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Abstract Markov chains are extensively used in modeling different aspects of engineering and scientific

systems, such as performance of algorithms and reliability of systems. Different techniques have been

developed for analyzing Markovian models, for example, Markov Chain Monte Carlo based simulation,

Markov Analyzer, and more recently probabilistic model-checking. However, these techniques either do

not guarantee accurate analysis or are not scalable. Higher-order-logic theorem proving is a formal method

that has the ability to overcome the above mentioned limitations. However, it is not mature enough to

handle all sorts of Markovian models. In this paper, we propose a formalization of DTMC that facilitates

formal reasoning about time-homogeneous finite-state discrete-time Markov chain. In particular, we

provide a formal verification on some its important properties, such as joint probabilities, Chapman-

Kolmogorov equation, reversibility property, using high-order logic. To demonstrate the usefulness of our

work, we analyze two applications: a simplified binary communication channel and the Automatic Mail

Quality Measurement protocol.

Keywords Discrete-Time Markov Chains, Higher-order logic, HOL, Probability Theory, Theorem

Prover.

1 Introduction

In our daily life, most of the natural phenom-

ena are random or unpredictable. To quanti-

fy the possibility of the appearance of random

events, probability theory has been built up as

an important branch of mathematics for proba-

bilistic analysis of the random phenomena. As

we know, the majority of the randomness has

some sort of time-dependency. For example,

noise signals vary with time, the duration of a

telephone call is somehow related to the time it

is made, population growth is time dependant

and so is the case with chemical reactions. Such

random processes usually exhibit the memory-

less property [1], which means that the future

state depends only on the current state and is

independent of any past state. The random

processes possessing such a memoryless prop-

erty, also called Markov property, are Markov
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processes. The study of Markov process [1],

which is a sub-branch of probability theory, is

extensively investigated and applied for ana-

lyzing systems in many different fields of sci-

ence and engineering. Some of their important

applications include functional correctness and

performance analysis of telecommunication and

security protocols, reliability analysis of hard-

ware circuits, software testing, Internet page

ranking and statistical mechanics.

Traditionally, simulation is the most com-

monly used computer-based analysis technique

for Markovian models. A typical example us-

ing this technique is applying Markov Chain

Monte Carlo (MCMC) methods [2], which in-

volve sampling from the desired probability dis-

tributions by constructing a Markov chain with

the desired distribution. Although some so-

phisticated MCMC-based algorithms are capa-

ble of producing exact samples in order to im-

prove the accuracy of results, in general the

analysis can never be termed as 100% pre-

cise due to the inaccurate nature of simula-

tion. Inaccurate results, however, pose a seri-

ous threat in highly sensitive and safety critical

applications, such as, nuclear reactor control

and aerospace software engineering. On the

other hand, the additional computation and

unbounded running time introduced by these

complex algorithms are generally not accept-

able due to the increasingly shorter time-to-

market and high productivity increase require-

ments.

Other state-based approaches to analyze

Markovian models include software packages,

such as Markov analyzers and reliability or per-

formance evaluation tools, which are all based

on numerical methods [3]. Although these soft-

ware packages can be successfully applied to

analyze large scale Markovian models, the re-

sults cannot be guaranteed to be accurate be-

cause the underlying iterative calculation are

not 100% precise. Another technique, Stochas-

tic Petri Nets (SPN ) [4], has been found as a

powerful method for modeling and analyzing

Markovian systems because it allows local s-

tate modeling instead of global modeling. The

key limiting factor of the application of SPN

models using this approach is the complexity

of their analysis.

Formal methods provide effective solution-

s to solve the inaccuracy problem mentioned

above. Due to the extensive usage of Markov

chains in analyzing safety-critical systems,

probabilistic model checking [5] has been re-

cently proposed for analyzing systems that can

be abstracted as Markovian models. Proba-

bilistic model checking tools are able to be used

to conduct precise system analysis by model-

ing the system behaviors, including the random

components in a precise logic and reasoning

about the probabilistic properties of the sys-

tem. This technique offers exact solutions but

is limited by the state-space explosion problem

[6] and the time of analyzing some of the safe-

ty properties of a system is largely dependent

on the convergence speed of the underlying al-

gorithms. Similarly, we cannot verify gener-

ic mathematical expressions for probabilistic

analysis using probabilistic model checking due

to the inherent state-based nature of the ap-

proach. Thus, the probabilistic model checking

approach, even though is capable of providing

exact solutions automatically, is quite limited

in terms of supporting complicated systems and

handling the accurate results of a wide variety

of systems and properties.

Another formal technique, higher-order log-

ic interactive theorem proving [7], provides a

conceptually simple formalism with a precise
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semantics, allowing secure extensions for many

mathematical theories, including some part-

s of the Markov chain theory [8]. Due to

the highly expressive nature of higher-order

logic and the inherent soundness of theorem

proving, this technique is capable of provid-

ing precise analysis of all sorts of Markovian

models. However, the existing higher-order-

logic formalization of Markov chain theory [8]

is not rich enough to handle formal reason-

ing about many interesting characteristics of

Markovian models, such as the reversibility of

a Markov chain and stationary properties. This

paper presents a formalization of discrete-time

Markov chain to raise the scope of formal rea-

soning about Markovian models in a higher-

order-logic theorem prover. Particularly, we fo-

cus on formalizing time-homogeneous Discrete-

Time Markov Chain (DTMC) with finite state

space in higher-order logic. We also formal-

ly verify some of the fundamental properties

of a DTMC, such as, Joint Probability Dis-

tribution, Chapman-Kolmogorov Equation, Re-

versibility of a Markov Chain, and Steady-state

Probabilities [1]. These properties play a vital

role in reasoning about many interesting char-

acteristics while analyzing the Markovian mod-

els of real world systems as well as pave the

path to the verification of more advanced prop-

erties related to DTMC. Also, this foundation

can be extended to formalize Markov chain-

s with infinite state space, Continuous-Time

Makrov Chains (CTMC) and Hidden Markov

chain Models (HMM). In order to illustrate the

effectiveness of our work and demonstrate its

utilization, we present the formal analysis of a

simplified binary communication channel and

the performance of some algorithms in the Au-

tomatic Mail Quality Measurement (AMQM)

system.

The rest of this paper is organized as follows.

In Section 2, we present a brief review of the re-

lated work. In Section 3, we provide some pre-

liminaries that are required to understand the

formalization described in the rest of the pa-

per. In Section 4, we will describe the proposed

higher-order-logic definition of DTMC with fi-

nite state space. In Section 5, some important

properties of DTMC are formally verified based

on the proposed definition of DTMC. Then, in

Section 6, we present two applications for il-

lustration purposes. Finally, we conclude the

paper in Section 7.

2 Related Work

As a conventional technique, simulation is

very effective for industrial engineering. A

large number of software tools have been de-

veloped for the analysis of Markovian system-

s. Due to the inherent nature of simula-

tion, the majority of the algorithms employed

in software tools provide approximate result-

s. Markov Analyzers, such as MARCA [9] and

DNAmaca [10], which contain numerous ma-

trix manipulation and numerical solution pro-

cedures, are powerful autonomous tools for an-

alyzing large-scale Markovian models. Unfor-

tunately, most of their algorithms are based

on iterative methods that begin from some ini-

tial approximation and end at some convergent

point, which is the main source of inaccuracy

in such methods.

Many reliability evaluation software tools in-

tegrate simulation and numerical analyzers for

modeling and analyzing the reliability, main-

tainability or safety of systems using Markov

methods. These tools offer simplistic mod-

eling approaches and are more flexible com-

pared to traditional approaches, such as Fault
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Tree [11]. Some prevalent tool examples are

Möbius [12] and Relex Markov [13]. Some other

software tools for evaluating performance, e.g.,

MACOM [14] and HYDRA [15], take the ad-

vantages of a popular Markovian algebra, i.e.,

PEPA [16], to model systems and efficiently

compute passage time densities and quantities

in large-scale Markov chains. However, the al-

gorithms used to solve the models are based on

approximations, which leads to inaccuracies.

Stochastic Petri Nets provide a versatile

modeling technique for stochastic systems. The

most popular softwares are SPNP [17] and

GreatSPN [18]. These tools can model, vali-

date, and evaluate distributed systems and an-

alyze the dynamic events of models using distri-

butions other than the exponential. Although

they can easily manage larger system models,

most of the solutions for computing the station-

ary probabilities of a large-scale Markov chain

are based on the iterative methods or an initial

approximation in order to reach the convergent

point. Obviously, iterative methods introduce

the approximation at different levels while cal-

culating transient probabilities of a model and

this results in inaccurate analysis.

Numerous model checking tools have been

proposed in the open literature to formally an-

alyze Markovian systems, e.g., VESTA [19] is

a statistical model checker, MRMC [20] is a

tool for verifying Markov reward models, Ymer

[21] is used to verify probabilistic transient

properties of Continuous-Time Markov Chains

(CTMCs) and Generalized Semi-Markov Pro-

cesses (GSMPs), etc.. Probabilistic model

checking [22, 5] is the state-of-the-art formal

Markov chain analysis technique. PRISM [23]

is the most popular model checking tool, which

supports the analysis of probabilistic proper-

ties of DTMC, CTMC, and Markov Decision

Processes (MDP) and has been used to ana-

lyze many practical systems including commu-

nication and multimedia protocols. But mod-

el checkers suffer from state-space explosion as

well as do not support the verification of gener-

ic mathematical expressions. Also, because of

numerical methods implemented in these tool-

s, the final results cannot be termed 100% ac-

curate. Whereas, the proposed HOL theorem

proving based approach is capable of specify-

ing larger systems besides providing accurate

results.

Theorem proving is an alternative formal

method used for conducting formal probabilis-

tic analysis. Using this method, the system to

be analyzed is mathematically modeled in an

appropriate logic and the properties of inter-

est are mathematically verified in a computer

based formal tool. For instance, Nedzusiak [24]

and Bialas [25] were among the first ones who

proposed to formalize some probability theory

in high-order-logic. Hurd [26] formalized some

measure theory in higher-order logic and pro-

posed techniques to formalize discrete random

variables in HOL. Then, Hasan [27] extended

Hurd’s work by providing the support to for-

malize continuous random variables and veri-

fy statistical properties, such as, expectation

and variance, for both discrete and continuous

random variables [28]. Recently, Mhamdi [29]

proposed a significant formalization of entropy

measures in HOL and presented a formalization

of measure theory based on extended reals us-

ing the HOL theorem prover. Hölzl [30] has al-

so formalized three chapters of measure theory

in Isabelle/HOL. However, the work of Mham-

di and Hölzl do not include the formalization of

a particular probability space and thus do not

include the formal verification of distribution

properties of commonly used random variables
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like the case of Hurd and Hasan. Random vari-

ables play a vital role in constructing Marko-

vian models of real world systems. Due to this

reason, we built upon the work of Hurd [26] and

Hasan [27] to formalize DTMC in higher-order

logic and formally verify some of its properties

[8]. This formalization facilitates the reason-

ing about some aspects of DTMC. The current

paper extends this formalization by providing

some additional verified stationary properties

and the formalization of the reversible DTM-

C to reason about Markovian models. It also

presents a couple of interesting case studies in

order to demonstrate the usefulness of the ver-

ified DTMC properties in verifying the proper-

ties of practical systems using theorem proving.

3 Preliminaries

In this section, we provide a brief overview

of the HOL theorem prover and Hurd’s formal-

ization [26] of probability theory and random

variables. These fundamental concepts will be

used in the rest of this paper.

3.1 HOL Theorem Prover

HOL denotes a family of interactive theo-

rem proving systems for conducting proofs in

higher-order logic by using the strongly-typed

functional Meta-Language (ML) [31] or its suc-

cessors. Based on the first version developed

by Mike Gordon [32], HOL88, HOL90, HOL98,

and HOL4 have been continuously developed.

All these tools are using Robin Milner’s Log-

ic for Computable Functions (LCF) approach

[33]. As a system of deduction with a pre-

cise semantics, HOL4 is capable of verifying a

wide variety of hardware and software as well as

pure mathematics due to the high expressive-

ness higher-order logic. One of the key prin-

ciples of the HOL4 system is that its logical

core consists of only 5 axioms and 8 inference

rules and all the subsequent theorems are ver-

ified based on these foundations or any other

previously verified theorems. It supports both

forward and backward proofs by applying tac-

tics, which are ML functions that simplify goals

into subgoals. Over the past few decades, the

formalization of many foundational mathemat-

ical theories have led to tremendous progress

in HOL4. For example, Harrison [34] formal-

ized real numbers, topology, limits, sequences

and series, differentiation and integration and

his work is part of the current distribution of

HOL. Hurd [26] developed a probability theory

and Hasan [27] formalized statistical theorems

for continuous random variables and their Cu-

mulative Distribution Function (CDF) in the

HOL4 system. Due to the undecidable nature

of higher-order logic, the users have to verify

theorems in an interactive way but in order to

facilitate this process, the HOL theorem prover

provides many proof assistants and automatic

proof methods.

3.2 Probability Theory and Random

Variables in HOL

A measure space is defined as a triple (Ω,Σ, µ),

where Ω is a set, called the sample space, Σ rep-

resents a σ-algebra of subsets of Ω and the sub-

sets are usually referred to as measurable sets,

and µ is a measure with domain Σ. A proba-

bility space is a measure space (Ω,Σ,Pr) such

that the measure, referred to as the probability

and denoted by Pr, of the sample space is 1.

The measure theory developed by Hurd

[26] defines a measure space as a pair (Σ, µ).

Whereas the sample space, on which this pair
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is defined, is implicitly implied from the higher-

order-logic definitions to be equal to the univer-

sal set of the appropriate data-type. Building

upon this formalization, the probability space

was also defined in HOL as a pair (E ,P), where

the domain of P is the set E , which is a set of

subsets of infinite Boolean sequences B∞. Both

P and E are defined using the Carathéodory’s

Extension theorem, which ensures that E is a σ-

algebra: closed under complements and count-

able unions.

Now, a random variable, which is one of

the core concepts in probabilistic analysis, is

a fundamental probabilistic function and thus

can be modeled in higher-order logic as a de-

terministic function, which accepts the infinite

Boolean sequence as an argument. These deter-

ministic functions make random choices based

on the result of popping the top most bit in

the infinite Boolean sequence and may pop as

many random bits as they need for their com-

putation. When the functions terminate, they

return the result along with the remaining por-

tion of the infinite Boolean sequence to be used

by other programs. Thus, a random variable

which takes a parameter of type α and ranges

over values of type β can be represented in HOL

by the following function.

F : α→ B∞ → β ×B∞

As an example, consider a Bernoulli(1
2
) ran-

dom variable that returns 1 or 0 with equal

probability 1
2
. It has been formalized in higher-

order logic as follows

∀ s. bit s =

(if shd s then 1 else 0, stl s)

where the functions shd and stl are the se-

quence equivalents of the list operations ’head’

and ’tail’, respectively. The function bit ac-

cepts the infinite Boolean sequence s and re-

turns a pair. The first element of the returned

pair is a random number that is either 0 or 1,

depending on the Boolean value of the top most

element of s. Whereas, the second element of

the pair is the unused portion of the infinite

Boolean sequence, which in this case is the tail

of the sequence.

Once random variables are formalized, as

mentioned above, we can utilize the formalized

probability theory to reason about their prob-

abilistic properties. For example, the follow-

ing Probability Mass Function (PMF) property

can be verified for the function bit using the

HOL theorem prover.

` P {s | FST (bit s) = 1} = 1
2

where the function FST selects the first compo-

nent of a pair and {x|C(x)} represents a set of

all x that satisfy the condition C.

The above approach has been successfully

used to formally verify most basic probabili-

ty theorems [26], such as the law of additivity,

and conditional probability related properties

[35]. For instance, the conditional probability

has been formalized as:

Definition 1 (Conditional Probability)

` ∀ A B.

cond prob A B = P(A
⋂

B) / P(B)

which plays a vital role in our work. Anoth-

er frequently used formally verified theorem,

needed for our work, is the Total Probability

Theorem [35], which is described, for a finite,

mutually exclusive, and exhaustive sequence Bi

of events and an event A, as follows

Pr(A) =
n−1∑
i=0

Pr(Bi)Pr(A|Bi). (1)
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4 Formalization of DTMC in HOL

Given a probability space, a stochastic pro-

cess {Xt, t ∈ T} represents a sequence of

random variables X, where t represents the

time that can be discrete (represented by non-

negative integers) or continuous (represented

by real numbers) [1]. The set of values taken

by each Xt, commonly called states, is referred

to as the state space Ω. Now, based on these

definitions, a Markov process can be defined as

a stochastic process with the Markov proper-

ty. If a Markov process has finite or countably

infinite state space, then it is called a Markov

chain and satisfies the following Markov prop-

erty.

For all t, if state xi (∀i ∈ [0, t+ 1]) is in the

state space, then

Pr{Xt+1 = xt+1|Xt = xt, . . . , X0 = x0} =

Pr{Xt+1 = xt+1|Xt = xt}.
(2)

Additionally, if t ranges over nonnegative in-

tegers or, in other words, the time is a dis-

crete quantity, and the states are in a fi-

nite state space, then such a Markov chain

is called a Finite-state Discrete-Time Markov

Chain. A Markov chain is referred to as the

time-homogeneous Markov chain, if the con-

ditional probability Pr(Xn+1 = a | Xn = b)

is independent of n [1]. Time-homogeneousity

is an important concept in analyzing Marko-

vian models and therefore, in our developmen-

t, we focus on formalizing Time-homogeneous

Discrete-Time Markov Chain with finite state

space, which we refer to in this paper as DTM-

C. A DTMC is usually expressed by specifying

[36]:

• an initial distribution defined by ∀s ∈ Ω,

π0(s) = Pr(X0 = s), π0(s) ≥ 0, and∑
s∈Ω π0(s) = 1.

• transition probabilities pij defined as

∀i, j ∈ Ω, pij = Pr{Xt+1 = j|Xt = i},
pij ≥ 0 and

∑
j∈Ω pij = 1

Based on the above mentioned definition, the

notion of a DTMC in HOL can be formalized

as the following predicate:

Definition 2 (DTMC)

` ∀ X N x Linit Ltrans.

Time homo mc X N x Linit Ltrans =

(∀ i. i < N ⇒
(P{s | FST (X 0 s) = xi} =

EL i Linit) ∧

(

N−1∑
k=0

EL k Linit = 1)) ∧

(∀ t i j. i < N ∧ j < N ⇒
(P{s | FST (X (t + 1) s) = xj}|
{s | FST (X t s) = xi} =

EL (i * N + j) Ltrans) ∧

(

N−1∑
k=0

EL (i * N + k) Ltrans = 1)) ∧

(∀ t k. k < N ⇒
measurable {s|FST (X t s) = xk}) ∧

(∀ t.

N−1⋃
k=0

{s|FST (X t s)=xk}=UNIV) ∧

(∀t u v. u < N ∧ v < N ∧ u 6= v ⇒
disjoint {s|FST (X t s) = xu}

{s|FST (X t s) = xv}) ∧
(∀ i j m r t w L Lt.

((∀ k. k ≤ r ⇒ EL k L < N) ∧
i < N ∧ j < N ∧ Lt ⊆ [m, r] ∧
m ≤ r ∧ w + r < t ∧

(P(
⋂
kεLt {s | FST (X (w + k) s) =

x(EL k L)}) 6= 0) ⇒
(P({s | FST (X (t + 1) s) = xj}|
{{s | FST (X t s) = xi}

⋂
(
⋂
kεLt {s | FST (X (w + k) s) =

x(EL k L)})}) =

P({s | FST (X (t + 1) s) = xj}|
{s | FST (X t s)= xi})))
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The function Time homo mc accepts a sequence

of random variables X, the cardinality of the

set of their possible states N, a function x that

accepts the index and returns the value of the

state corresponding to the given DTMC, and t-

wo real number lists: the initial states probabil-

ity distribution Linit and the transition prob-

abilities Ltrans.

The predicate Time homo mc contains the fol-

lowing conditions:

• The DTMC must follow the given initial

distribution Linit, in which the summa-

tion of all the elements is 1. The tran-

sition probabilities Ltrans, in which the

summation of each N elements is 1, is

an intrinsic characteristic of a stochas-

tic matrix. In the condition (∀ t i

j. i < N ∧ j < N ⇒ (P{s | FST

(X (t + 1) s) = xj}|{s | FST (X t

s) = xi} = EL (i * N + j) Ltrans),

it is explicit that transition probabilities

are independent of time t, which implies

the time homogeneous property.

• All events involving the Markov chain

random variables are measurable (∀
t k. (k < N) ⇒ measurable {s |

FST (X t s) = xk}).

• The union of all states forms the s-

tate space as a universal set UNIV (∀
t.

⋃N−1
k=0

{s | FST (X t s) = xk} =

UNIV).

• The fifth condition ensures that the s-

tates in the state space of a given Markov

chain are mutually exclusive (∀ t u v.

(u < N) ∧ (v < N) ∧ (u 6= v) ⇒
disjoint ({s | FST (X t s) = xu}
{s | FST (X t s) = xv})).

• The sixth condition corresponds to the

memoryless property in Equation (2).

We model the history of states in our

formalization by a list L, which contain-

s the state elements ranging from 0 to

l − 1. Thus, the list L, with r + 1 el-

ements or less, represents the indices of

passed states and its elements have to be

less than N (∀ k. (k ≤ r) ⇒ (EL k

L < N)). In (
⋂
k∈Lt {s | FST (X (w +

k) s) = x(EL k L)}), where the function

(EL k L) returns the kth element of the

list L, it gives a general time index of ev-

ery event and a flexible length of the even-

t sequence. (k ∈ Lt) makes sure that the

passed states can be freely chosen from a

set Lt, which includes natural number-

s and is a subset of the interval [m, r]

(Lt ⊆ [m, r]). The condition (w + r

< t) ensures that the states in this in-

tersection set are past states. The reason

why the passed states path is expressed in

such a complex way is because of the un-

derlying information in the mathematic

expression (2) including the many cases,

such as, for all k ∈ (0, t], xk ∈ Ω

Pr{Xt+1 = xt+1|Xk = xk, X0 = x0} =

Pr{Xt+1 = xt+1|Xt = xt}.
(3)

The last condition (P(
⋂
kεLt {s | FST

(X (w + k) s) = x(EL k L)}) 6= 0) is

used to exclude the path of passed states,

which no more appear in the chain.

It is important to note that the type of X is

num → (num → bool) → ’a # (num → bool),

so the value of the state can be any type (in

HOL, the arbitrary type is represented as ’a au-

tomatically), which range over a sequence with
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type (num → bool). This makes our definition

general enough to work with discrete-time ran-

dom variables of any data type.

5 Verification of Discrete-Time Markov

Chain Properties

In this section, we present the formal verifi-

cation of some of the most important properties

of time-homogeneous DTMC with finite-state

space. The formal verification of these prop-

erties not only ensures the correctness of our

formalization of DTMC, given in Definition 2,

but also paves the path to reason about DTMC

models of practical systems, as will be depicted

in Section 6.

5.1 Joint Probability

The joint probability of a Markov chain de-

fines the probability of events involving two or

more random variables associated with a chain.

Joint probability is very useful in analyzing

multi-stage experiments, when an event chain

happens. Also, this concept is the basis for

joint probability generating function, which is

used in many different fields. Mathematically,

the joint probability of n + 1 discrete random

variables X0, X1, . . ., Xn in a Markov chain can

be expressed as [1]:

Pr{Xt = x0, · · · , Xt+n = xn} =

(
n−1∏
k=0

Pr{Xt+k+1 = xk+1|Xt+k = xk})Pr{Xt = x0}.

(4)

We formalize this property in HOL as the

following theorem:

Theorem 1 (Joint Probability)

` ∀ X N x t n L Linit Ltrans.

Time homo mc X N x Linit Ltrans ∧
EVERY (λa. a < N) L ∧
n + 1 ≤ LENGTH L ⇒
P(
⋂n
k=0{s | FST (X (t + k) s) =

x(EL k L)}) =

(
∏n−1

k=0P({s | FST (X (t + k + 1) s) =

x(EL (k+1) L)}|
{s | FST (X (t + k) s) =

x(EL k L)}))
P{s | FST (X t s) = x(EL 0 L)}

The variables above are used in the same

context as Definition 2. The first assumption

ensures that X is a Markov chain. All elements

of the indices sequence L are less than N and the

length of L is larger than or equal to the length

of the segment considered in the joint events.

The conclusion of the theorem represents E-

quation (4) in higher-order logic based on the

probability theory formalization, presented in

Section 3.2. The proof of Theorem 1 is based

on induction on the variable n, Equation (1)

and some arithmetic reasoning.

5.2 Chapman-Kolmogorov Equation

The Chapman-Kolmogorov equation [1] is

a widely used property of time homogeneous

Markov chains as it facilitates the use of a ma-

trix theory for analyzing large Markov chains.

It basically gives the probability of going from

state i to j in m+ n steps. Assuming the first

m steps take the system from state i to some

intermediate state k, which is in the state s-

pace Ω and the remaining n steps then take

the system from state k to j, we can obtain the

desired probability by adding the probabilities

associated with all the intermediate steps.
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p
(m+n)
ij =

∑
k∈Ω

p
(n)
kj p

(m)
ik (5)

The notation pij(n) denotes the n-step transi-

tion probabilities from state i to j.

p
(n)
ij = Pr{Xt+n = xj|Xt = xi} (6)

When n = 1, p
(1)
ij is usually written as pij

and Equation (5) becomes

p
(m+1)
ij =

∑
k∈Ω

pkjp
(m)
ik . (7)

Based on Equation (5) and Definition 2, the

Chapman-Kolmogorov equation is formalized

as follows

Theorem 2 (Chapman-Kolmogorov Equation)

` ∀ X i j x N m n Linit Ltrans.

Time homo mc X N x Linit Ltrans ∧
i < N ∧ j < N ∧
(∀ a b. a < N ∧ b < N ⇒

P({s | FST (X 0 s) = xb}|
{s | FST (X 0 s) = xa}) =

if (a = b) then 1 else 0) ⇒
P({s | FST (X (m + n) s) = xj}|
{s | FST (X 0 s) = xi}) =∑N−1
k=0 (P({s | FST (X n s) = xj}|

{s | FST (X 0 s) = xk})
P({s | FST (X m s) = xk}|
{s | FST (X 0 s) = xi}))

The variables m and n denote the steps between

two states and both of them represent time.

The first assumption ensures that the random

process X is a time homogeneous DTMC, using

Definition 2. The following two assumptions,

i < N and j < N , define the allowable bounds

for the index variables. The last assumption

defines the zero-step transition probabilities to

be a δ function, i.e.,

δab =

{
1 (a = b)

0 (a 6= b).

The conclusion of the theorem formally repre-

sents Equation (5).

The proof of Theorem 2 again involves in-

duction on the variable n and both of the base

and step cases are discharged using the follow-

ing lemma corresponding to Equation (7).

Lemma 1 (Multistep Transition Probability)

` ∀ X i j x n N Linit Ltrans.

Time homo mc X N x Linit Ltrans ∧
i < N ∧ j < N ⇒
P({s | FST (X (n + 1) s) = xj}|
{s | FST (X 0 s) = xi}) =∑N−1
k=0 P({s | FST (X 1 s) = xj}|

{s | FST (X 0 s) = xk})
P({s | FST (X n s) = xk}|
{s | FST (X 0 s) = xi})

The proof of Lemma 1 is primarily based on

Definition 2 and the additivity property of

probabilities.

5.3 Absolute Probabilities

The unconditional probabilities associated

with a Markov chain are referred to as the ab-

solute probabilities [1]. If the initial probabil-

ity distribution of the system being in a state,

which has index k, is given by Pr{X0 = xk}
then the absolute probability of the system be-

ing in state j is given by

p
(n)
j = Pr{Xn = xj} =

N−1∑
k=0

Pr{X0 = xk}Pr{Xn = xj|X0 = xk}.
(8)
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This shows that, given an initial probability

distribution and the n-step transition proba-

bilities, the absolute probabilities in the state j

after n steps from the start time 0 can be ob-

tained by using this equation. Based on our

formal Markov chain definition, this property

has been formalized as the following theorem:

Theorem 3 (Absolute Probability)

` ∀ X j x N n Linit Ltrans.

Time homo mc X N x Linit Ltrans ∧
j < N ⇒
P{s | FST (X n s) = xj} =∑N−1

k=0 P{s | FST (X 0 s) = xk}
P({s | FST (X n s) = xj}|
{s | FST (X 0 s) = xk})

The proof of Theorem 3 is based on the To-

tal Probability theorem along with some basic

arithmetic and probability theoretic reasoning.

5.4 Steady State Probabilities

In many applications, analyzing the stability

of Markovian models is of prime importance.

For example, we are interested in the proba-

bility of states as time tends to infinity under

certain conditions, like irreducibility and ape-

riodicity.

Let {Xn, n ≥ 0} be a Markov chain having

state space Ω and one-step transition probabil-

ity pxy for going from a state with value x to a

state with value y. If π(x), x ∈ Ω, are nonneg-

ative numbers summing to one, and if y ∈ Ω,

π(y) =
∑
x∈Ω

π(x)pxy, (9)

then π is called a stationary distribution. The

corresponding HOL definition is as follows. In

this definition, xk and xi represent the variables

x and y of Equation (9), respectively.

Definition 3 (Stationary Distribution)

` ∀ p X x N n.

stationary dist p X x N n =

∀ i. 0 ≤ p xi ∧
N−1∑
k=0

(p xk) = 1 ∧

(p xi =
N−1∑
k=0

p xkP({s|FST (X (n + 1) s)=xi}|

{s|FST (X n s) = xk}))

As a Markov chain with finite state space,

the steady state probabilities are defined to be

a vector Vj = limn→∞P(n). For a DTMC with

one-step transition probability pij, if Vj exists

for all j ∈ Ω, then Vj is known as the station-

ary probability vector of that Markov chain. In

other words, Vj is a stationary distribution of

a Markov chain if, for all j = 0, 1, · · · , (N - 1),

• 0 ≤ lim
n→∞

p
(n)
j

•
N−1∑
i=0

lim
n→∞

p
(n)
i = 1

• lim
n→∞

p
(n)
j =

N−1∑
i=0

lim
n→∞

p
(n)
i pij

The steady state probability is formalized in

HOL as follows

Theorem 4 (Steady State Probability)

` ∀ X n x N Linit Ltrans.

Time homo mc X N x Linit Ltrans ∧
(∀ x j. ∃u.

P{s | FST (X n s) = xj} → u) ⇒
(stationary dist

(λx k.

limn→∞P{s | FST (X n s) = xk})
X x N n)
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The proof of Theorem 4 starts from rewrit-

ing the goal using Definition 3 and then split-

ting it into 3 subgoals. Utilizing the Probabili-

ty Bounds Theorem [35], we can prove the first

subgoal 0 ≤ lim
n→∞

pj(n). The proof of the sec-

ond subgoal is primarily based on the following

Lemma, which can be proved using the Total

Probability theorem, given in Equation (1).

Lemma 2

` ∀ X x N i n Linit Ltrans.

Time homo mc X N x Linit Ltrans ∧
i < N ∧ (0 < P{s|FST (X 0 s)=xi}) ⇒∑N−1

j=0 P({s | FST (X n s) = xj}|
{s | FST (X 0 s) = xi} = 1

Then, the last subgoal can be proved by apply-

ing the linearity of Limit of a sequence and the

linearity of real summation.

5.5 Generalized Stationary Distribu-

tion

If a discrete-time Markov chain with state

space Ω and one-step transition probability pxy
has a probability distribution π that satisfies

the detailed balance equations, given below,

∀x, y ∈ Ω, π(x)pxy = π(y)pxy (10)

then this distribution π is stationary for pxy.

This theorem is called a generalized stationary

theorem and can be mathematically described

as Theorem 5.

The detailed balance equations can be for-

malized in higher-order logic as the following

definition, where xi and xj represent variables

x and y of Equations (10), respectively.

Definition 4 (Detailed Balance Equations)

` ∀ p X N. db equations p X N =

∀ x i j n.

i < N ∧ j < N ∧
(p xi)P({s|FST (X (n + 1) s) = xj}|

{s|FST (X n s) = xi}) =

(p xj)P({s|FST (X (n + 1) s) = xi}|
{s|FST (X n s) = xj}

The first input variable p in the above predi-

cate is a function that accepts the state as the

parameter and returns the probability given in

Equation (10). Based on this definition, the

stationary theorem can be defined as follows:

Theorem 5 (Generalized Stationary Distribu-

tion)

` ∀ X x N n Linit Ltrans.

Time homo mc X N x Linit Ltrans ∧
db equations

(λx i.P{s|FST (X n s)=xi}) X N ⇒
stationary dist

(λx k.P{s|FST (X n s)=xk}) X x N n

Here, π(x) is specified as a function (λx i. P{s
| FST (X n s) = xi}). Similar to the proof of

Theorem 4, the proof of Theorem 5 is based

on the Probability Bounds Theorem, Lemma

2, and Definition 3, 4.

5.6 Stationary Process

Stationary processes are frequently used s-

tochastic processes in analyzing time series,

which is characterized by having weak white

noise. Mathematically, a stochastic process

{Xt, t ∈ T} is said to be stationary in the strict

sense if for n ≥ 1, t1, t2, . . ., tn, τ ∈ T, the ran-

dom variables Xt1 , Xt2 , . . ., Xtn have the same

joint distributions as Xt1+τ , Xt2+τ , . . ., Xtn+τ .

In a discrete-time stochastic process, τ is a nat-

ural number. From its mathematical definition,
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we know that a stationary process is different

from the process with stationary distribution.

In HOL, we formalize a stationary process as

follows:

Definition 5 (Stationary Process)

` ∀ X N x. stationary proc X N x =

∀ L w t n.

(∀ t k.

measurable {s|FST (X t s)=xk}) ∧

(∀ t.

N⋃
k=0

{s|FST (X t s)=xk}=UNIV) ∧

EVERY (λa. a < N) L ∧
n < LENGTH L ⇒

P(
n⋂
k=0

{s|FST (X (w + k) s) =

x(EL k L)} =

P(
n⋂
k=0

{s|FST (X (t + k) s) =

x(EL k L)}))

In this definition, X represents the stochas-

tic process. N is the cardinality of the states in

the states space. x refers to a function, which

provides the state value for the given index aug-

ment. The list L contains all the possible state

indices. Variables w and t represent the start

time of two successive event sequences. n is the

number of the states considered in such a joint

probability.

Basically, this definition defines a stochas-

tic process for which the joint probability does

not depend on the start time for all the possible

sequences. The first condition in Definition 5

ensures that all the events possibly involved in

this process are measurable. The second con-

dition identifies the state space. Since the ele-

ments of L represent state indices, they have to

be less than the cardinality of the state space

and the length of L should be longer than the

number of events in such a stochastic process.

Using this definition, we can prove that the

PMF of a stationary process is independent of

the time.

Theorem 6 (PMF of a Stationary Process)

` ∀ X x i n t N.

stationary proc X N x ∧ i < N ⇒
P{s | FST (X n s) = xi} =

P{s | FST (X t s) = xi}

The proof of this theorem is based on Defi-

nition 5 and some arithmetic reasoning.

As mentioned in Section 5, a time-

homogenous Markov chain has stationary tran-

sition probabilities, but the Markov chain itself

does not need to be a stationary process in gen-

eral [37]. In fact, a time-homogeneous Markov

chain is stationary if and only if its initial distri-

bution is stationary. We formally verified these

results from two different perspectives: a sta-

tionary time-homogenous Markov chain has s-

tationary initial distribution (as Theorem 7);

and a time-homogenous Markov chain with s-

tationary initial distribution is always a sta-

tionary process (as Theorem 8).

Theorem 7 (Stationary DTMC has Stationary

Distribution)

` ∀ X x n N Linit Ltrans.

Time homo mc X N x Linit Ltrans ∧
stationary proc X N x ⇒
stationary dist

(λx i.P{s|FST (X n s)=xi}) X x N n

The proof of Theorem 7 is based on the sta-

tionary distribution definition along with The-

orems 3 and 6. If the variable n in Theorem 7 is

assigned a value 0 then the stationary DTMC

is said to have a stationary initial distribution.

In the next theorem, we verify that if the ini-

tial distribution of a DTMC is stationary then
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the corresponding Markov chain is stationary

as well.

Theorem 8 (A DTMC with Stationary Initial

Distribution is a Stationary Process.)

` ∀ X x N Linit Ltrans.

Time homo mc X N x Linit Ltrans ∧
stationary dist

(λi.P{s|FST (X 0 s)=xi}) X x N 0

⇒ stationary proc X N x

We proceed with the verification of this the-

orem by first rewriting the goal using Defini-

tions 2 and 5 and then performing induction

on the variable n of the stationary process def-

inition, given in Definition 5. The base case is

true obviously and the step case is proved using

Theorem 1.

Another interesting consequence of Theo-

rems 6 and 8 is that if the initial distribution

of a Markov chain is a stationary distribution

then its absolute distributions are independent

of n. That is, if the initial distribution satisfies

Equation (9), then the absolute distribution of

this Markov chain should be independent of n:

∀ x t n j. j ∈ Ω ⇒
P (Xt = xj) = P (Xn = xj)

This theorem is formalized in HOL as

Theorem 9 (Stationary PMF)

` ∀ X x i t n N Linit Ltrans.

Time homo mc X N x Linit Ltrans ∧
i < N ∧
stationary dist

(λx i.P{s|FST (X 0 s)=xi}) X x N 0

⇒
P{s | FST (X t s) = xi} =

P{s | FST (X n s) = xi}

5.7 Reversibility of Markov chain

The concept of reversible processes is mainly

applied in the area of thermodynamics, while

reversible Markov chains are commonly used

in MCMC based approaches. The main idea

here is to construct a Markov chain based on a

steady state distribution π, as given in Equa-

tion (10). Mathematically, a process is said to

be reversible if the joint probability of (X0, X1,

. . ., Xn) is the same as the joint probability of

(Xn, Xn−1, . . ., X0). In Theorem 5, we have al-

ready shown that the absolute distribution of a

time-homogeneous Markov chain, which satis-

fies detail balance equations has stationary dis-

tributions. Hence, its initial distribution is also

stationary. The following theorem is used to

verify that a time-homogeneous Markov chain

satisfying Equation (10) is reversible.

Theorem 10 (Reversible Markov Chain)

` ∀ X t x n N Linit Ltrans L.

Time homo mc X N x Linit Ltrans ∧
db equations

(λx i.{s|FST (X t s) = xi}) X N) ∧
(EVERY (λa. a < N) L) ∧
(LENGTH L = n + 1) ⇒

(P(
n⋂
k=0

{s|FST (X (t + k) s)=

x(EL k L)}) =

P(
⋂n
k=0 {s | FST (X (t + k) s) =

x(EL k (REV ERSE L))}))

The first 6 variables in the above theorem

have the same context as the ones used in Def-

inition 2 and the last variable L represents a

sequence of state indices, in the state space.

The first two conditions are the same as the

ones used in Theorem 5. While the last two

constraint that all elements in L should be less
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than the cardinality of the states in the state

space because in this theorem, n+ 1 events are

considered and thus the length of the index se-

quence is n + 1. After rewriting with the joint

probability relationship, given in Theorem 1,

we reach the following subgoal

Lemma 3

` ∀ X t x n N Linit Ltrans L.

Time homo mc X N x Linit Ltrans ∧
db equations

(λx i.{s|FST (X t s) = xi}) X N∧
EVERY (λa. a < N) L ∧
LENGTH L = n + 1 ⇒

(

n−1∏
k=0

P({s|FST (X (t + k + 1) s) =

x(EL (k+1) L)}|
{s|FST (X (t + k) s) =

x(EL k L)})
P{s|FST (X t s) = x(EL 0 L)} =

n−1∏
k=0

P({s|FST (X (t + k + 1) s) =

x(EL k L)}|
{s|FST (X (t + k) s) =

x(EL (k+1) L)})
P{s|FST (X t s) = x(EL n L)})

which can be verified based on Theorem 1 and

9 along with arithmetic reasoning.

Mathematically, if a Markov chain is re-

versible, then it has to have the memoryless

property as well.

Pr{Xt = x0|Xt−1 = x1, . . . , X0 = xn} =

Pr{Xt = x0|Xt−1 = x1}.
(11)

We formally verified this property as the

following theorem based on probabilistic and

arithmetic reasoning in HOL.

Theorem 11 (Joint Probability of Reversible

DTMC)

` ∀ X t x N n Linit Ltrans.

Time homo mc X N x Linit Ltrans ∧
EVERY (λa. a < N) L ∧
n + 2 <= LENGTH L ∧
db equations

(λx i.{s|FST (X t s) = xi}) X N ∧
(∀n t.

P(
n⋂
k=0

{s|FST (X (t + k + 1) s) =

x(EL (k+1) L)}) 6= 0) ⇒
P({s|FST (X t s) = x(EL 0 L)}|

n⋂
k=0

{s|FST (X (t + k) s)=x(EL k L)})=

P({s|FST (X t s) = x(EL 0 L)}|
{s|FST (X (t + 1) s)=x(EL 1 L)})

These formally verified theorems not only

ensure the correctness of our formal DTM-

C definitions, presented in Section 4, but al-

so facilitate reasoning about Markovian mod-

els in a theorem prover. For illustration pur-

poses, we utilize this formalization to reason

about two applications in the next section. Be-

sides that, these properties can also be used

to formalize and reason about more advanced

Markov chain theory concepts, such as, classi-

fied markov chains, Markov Decision Process

and semi Markov Chains. The proof script is

about 4200 lines for the formal verification of

the above mentioned properties.

6 Applications

In this section, we present two applications:

a simplified binary communication channel [38]

and the AMQM protocol [39, 40].
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6.1 Binary Communication Channel

Analysis

A binary communication channel [38] is a

channel with binary inputs and outputs. The

transmission channel is assumed to be noisy or

imperfect, i.e., it is likely that the receiver gets

the wrong digit. This channel can be modeled

as a two-state DTMC with the following state

transition probabilities.

Pr{Xn+1 = 0 | Xn = 0} = 1 - a;

Pr{Xn+1 = 1 | Xn = 0} = a;

Pr{Xn+1 = 0 | Xn = 1} = b;

Pr{Xn+1 = 1 | Xn = 1} = 1 - b

The corresponding state and channel dia-

grams are given in Fig. 1 and 2, respectively.

1

1

Figure 1: State Diagram

1

1

Figure 2: Channel Diagram

The binary communication channel is wide-

ly used in telecommunication theory as more

complicated channels are modeled by cascading

several of them. Here, variables Xn−1 and Xn

denote the digits leaving the systems (n− 1)th

stage and entering the nth one, respectively. a

and b are the crossover bit error probabilities.

Because X0 is also a random variable, the ini-

tial state cannot be determined and thus Pr(X0

= 0) and Pr(X0 = 1) cannot be 0 or 1. Al-

though the initial distribution is unknown, the

n-step transition probabilities can be verified

as the elements of the matrix in Equation (12).

Also, the steady-state probabilities can be con-

cluded as that in Equation (13).

P n =

(
b+a(1−a−b)n

a+b
a−a(1−a−b)n

a+b
b−b(1−a−b)n

a+b
a+b(1−a−b)n

a+b

)
(12)

lim
n→∞

P n =

(
b

a+b
a
a+b

b
a+b

a
a+b

)
(13)

Based on the description of the binary com-

munication channel, it has been formalized in

HOL as a generic model, using Definition 6.

Definition 6 (Binary Communication Channel

Model)

` ∀ X x a b p q.

BCCM X x a b p q =

(Time homo mc

X 2 x [p; q] [1-a; a; b; 1-b]) ∧
(|1 - a - b| < 1) ∧ (0 ≤ a ≤ 1) ∧
(0 ≤ b ≤ 1) ∧ (p + q = 1) ∧
(0 < p < 1) ∧ (0 < q < 1)

In this formal model, variable X represents

the Markov chain. The function x takes the

indices 0 and 1 and returns the value of the s-

tate, so that x0 = 0, x1 = 1. Variables a, b, p

and q are parameters of the functions of initial

distribution and transition probabilities. The

variable x represents a function that provides

the state at a given index.

The first condition ensures that X is a time-

homogeneous DTMC, with two states in the

state space. List [p; q] corresponds to Linit

in Definition 1 and another list [1 - a; a; b;
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1 - b] gives the one-step transition probabili-

ty matrix by combining all the rows into a list

and corresponds to Ltrans in Definition 1. The

next three conditions define the allowable in-

tervals for parameters a and b to restrict the

probability terms in [0,1]. It is important to

note that, |1 - a - b| < 1 ensures that both

a and b cannot be equal to 0 and 1 at the same

time and thus avoids the zero transition prob-

abilities. The remaining conditions correspond

to the one-step transition probabilities.

Next, we use our formal model to reason

about the following properties, which corre-

spond to Equations (12) and (13).

Theorem 12 (nth step Transition Probabilities)

` ∀ X x a b n p q.

(BCCM X x a b p q) ⇒
(P({s|FST (X n s)=x0}|
{s|FST (X 0 s))=x0})= b+a(1−a−b)n

a+b
) ∧

(P({s|FST (X n s)=x1}|
{s|FST (X 0 s))=x0})=a−a(1−a−b)n

a+b
) ∧

(P({s|FST (X n s)=x0}|
{s|FST (X 0 s))=x1})= b−b(1−a−b)

n

a+b
) ∧

(P({s|FST (X n s)=x1}|
{s|FST (X 0 s))=x1})=a+b(1−a−b)n

a+b
)

Theorem 13 (Limiting State Probabilities)

` ∀ X x a b p q.

(BCCM X x a b p q) ⇒
( lim
n→∞

P({s|FST (X n s)=x0}|
{s|FST (X 0 s))=x0})= b

a+b
) ∧

( lim
n→∞

P({s|FST (X n s)=x1}|
{s|FST (X 0 s))=x0})= a

a+b
) ∧

( lim
n→∞

P({s|FST (X n s)=x0}|
{s|FST (X 0 s))=x1})= b

a+b
) ∧

( lim
n→∞

P({s|FST (X n s)=x1}|
{s|FST (X 0 s))=x1})= a

a+b
)

Theorem 12 has been verified by performing

induction on n and then applying Lemma 1

and Lemma 2 along with some arithmetic rea-

soning. Theorem 12 is then used to verify The-

orem 13 along with the limit of real sequence

principles.

This small 2-state DTMC case study clearly

illustrates the main strength of the proposed

theorem proving based technique against the

probabilistic model checking [23] approach by

allowing us to verify the desired probabilistic

characteristics as generic theorems that are u-

niversally quantified for all allowable values of

variables a, b and n. These variables can al-

so be specialized to specific values to obtain

corresponding precise conditional probabilistic

values.

6.2 Analysis of Probability of Reaching

A state

In this section, we will study the probabili-

ty of reaching a targeted state in an Automat-

ic Mail Quality Measurement (AMQM) system

based on the ISO/IEC 18000-7 Standard [41]

by building upon our formalized DTMC de-

scribed in Section 4.

An AMQM system is used to measure the

quality of postal service transport and delivery

by IPC (International Post Corporation). It

measures how fast mail travels from one point

to another by using an in-planting process mon-

itoring of the tag serial number and recording

the time when a message from the tag is re-

ceived. This kind of quality measurement of

solutions is based on Radio-frequency identifi-

cation (RFID) [41], which is a technology that

identifies and tracks objects, such as a produc-

t, an animal or a person by using radio waves

to transfer data from an electronic tag, called
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RFID tag. In the last decade, a large vol-

ume of research was conducted on complying

RFID systems with the international standard

ISO/IEC 18000-7. The AMQM system exhibit-

s some features of the ISO/IEC 18000-7 stan-

dard and hence its formal analysis is quite im-

portant.

In an AMQM system, tags are intended for

identifying the objects that are to be managed.

The interrogator communicates with the tag

in its RF (Radio Frequency) communication

range and controls the protocol, reads informa-

tion from the tag, directs the tag to store data

in some cases, and makes sure that messages

are delivered and are also valid. An interroga-

tor controls the messages that are transmitted

during their allotted time periods called slots

and an acknowledge received for each message.

Based on the AMQM communication protocol,

the timing diagram of a tag collection process

is depicted in Fig. 3.

S0 S1

S2

S3

1

α

β

1

1

lost

delivered

try

start

WP
CCP

AP WP

CP

Tag	#1	Tx

Tag	#2	Tx

Tag	#3	Tx

Tag	#n	Tx

LP

...

Figure 3: Tag Collection Process

The communication sequence starts with a

Wakeup Period (WP), within which wake up

signals are sent to bring all tags in the ready s-

tate. The WP is followed by a collection round

named Command Period (CP), which in turn

consists of a collection command period, a Lis-

ten Period (LP) and an Acknowledge Period

(AP). The interrogator then waits for the re-

sponses from the tags that are sent random-

ly. The tag collection is done based on a pre-

determined algorithm that complies with the

ISO/IEC 18000 7 standard. Thus, this system

has two properties:

1. The probability that a message can be

delivered successfully within i slots is 1 -

(n−1
n

)i.

2. If the collection process is long enough,

eventually any message can be delivered

successfully.

This communication protocol can be modeled

as a DTMC with 4 states: s0(start), s1(try),

s2(lost) and s3(delivered) [41], as shown in

Fig.4.

S0 S1

S2

S3

1

α

β

1

1

lost

delivered

trystart

WP
CCP

AP WP

CP

Tag	#1	Tx

Tag	#2	Tx

Tag	#3	Tx

Tag	#n	Tx

LP

...

Figure 4: DTMC Model of the AMQM Protocol

In the start state, the message is generated.

The next state is always the state try and thus

the probability from the start state to try s-

tate is 1. The probability of Nosing a message

is α. Thus in the case of Nosing a message, the

system will move to the lost state with prob-

ability α. Whereas, it moves to the delivered

state with probability β = 1 − α in case of a
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successful transmission. Hence, the probability

that a message can be delivered successfully is

β, which equals to 1 - α. Once a message is

delivered successfully, the system moves to the

start state for getting ready to identify the oth-

er tags in next time slot. When the collection

process ends, the system falls to sleep mode in

order to minimize power consumption. The s-

tate transition probability matrix, correspond-

ing to the Markov chain given in Fig. 4, is as

follows:

P =


0 1 0 0

0 0 1− 1/n 1/n

0 1 0 0

1 0 0 0

 ; I =


1

0

0

0


(14)

Generally, the possible path of delivering a

message successfully can be expressed as:

π = (start, try, (lost, try)k, delivered)

Here, k represents the number of iterations

required for a successful message transmission.

We use Pr(�deliveredi) to represent the prob-

ability of delivering a message within i trials.

Then the probability of reaching state s3 is giv-

en by the following equation where n represents

the number of tags.

Pr(�deliveredi) =
i−1∑
k=0

αkβ = 1− (
n− 1

n
)i

(15)

As we know, if the collection process are long

enough, that is i tends to +∞, then finally the

message always can be delivered successfully.

So the probability of delivering a message suc-

cessfully in the future is

Pr(�delivered) =
∞∑
k=0

αkβ =
β

1− α

=
1
n

1− n−1
n

= 1

(16)

As mentioned before, the probability of

reaching the delivered state depends on the

tag collection algorithms, for example, in [41],

an improved algorithm is presented for fast tag

collection. Thus, Equations (15) and (16) play

a vital role in assessing the performance of a tag

collection algorithm. In this paper, we formal-

ly verify these equations and our results can

in turn be used to formally reason about the

effectiveness of a tag collection algorithm.

Based on the initial distribution and transi-

tion probability matrix, this Markov chain cor-

responding to the AMQM protocol model can

be formalized as:

Definition 7 (AMQM Protocol Model)

` ∀ X x n.

AMQM MODEL X x n =

Time homo mc

X 4 x [1; 0; 0; 0]

[0; 1; 0; 0;

0; 0; 1 - 1 / n; 1 / n;

0; 1; 0; 0;

1; 0; 0; 0])

Here, X represents a stochastic process, and

variable x represents a function providing the

state with a given index and n represents the

number of tags that are sent randomly. The

sole condition in this model constrains X to be

a time-homogeneous Markov chain with four s-

tates. The initial distribution is expressed as

a list [1; 0; 0; 0] and the transition probability
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matrix is also shown as a list with row-major

order, corresponding to Equation (14).

Now, the two properties presented in Equa-

tions (15) and (16) can be verified as:

Theorem 14 (Probability of Reaching Delivered

State in AMQM Protocol Model)

` ∀ X x n i.

(AMQM MODEL X x n) ∧ (n 6= 0) ⇒
i−1∑
k=0

P({s|FST (X (2 + k * 2) s) = x3}∩

(
⋂k−1
m=0({s|FST (X (3 + m * 2) s)=x1}
∩ {s|FST (X (2 + m * 2) s)=x2})
∩ {s | FST (X 1 s) = x1}
∩ {s | FST (X 0 s) = x0}) =

1 - (n−1
n

)i

Theorem 15 (Reachability Probability of

AMQM Protocol)

` ∀ X x n.

(AMQM MODEL X x n) ∧ (n 6= 0) ⇒

lim
i→∞

(

i−1∑
k=0

P({s|FST (X (2+k*2) s)=x3}∩

k−1⋂
m=0

({s|FST (X (3+m*2) s)=x1}∩

{s|FST (X (2+m*2) s)=x2})∩
{s|FST (X 1 s) = x1})
{s | FST (X 0 s) = x0}) = 1

Theorem 14 corresponds to Equation (15),

in which i refers to the number of trials re-

quired for successfully delivering n tags. The

condition n 6= 0 means that the system will

not be waken up if no tag is detected. The per-

formance of a tag collection algorithm can be

evaluated by this probability.

Theorem 15 verifies that the probability of

reaching the delivered state in infinite trials is

1. That is to say, if the tag collection process

is long enough, at last all the tags generated at

start state will be received by the reader suc-

cessfully.

In [42], the PRISM model checker [23] has

been used to analyze the AMQM protocol de-

scribed above. To verify its correctness, the

property expressed in Theorem 15 was verified

from the point of view of reaching a good s-

tate in [42]. The verification of this property is

based on solving a group of linear equations in-

stead of verifying a probabilistic computation

tree logic (PCTL) expression mainly because

this property involves an infinite summation,

which is impossible to express in PCTL. Sim-

ilarly, the collision probabilities, correspond-

ing to Equation (15), have been verified for

some special cases using iterative algorithms.

Due to the inherent nature of numerical meth-

ods based analysis, these analyses cannot be

termed accurate despite consuming enormous

computing resources. Moreover, these results

are not generic like the ones reported in The-

orem 14 of our paper, which means that the

complete analysis has to be redone in case the

information about number of tags or time slots

changes. On the other hand, the proposed the-

orem proving based approach allowed us to for-

mally reason about the generic expressions of

two of the most important characteristics of the

AMQM protocol, namely, probability of reach-

ing delivered state in AMQM protocol model

and reachability probability of AMQM proto-

col, and the results exactly match the results

obtained via paper-and-pencil proof methods.

7 Conclusions

Markov chains, which are stochastic process-

es with memoryless property, are widely ap-

plied to model and analyze a large number of
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engineering and scientific problems. This paper

presents a formalization of time-homogeneous

Markov Chains with finite state space in a

higher-order-logic theorem prover. In partic-

ular, we present a formal definition of DTMC

and formally verify some of its classical proper-

ties, such as joint probabilities, absolute prob-

abilities and stationary probabilities, using the

HOL theorem prover. This work facilitates the

formal analysis of Markov chains and provides

the foundations for formalizing more advanced

concepts of Markov chain theory, like classified

Markov chains. Due to the inherent soundness

of the proposed approach, it is guaranteed to

provide exact answers, which is a very useful

feature while analyzing the Markovian models

associated with safety or mission-critical sys-

tems. In order to illustrate the usefulness of

the proposed approach, we analyzed the n-step

transition probabilities of a binary communi-

cation channel and the probability of reach-

ing some special state in the AMQM protocol.

Our results exactly matched the correspond-

ing paper-and-pencil based analysis, which as-

certains the precise nature of the proposed ap-

proach.

The presented work opens the door to a new

and very promising research direction, i.e., in-

tegrating HOL theorem proving in the domain

of analyzing Markov chain based system mod-

els. We are currently working on extending

the set of formally verified properties regard-

ing DTMCs and extending our work to time-

inhomogeneous discrete-time Markov chains,

which will enable us to target a wider set of

systems. We also plan to build upon the for-

malization of continuous random variables [27]

and statistical properties [27, 28] to formalize

Continuous-Time Markov Chains to be able to

formally reason about statistical characteristics

of a wider range of Markovian models.
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