundamental aspects of intelligent reasoning. Decision making under uncertainty has been well studied when information is considered at the associative (probabilistic) level. The classical Theorems of von Neumann-Morgenstern and Savage provide a formal criterion for rational choice using purely associative information. Causal inference often yields uncertainty about the exact causal structure, so we consider what kinds of decisions are possible in those conditions. In this work, we consider decision problems in which available actions and consequences are causally connected. After recalling a previous causal decision making result, which relies on a known causal model, we consider the case in which the causal mechanism that controls some environment is unknown to a rational decision maker. In this setting we state and prove a causal version of Savage's Theorem, which we then use to develop a notion of causal games with its respective causal Nash equilibrium. These results highlight the importance of causal models in decision making and the variety of potential applications.Comment: Submitted to Journal of Causal Inferenc
    • 

    corecore