18,465 research outputs found

    Hybrid Algorithms Based on Integer Programming for the Search of Prioritized Test Data in Software Product Lines

    Get PDF
    In Software Product Lines (SPLs) it is not possible, in general, to test all products of the family. The number of products denoted by a SPL is very high due to the combinatorial explosion of features. For this reason, some coverage criteria have been proposed which try to test at least all feature interactions without the necessity to test all products, e.g., all pairs of features (pairwise coverage). In addition, it is desirable to first test products composed by a set of priority features. This problem is known as the Prioritized Pairwise Test Data Generation Problem. In this work we propose two hybrid algorithms using Integer Programming (IP) to generate a prioritized test suite. The first one is based on an integer linear formulation and the second one is based on a integer quadratic (nonlinear) formulation. We compare these techniques with two state-of-the-art algorithms, the Parallel Prioritized Genetic Solver (PPGS) and a greedy algorithm called prioritized-ICPL. Our study reveals that our hybrid nonlinear approach is clearly the best in both, solution quality and computation time. Moreover, the nonlinear variant (the fastest one) is 27 and 42 times faster than PPGS in the two groups of instances analyzed in this work.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Partially funded by the Spanish Ministry of Economy and Competitiveness and FEDER under contract TIN2014-57341-R, the University of Málaga, Andalucía Tech and the Spanish Network TIN2015-71841-REDT (SEBASENet)

    BeWith: A Between-Within Method to Discover Relationships between Cancer Modules via Integrated Analysis of Mutual Exclusivity, Co-occurrence and Functional Interactions

    Full text link
    The analysis of the mutational landscape of cancer, including mutual exclusivity and co-occurrence of mutations, has been instrumental in studying the disease. We hypothesized that exploring the interplay between co-occurrence, mutual exclusivity, and functional interactions between genes will further improve our understanding of the disease and help to uncover new relations between cancer driving genes and pathways. To this end, we designed a general framework, BeWith, for identifying modules with different combinations of mutation and interaction patterns. We focused on three different settings of the BeWith schema: (i) BeME-WithFun in which the relations between modules are enriched with mutual exclusivity while genes within each module are functionally related; (ii) BeME-WithCo which combines mutual exclusivity between modules with co-occurrence within modules; and (iii) BeCo-WithMEFun which ensures co-occurrence between modules while the within module relations combine mutual exclusivity and functional interactions. We formulated the BeWith framework using Integer Linear Programming (ILP), enabling us to find optimally scoring sets of modules. Our results demonstrate the utility of BeWith in providing novel information about mutational patterns, driver genes, and pathways. In particular, BeME-WithFun helped identify functionally coherent modules that might be relevant for cancer progression. In addition to finding previously well-known drivers, the identified modules pointed to the importance of the interaction between NCOR and NCOA3 in breast cancer. Additionally, an application of the BeME-WithCo setting revealed that gene groups differ with respect to their vulnerability to different mutagenic processes, and helped us to uncover pairs of genes with potentially synergetic effects, including a potential synergy between mutations in TP53 and metastasis related DCC gene

    OEDIPUS: Onium Evolution, Dipole Interaction and Perturbative Unitarisation Simulation

    Full text link
    A Monte Carlo simulation program is presented which can be used to determine the small-xx evolution of a heavy onium using Mueller's colour dipole formulation, giving the full distribution of dipoles in rapidity and impact parameter. Routines are also provided which calculate onium-onium scattering amplitudes between individual pairs of onium configurations, making it possible to establish the contribution of multiple pomeron exchange terms to onium-onium scattering (the unitarisation corrections).Comment: 21 pages LaTeX2e. Postscript available from http://www.hep.phy.cam.ac.uk/theory/papers and program available from ftp://axpf.hep.phy.cam.ac.uk/pub/theory/oedipus.tar.g
    corecore