252 research outputs found

    Graph Representations for Higher-Order Logic and Theorem Proving

    Full text link
    This paper presents the first use of graph neural networks (GNNs) for higher-order proof search and demonstrates that GNNs can improve upon state-of-the-art results in this domain. Interactive, higher-order theorem provers allow for the formalization of most mathematical theories and have been shown to pose a significant challenge for deep learning. Higher-order logic is highly expressive and, even though it is well-structured with a clearly defined grammar and semantics, there still remains no well-established method to convert formulas into graph-based representations. In this paper, we consider several graphical representations of higher-order logic and evaluate them against the HOList benchmark for higher-order theorem proving

    Information-Theoretic Analysis using Theorem Proving

    Get PDF
    Information theory is widely used for analyzing a wide range of scientific and engineering problems, including cryptography, neurobiology, quantum computing, plagiarism detection and other forms of data analysis. Despite the safety-critical nature of some of these applications, most of the information-theoretic analysis is done using informal techniques, mainly computer simulation and paper-and-pencil analysis, and thus cannot be completely relied upon. The unreliable nature of the produced results poses a serious problem in safety-critical applications and may result in heavy financial losses or even the loss of human life. In order to overcome the inaccuracy limitations of these techniques, this thesis proposes to conduct the analysis within the trusted kernel of a higher-order-logic (HOL) theorem prover. For this purpose, we provide HOL formalizations of the fundamental theories of measure, Lebesgue integration and probability and use them to formalize some of the most widely used information-theoretic principles. We use the Kullback-Leibler divergence as a unified measure of information which is in turn used to define the main measures of information like the Shannon entropy, mutual information and conditional mutual information. Furthermore, we introduce two new measures of information leakage, namely the information leakage degree and the conditional information leakage degree and compare them with existing measures. We illustrate the usefulness of the proposed framework by tackling various applications including the performance analysis of a communication encoder used in the proof of the Shannon source coding theorem, the quantitative analysis of privacy properties of a digital communications mixer and the one-time pad encryption system using information-theoretic measures

    Formalization of Measure Theory and Lebesgue Integration for Probabilistic Analysis in HOL

    Get PDF
    Dynamic systems that exhibit probabilistic behavior represent a large class of man-made systems such as communication networks, air traffic control, and other mission-critical systems. Evaluation of quantitative issues like performance and dependability of these systems is of paramount importance. In this paper, we propose a generalized methodology to formally reason about probabilistic systems within a theorem prover. We present a formalization of measure theory in the HOL theorem prover and use it to formalize basic concepts from the theory of probability. We also use the Lebesgue integration to formalize statistical properties of random variables. To illustrate the practical effectiveness of our methodology, we formally prove classical results from the theories of probability and information and use them in a data compression application in HOL

    Formal Reasoning About Finite-State Discrete-Time Markov Chains in HOL

    Get PDF
    Markov chains are extensively used in modeling different aspects of engineering and scientific systems, such as performance of algorithms and reliability of systems. Different techniques have been developed for analyzing Markovian models, for example, Markov Chain Monte Carlo based simulation, Markov Analyzer, and more recently probabilistic model-checking. However, these techniques either do not guarantee accurate analysis or are not scalable. Higher-order-logic theorem proving is a formal method that has the ability to overcome the above mentioned limitations. However, it is not mature enough to handle all sorts of Markovian models. In this paper, we propose a formalization of Discrete-Time Markov Chain (DTMC) that facilitates formal reasoning about time-homogeneous finite-state discrete-time Markov chain. In particular, we provide a formal verification on some of its important properties, such as joint probabilities, Chapman-Kolmogorov equation, reversibility property, using higher-order logic. To demonstrate the usefulness of our work, we analyze two applications: a simplified binary communication channel and the Automatic Mail Quality Measurement protocol

    FUNDAMENTAL ECONOMIC STRUCTURE AND STRUCTURAL CHANGE IN REGIONAL ECONOMIES: A METHODOLOGICAL APPROACH

    Get PDF
    Regional economic structure is defined as the composition and patterns of various components of the regional economy such as: produc-tion, employment, consumption, trade, and gross regional product. Structur-al change is conceptualized as the change in relative importance of the aggregate indicators of the economy. The process of regional development and structural change are intertwined, implying as economic development takes place the strength and direction of intersectoral relationships change leading to shifts in the importance, direction and interaction of economic sectors such as: primary, secondary, tertiary, quaternary and quinary sec-tors. The fundamental economic structure (FES) concept implies that selected characteristics of an economy will vary predictably with region size. The identification of FES leads to an improved understanding of the space-time evolution of regional economic activities at different geograph-ical scales. The FES based economic activities are predictable, stable and important. This paper reviews selected themes in manifesting an improved understanding of the relationship among intersectoral transactions and economic size leading to the identification of FES. The following four ques-tions are addressed in this paper: (1) What are the relationships among sector composition and structural change in the process of economic devel-opment? (2) What are the approaches utilized to study structural change analysis? (3) Can a methodology be developed to identify FES for regional economies? (4) Would the identification of FES manifest an improved con-ception of the taxonomy of economies?STRUCTURAL CHANGE AND FUNDAMENTAL ECONOMIC STRUCTURE
    • …
    corecore