10,432 research outputs found

    A Pipeline for Volume Electron Microscopy of the Caenorhabditis elegans Nervous System.

    Get PDF
    The "connectome," a comprehensive wiring diagram of synaptic connectivity, is achieved through volume electron microscopy (vEM) analysis of an entire nervous system and all associated non-neuronal tissues. White et al. (1986) pioneered the fully manual reconstruction of a connectome using Caenorhabditis elegans. Recent advances in vEM allow mapping new C. elegans connectomes with increased throughput, and reduced subjectivity. Current vEM studies aim to not only fill the remaining gaps in the original connectome, but also address fundamental questions including how the connectome changes during development, the nature of individuality, sexual dimorphism, and how genetic and environmental factors regulate connectivity. Here we describe our current vEM pipeline and projected improvements for the study of the C. elegans nervous system and beyond

    Self-assembly of Escherichia coli phage shock protein A

    No full text
    The Phage shock protein (Psp) response is an extracytoplasmic stress response. The central component of this system is PspA, a protein that mediates the physiological response to membrane stress. PspA is also involved in regulating its own transcription and that of the psp operon, forming a positive feedback loop. PspA has been previously shown to oligomerise into higher-order species, including a 36-meric species with ring-like structure. In this study, we demonstrate that the ring-like PspA structures further self-assemble into rod-shaped complexes. These rod-like structures may play a scaffolding role in the maintenance of membrane integrity during phage shock protein response

    4D Lorentz Electron Microscopy Imaging: Magnetic Domain Wall Nucleation, Reversal, and Wave Velocity

    Get PDF
    Magnetization reversal is an important topic of research in the fields of both basic and applied ferromagnetism. For the study of magnetization reversal dynamics and magnetic domain wall (DW) motion in ferromagnetic thin films, imaging techniques are indispensable. Here, we report 4D imaging of DWs by the out-of-focus Fresnel method in Lorentz ultrafast electron microscopy (UEM), with in situ spatial and temporal resolutions. The temporal change in magnetization, as revealed by changes in image contrast, is clocked using an impulsive optical field to produce structural deformation of the specimen, thus modulating magnetic field components in the specimen plane. Directly visualized are DW nucleation and subsequent annihilation and oscillatory reappearance (periods of 32 and 45 ns) in nickel films on two different substrates. For the case of Ni films on a Ti/Si_(3)N_4 substrate, under conditions of minimum residual external magnetic field, the oscillation is associated with a unique traveling wave train of periodic magnetization reversal. The velocity of DW propagation in this wave train is measured to be 172 m/s with a wavelength of 7.8 μm. The success of this study demonstrates the promise of Lorentz UEM for real-space imaging of spin switching, ferromagnetic resonance, and laser-induced demagnetization in ferromagnetic nanostructures

    A study of mitochondrial membranes in relation to elementary particles

    Get PDF
    Elementary particles that commonly have been seen by electron microscopy to be attached by stalks to mitochondrial cristae in negatively stained preparations, were not apparent in similarly stained mitochondria from exponentially growing wild-type Neurospora crassa when these were isolated in sucrose solution containing 1 x 10^-3 M EDTA. However, elementary particles were easily demonstrable in electron micrographs if the mitochondria were isolated without EDTA in the sucrose solution. A biochemical study indicated that both kinds of mitochondrial preparations, isolated in the presence or absence of EDTA, had about the same capacity for oxidative phosphorylation. Observations on rat-liver mitochondria also suggested that the stalked elementary particles were more easily demonstrated if the preparation was made in the absence of EDTA. It was difficult to demonstrate elementary particles in wild-type Neurospora mitochondria isolated with or without EDTA and subsequently prepared for electron microscopy by spreading on the surface of an aqueous solution of potassium phosphotungstate. Elementary particles could be demonstrated in poky Neurospora mitochondria isolated with EDTA if the mitochondria were spread on the surface of an aqueous solution of phosphotungstate. It was concluded that biochemical functions associated with elementary particles are independent of structural configuration as seen by electron microscopy

    Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication

    Get PDF
    All positive strand RNA viruses are known to replicate their genomes in close association with intracellular membranes. In case of the hepatitis C virus (HCV), a member of the family Flaviviridae, infected cells contain accumulations of vesicles forming a membranous web (MW) that is thought to be the site of viral RNA replication. However, little is known about the biogenesis and three-dimensional structure of the MW. In this study we used a combination of immunofluorescence- and electron microscopy (EM)-based methods to analyze the membranous structures induced by HCV in infected cells. We found that the MW is derived primarily from the endoplasmic reticulum (ER) and contains markers of rough ER as well as markers of early and late endosomes, COP vesicles, mitochondria and lipid droplets (LDs). The main constituents of the MW are single and double membrane vesicles (DMVs). The latter predominate and the kinetic of their appearance correlates with kinetics of viral RNA replication. DMVs are induced primarily by NS5A whereas NS4B induces single membrane vesicles arguing that MW formation requires the concerted action of several HCV replicase proteins. Three-dimensional reconstructions identify DMVs as protrusions from the ER membrane into the cytosol, frequently connected to the ER membrane via a neck-like structure. In addition, late in infection multi-membrane vesicles become evident, presumably as a result of a stress-induced reaction. Thus, the morphology of the membranous rearrangements induced in HCV-infected cells resemble those of the unrelated picorna-, corona- and arteriviruses, but are clearly distinct from those of the closely related flaviviruses. These results reveal unexpected similarities between HCV and distantly related positive-strand RNA viruses presumably reflecting similarities in cellular pathways exploited by these viruses to establish their membranous replication factories

    Vitronectin at sites of cell-substrate contact in cultures of rat myotubes

    Get PDF
    Affinity-purified antibodies to the serum glycoprotein, vitronectin, were used to study sites of cell-substrate contact in cultures of rat myotubes and fibroblasts. Cells were removed from the substrate by treatment with saponin, leaving fragments of plasma membrane attached to the glass coverslip. When stained for vitronectin by indirect immunofluorescence, large areas of the substrate were brightly labeled. The focal contacts of fibroblasts and the broad adhesion plaques of myotubes appeared black, however, indicating that the antibodies had failed to react with those areas. Contact sites within the adhesion plaque remained unlabeled after saponin-treated samples were extracted with Triton X-100, or after intact cultures were sheared with a stream of fixative. These procedures expose extracellular macromolecules at the cell-substrate interface, which can then be labeled with concanavalin A. In contrast, when samples were sheared and then sonicated to remove all the cellular material from the coverslip, the entire substrate labeled extensively and almost uniformly with anti- vitronectin. Extracellular molecules associated with substrate contacts were also studied after freeze-fracture, using a technique we term "post-release fracture labeling." Platinum replicas of the external membrane were removed from the glass with hydrofluoric acid to expose the extracellular material. Anti-vitronectin, bound to the replicas and visualized by a second antibody conjugated to colloidal gold, labeled the broad areas of close myotube-substrate attachment and the nearby glass equally well. Our results are consistent with the hypothesis that vitronectin is present at all sites of cell-substrate contact, but that its antigenic sites are obscured by material deposited by both myotube and fibroblast cells

    Localization of actin in Dictyostelium amebas by immunofluorescence

    Get PDF
    Antibody prepared against avian smooth muscle actin has been used to localize actin in the slime mold, Dictyostelium discoideum. The distribution of actin in migrating cells is different from that in feeding cells. Migrating amebas display fluorescence primarily in advancing regions whereas feeding amebas show uniform fluorescence throughout. The reaction is specific for actin since the fluorescence observed is blocked when the antibody is absorbed by actin purified from avian skeletal muscle, human platelets, and Dictyostelium. These results, in addition to describing the distribution of actin in D. discoideum, demonstrate that actins from these diverse sources share at least one common antigenic determinant

    Electron tomography of late stages of FcRn-mediated antibody transcytosis in neonatal rat small intestine

    Get PDF
    The neonatal Fc receptor (FcRn) transports maternal immunoglobulin (IgG) across epithelia to confer passive immunity to mammalian young. In newborn rodents, FcRn transcytoses IgG from ingested milk across the intestinal epithelium for release into the bloodstream. We used electron tomography to examine FcRn transport of Nanogold-labeled Fc (Au-Fc) in neonatal rat jejunum, focusing on later aspects of transport by chasing Au-Fc before fixation. We observed pools of Au-Fc in dilated regions of the lateral intercellular space (LIS), likely representing exit sites where Au-Fc accumulates en route to the blood. Before weaning, the jejunum functions primarily in IgG transport and exhibits unusual properties: clathrin-rich regions near/at the basolateral LIS and multivesicular bodies (MVBs) expressing early endosomal markers. To address whether these features are related to IgG transport, we examined LIS and endocytic/transcytotic structures from neonatal and weaned animals. Weaned samples showed less LIS-associated clathrin. MVBs labeled with late endosomal/lysosomal markers were smaller than their neonatal counterparts but contained 10 times more internal compartments. These results are consistent with hypotheses that clathrin-rich basolateral regions in neonatal jejunum are involved in IgG exocytosis and that MVBs function in IgG transport while FcRn is expressed but switch to degradative functions after weaning, when the jejunum does not express FcRn or transport IgG

    Chemical-Free Technique to Study the Ultrastructure of Primary Cilium

    Get PDF
    A primary cilium is a hair-like structure with a width of approximately 200 nm. Over the past few decades, the main challenge in the study of the ultrastructure of cilia has been the high sensitivity of cilia to chemical fixation, which is required for many imaging techniques. In this report, we demonstrate a combined high-pressure freezing (HPF) and freeze-fracture transmission electron microscopy (FFTEM) technique to examine the ultrastructure of a cilium. Our objective is to develop an optimal high-resolution imaging approach that preserves cilia structures in their best natural form without alteration of cilia morphology by chemical fixation interference. Our results showed that a cilium has a swelling-like structure (termed bulb), which was previously considered a fixation artifact. The intramembrane particles observed via HPF/FFTEM indicated the presence of integral membrane proteins and soluble matrix proteins along the ciliary bulb, which is part of an integral structure within the ciliary membrane. We propose that HPF/FFTEM is an important and more suitable chemical-free method to study the ultrastructure of primary cilia
    • …
    corecore