2 research outputs found

    Decomposition-Based Approach for Model-Based Test Generation

    Get PDF
    Model-based test generation by model checking is a well-known testing technique that, however, suffers from the state explosion problem of model checking and it is, therefore, not always applicable. In this paper, we address this issue by decomposing a system model into suitable subsystem models separately analyzable. Our technique consists in decomposing that portion of a system model that is of interest for a given testing requirement, into a tree of subsystems by exploiting information on model variable dependency. The technique generates tests for the whole system model by merging tests built from those subsystems. We measure and report effectiveness and efficiency of the proposed decomposition-based test generation approach, both in terms of coverage and time

    Formal validation and verification of a medical software critical component

    No full text
    Medical device software malfunctioning can lead to injuries or death for humans and, therefore, its development should adhere to certification standards. However, these standards establish general guidelines on the use of common software engineering activities without any indication regarding methods and techniques to assure safety and reliability. This paper presents a formal development process, based on the Abstract State Machine method, that integrates most of the activities required by the standards. The process permits to obtain, through a sequence of refinements, more detailed models that can be formally validated and verified. Offline and online testing techniques permit to check the conformance of the implementation w.r.t. the specification. The process is applied to the validation of the SAM medical software, that is used to measure the patients' stereoacuity in the diagnosis of amblyopia
    corecore