69,139 research outputs found

    Route Swarm: Wireless Network Optimization through Mobility

    Full text link
    In this paper, we demonstrate a novel hybrid architecture for coordinating networked robots in sensing and information routing applications. The proposed INformation and Sensing driven PhysIcally REconfigurable robotic network (INSPIRE), consists of a Physical Control Plane (PCP) which commands agent position, and an Information Control Plane (ICP) which regulates information flow towards communication/sensing objectives. We describe an instantiation where a mobile robotic network is dynamically reconfigured to ensure high quality routes between static wireless nodes, which act as source/destination pairs for information flow. The ICP commands the robots towards evenly distributed inter-flow allocations, with intra-flow configurations that maximize route quality. The PCP then guides the robots via potential-based control to reconfigure according to ICP commands. This formulation, deemed Route Swarm, decouples information flow and physical control, generating a feedback between routing and sensing needs and robotic configuration. We demonstrate our propositions through simulation under a realistic wireless network regime.Comment: 9 pages, 4 figures, submitted to the IEEE International Conference on Intelligent Robots and Systems (IROS) 201

    Position and Orientation Based Formation Control of Multiple Rigid Bodies with Collision Avoidance and Connectivity Maintenance

    Full text link
    This paper addresses the problem of position- and orientation-based formation control of a class of second-order nonlinear multi-agent systems in a 33D workspace with obstacles. More specifically, we design a decentralized control protocol such that each agent achieves a predefined geometric formation with its initial neighbors, while using local information based on a limited sensing radius. The latter implies that the proposed scheme guarantees that the initially connected agents remain always connected. In addition, by introducing certain distance constraints, we guarantee inter-agent collision avoidance as well as collision avoidance with the obstacles and the boundary of the workspace. The proposed controllers employ a novel class of potential functions and do not require a priori knowledge of the dynamical model, except for gravity-related terms. Finally, simulation results verify the validity of the proposed framework

    Formation of Multiple Groups of Mobile Robots Using Sliding Mode Control

    Full text link
    Formation control of multiple groups of agents finds application in large area navigation by generating different geometric patterns and shapes, and also in carrying large objects. In this paper, Centroid Based Transformation (CBT) \cite{c39}, has been applied to decompose the combined dynamics of wheeled mobile robots (WMRs) into three subsystems: intra and inter group shape dynamics, and the dynamics of the centroid. Separate controllers have been designed for each subsystem. The gains of the controllers are such chosen that the overall system becomes singularly perturbed system. Then sliding mode controllers are designed on the singularly perturbed system to drive the subsystems on sliding surfaces in finite time. Negative gradient of a potential based function has been added to the sliding surface to ensure collision avoidance among the robots in finite time. The efficacy of the proposed controller is established through simulation results.Comment: 8 pages, 5 figure

    Robust Distance-Based Formation Control of Multiple Rigid Bodies with Orientation Alignment

    Full text link
    This paper addresses the problem of distance- and orientation-based formation control of a class of second-order nonlinear multi-agent systems in 3D space, under static and undirected communication topologies. More specifically, we design a decentralized model-free control protocol in the sense that each agent uses only local information from its neighbors to calculate its own control signal, without incorporating any knowledge of the model nonlinearities and exogenous disturbances. Moreover, the transient and steady state response is solely determined by certain designer-specified performance functions and is fully decoupled by the agents' dynamic model, the control gain selection, the underlying graph topology as well as the initial conditions. Additionally, by introducing certain inter-agent distance constraints, we guarantee collision avoidance and connectivity maintenance between neighboring agents. Finally, simulation results verify the performance of the proposed controllers.Comment: IFAC Word Congress 201

    Flocking with Obstacle Avoidance

    Get PDF
    In this paper, we provide a dynamic graph theoretical framework for flocking in presence of multiple obstacles. In particular, we give formal definitions of nets and flocks as spatially induced graphs. We provide models of nets and flocks and discuss the realization/embedding issues related to structural nets and flocks. This allows task representation and execution for a network of agents called alpha-agents. We also consider flocking in the presence of multiple obstacles. This task is achieved by introducing two other types of agents called beta-agents and gamma-agents. This framework enables us to address split/rejoin and squeezing maneuvers for nets/flocks of dynamic agents that communicate with each other. The problems arising from switching topology of these networks of mobile agents make the analysis and design of the decision-making protocols for such networks rather challenging. We provide simulation results that demonstrate the effectiveness of our theoretical and computational tools

    Safe, Remote-Access Swarm Robotics Research on the Robotarium

    Get PDF
    This paper describes the development of the Robotarium -- a remotely accessible, multi-robot research facility. The impetus behind the Robotarium is that multi-robot testbeds constitute an integral and essential part of the multi-agent research cycle, yet they are expensive, complex, and time-consuming to develop, operate, and maintain. These resource constraints, in turn, limit access for large groups of researchers and students, which is what the Robotarium is remedying by providing users with remote access to a state-of-the-art multi-robot test facility. This paper details the design and operation of the Robotarium as well as connects these to the particular considerations one must take when making complex hardware remotely accessible. In particular, safety must be built in already at the design phase without overly constraining which coordinated control programs the users can upload and execute, which calls for minimally invasive safety routines with provable performance guarantees.Comment: 13 pages, 7 figures, 3 code samples, 72 reference
    corecore