734 research outputs found

    High-dimensional Sparse Inverse Covariance Estimation using Greedy Methods

    Full text link
    In this paper we consider the task of estimating the non-zero pattern of the sparse inverse covariance matrix of a zero-mean Gaussian random vector from a set of iid samples. Note that this is also equivalent to recovering the underlying graph structure of a sparse Gaussian Markov Random Field (GMRF). We present two novel greedy approaches to solving this problem. The first estimates the non-zero covariates of the overall inverse covariance matrix using a series of global forward and backward greedy steps. The second estimates the neighborhood of each node in the graph separately, again using greedy forward and backward steps, and combines the intermediate neighborhoods to form an overall estimate. The principal contribution of this paper is a rigorous analysis of the sparsistency, or consistency in recovering the sparsity pattern of the inverse covariance matrix. Surprisingly, we show that both the local and global greedy methods learn the full structure of the model with high probability given just O(dlog(p))O(d\log(p)) samples, which is a \emph{significant} improvement over state of the art 1\ell_1-regularized Gaussian MLE (Graphical Lasso) that requires O(d2log(p))O(d^2\log(p)) samples. Moreover, the restricted eigenvalue and smoothness conditions imposed by our greedy methods are much weaker than the strong irrepresentable conditions required by the 1\ell_1-regularization based methods. We corroborate our results with extensive simulations and examples, comparing our local and global greedy methods to the 1\ell_1-regularized Gaussian MLE as well as the Neighborhood Greedy method to that of nodewise 1\ell_1-regularized linear regression (Neighborhood Lasso).Comment: Accepted to AI STAT 2012 for Oral Presentatio

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of 2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    Iterative Soft/Hard Thresholding with Homotopy Continuation for Sparse Recovery

    Get PDF
    In this note, we analyze an iterative soft / hard thresholding algorithm with homotopy continuation for recovering a sparse signal xx^\dag from noisy data of a noise level ϵ\epsilon. Under suitable regularity and sparsity conditions, we design a path along which the algorithm can find a solution xx^* which admits a sharp reconstruction error xx=O(ϵ)\|x^* - x^\dag\|_{\ell^\infty} = O(\epsilon) with an iteration complexity O(lnϵlnγnp)O(\frac{\ln \epsilon}{\ln \gamma} np), where nn and pp are problem dimensionality and γ(0,1)\gamma\in (0,1) controls the length of the path. Numerical examples are given to illustrate its performance.Comment: 5 pages, 4 figure

    Optimization with Sparsity-Inducing Penalties

    Get PDF
    Sparse estimation methods are aimed at using or obtaining parsimonious representations of data or models. They were first dedicated to linear variable selection but numerous extensions have now emerged such as structured sparsity or kernel selection. It turns out that many of the related estimation problems can be cast as convex optimization problems by regularizing the empirical risk with appropriate non-smooth norms. The goal of this paper is to present from a general perspective optimization tools and techniques dedicated to such sparsity-inducing penalties. We cover proximal methods, block-coordinate descent, reweighted 2\ell_2-penalized techniques, working-set and homotopy methods, as well as non-convex formulations and extensions, and provide an extensive set of experiments to compare various algorithms from a computational point of view
    corecore