8,664 research outputs found

    Forward Attention in Sequence-to-sequence Acoustic Modelling for Speech Synthesis

    Full text link
    This paper proposes a forward attention method for the sequenceto- sequence acoustic modeling of speech synthesis. This method is motivated by the nature of the monotonic alignment from phone sequences to acoustic sequences. Only the alignment paths that satisfy the monotonic condition are taken into consideration at each decoder timestep. The modified attention probabilities at each timestep are computed recursively using a forward algorithm. A transition agent for forward attention is further proposed, which helps the attention mechanism to make decisions whether to move forward or stay at each decoder timestep. Experimental results show that the proposed forward attention method achieves faster convergence speed and higher stability than the baseline attention method. Besides, the method of forward attention with transition agent can also help improve the naturalness of synthetic speech and control the speed of synthetic speech effectively.Comment: 5 pages, 3 figures, 2 tables. Published in IEEE International Conference on Acoustics, Speech and Signal Processing 2018 (ICASSP2018

    Linguistic unit discovery from multi-modal inputs in unwritten languages: Summary of the "Speaking Rosetta" JSALT 2017 Workshop

    Get PDF
    We summarize the accomplishments of a multi-disciplinary workshop exploring the computational and scientific issues surrounding the discovery of linguistic units (subwords and words) in a language without orthography. We study the replacement of orthographic transcriptions by images and/or translated text in a well-resourced language to help unsupervised discovery from raw speech.Comment: Accepted to ICASSP 201

    Relating Objective and Subjective Performance Measures for AAM-based Visual Speech Synthesizers

    Get PDF
    We compare two approaches for synthesizing visual speech using Active Appearance Models (AAMs): one that utilizes acoustic features as input, and one that utilizes a phonetic transcription as input. Both synthesizers are trained using the same data and the performance is measured using both objective and subjective testing. We investigate the impact of likely sources of error in the synthesized visual speech by introducing typical errors into real visual speech sequences and subjectively measuring the perceived degradation. When only a small region (e.g. a single syllable) of ground-truth visual speech is incorrect we find that the subjective score for the entire sequence is subjectively lower than sequences generated by our synthesizers. This observation motivates further consideration of an often ignored issue, which is to what extent are subjective measures correlated with objective measures of performance? Significantly, we find that the most commonly used objective measures of performance are not necessarily the best indicator of viewer perception of quality. We empirically evaluate alternatives and show that the cost of a dynamic time warp of synthesized visual speech parameters to the respective ground-truth parameters is a better indicator of subjective quality

    Twin Networks: Matching the Future for Sequence Generation

    Full text link
    We propose a simple technique for encouraging generative RNNs to plan ahead. We train a "backward" recurrent network to generate a given sequence in reverse order, and we encourage states of the forward model to predict cotemporal states of the backward model. The backward network is used only during training, and plays no role during sampling or inference. We hypothesize that our approach eases modeling of long-term dependencies by implicitly forcing the forward states to hold information about the longer-term future (as contained in the backward states). We show empirically that our approach achieves 9% relative improvement for a speech recognition task, and achieves significant improvement on a COCO caption generation task.Comment: 12 pages, 3 figures, published at ICLR 201

    End-to-End Attention-based Large Vocabulary Speech Recognition

    Full text link
    Many of the current state-of-the-art Large Vocabulary Continuous Speech Recognition Systems (LVCSR) are hybrids of neural networks and Hidden Markov Models (HMMs). Most of these systems contain separate components that deal with the acoustic modelling, language modelling and sequence decoding. We investigate a more direct approach in which the HMM is replaced with a Recurrent Neural Network (RNN) that performs sequence prediction directly at the character level. Alignment between the input features and the desired character sequence is learned automatically by an attention mechanism built into the RNN. For each predicted character, the attention mechanism scans the input sequence and chooses relevant frames. We propose two methods to speed up this operation: limiting the scan to a subset of most promising frames and pooling over time the information contained in neighboring frames, thereby reducing source sequence length. Integrating an n-gram language model into the decoding process yields recognition accuracies similar to other HMM-free RNN-based approaches
    corecore