40,345 research outputs found

    On the formal statement of the special principle of relativity

    Get PDF
    The aim of the paper is to develop a proper mathematical formalism which can help to clarify the necessary conceptual plugins to the special principle of relativity and leads to a deeper understanding of the principle in its widest generality

    On the formal statement of the special principle of relativity

    Get PDF
    The aim of the paper is to develop a proper mathematical formalism which can help to clarify the necessary conceptual plugins to the special principle of relativity and leads to a deeper understanding of the principle in its widest generality.Comment: 15 pages, 3 figure

    Dynamical Structure and Definition of Energy in General Relativity

    Get PDF
    The problem of the dynamical structure and definition of energy for the classical general theory of relativity is considered on a formal level. As in a previous paper, the technique used is the Schwinger action principle. Starting with the full Einstein Lagrangian in first order Palatini form, an action integral is derived in which the algebraic constraint variables have been eliminated. This action possesses a "Hamiltonian" density which, however, vanishes due to the differential constraints. If the differential constraints are then substituted into the action, the true, nonvanishing Hamiltonian of the theory emerges. From an analysis of the equations of motion and the constraint equations, the two pairs of dynamical variables which represent the two independent degrees of freedom of the gravitational field are explicitly exhibited. Four other variables remain in theory; these may be arbitrarily specified, any such specification representing a choice of coordinate frame. It is shown that it is possible to obtain truly canonical pairs of variables in terms of the dynamical and arbitrary variables. Thus a statement of the dynamics is meaningful only after a set of coordinate conditions have been chosen. In general, the true Hamiltonian will be time dependent even for an isolated gravitational field. There thus arises the notion of a preferred coordinate frame, i.e., that frame in which the Hamiltonian is conserved. In this special frame, on physical grounds, the Hamiltonian may be taken to define the energy of the field. In these respects the situation in general relativity is analogous to the parametric form of Hamilton's principle in particle mechanics

    Synchronization Gauges and the Principles of Special Relativity

    Full text link
    The axiomatic bases of Special Relativity Theory (SRT) are thoroughly re-examined from an operational point of view, with particular emphasis on the status of Einstein synchronization in the light of the possibility of arbitrary synchronization procedures in inertial reference frames. Once correctly and explicitly phrased, the principles of SRT allow for a wide range of `theories' that differ from the standard SRT only for the difference in the chosen synchronization procedures, but are wholly equivalent to SRT in predicting empirical facts. This results in the introduction, in the full background of SRT, of a suitable synchronization gauge. A complete hierarchy of synchronization gauges is introduced and elucidated, ranging from the useful Selleri synchronization gauge (which should lead, according to Selleri, to a multiplicity of theories alternative to SRT) to the more general Mansouri-Sexl synchronization gauge and, finally, to the even more general Anderson-Vetharaniam-Stedman's synchronization gauge. It is showed that all these gauges do not challenge the SRT, as claimed by Selleri, but simply lead to a number of formalisms which leave the geometrical structure of Minkowski spacetime unchanged. Several aspects of fundamental and applied interest related to the conventional aspect of the synchronization choice are discussed, encompassing the issue of the one-way velocity of light on inertial and rotating reference frames, the GPS's working, and the recasting of Maxwell equations in generic synchronizations. Finally, it is showed how the gauge freedom introduced in SRT can be exploited in order to give a clear explanation of the Sagnac effect for counter-propagating matter beams.Comment: 56 pages, 3 eps figures, invited paper; to appear in Foundations of Physics (Special Issue to honor Prof. Franco Selleri on his 70th birthday

    Temporal naturalism

    Full text link
    Two people may claim both to be naturalists, but have divergent conceptions of basic elements of the natural world which lead them to mean different things when they talk about laws of nature, or states, or the role of mathematics in physics. These disagreements do not much affect the ordinary practice of science which is about small subsystems of the universe, described or explained against a background, idealized to be fixed. But these issues become crucial when we consider including the whole universe within our system, for then there is no fixed background to reference observables to. I argue here that the key issue responsible for divergent versions of naturalism and divergent approaches to cosmology is the conception of time. One version, which I call temporal naturalism, holds that time, in the sense of the succession of present moments, is real, and that laws of nature evolve in that time. This is contrasted with timeless naturalism, which holds that laws are immutable and the present moment and its passage are illusions. I argue that temporal naturalism is empirically more adequate than the alternatives, because it offers testable explanations for puzzles its rivals cannot address, and is likely a better basis for solving major puzzles that presently face cosmology and physics. This essay also addresses the problem of qualia and experience within naturalism and argues that only temporal naturalism can make a place for qualia as intrinsic qualities of matter

    Background Independence, Diffeomorphism Invariance, and the Meaning of Coordinates

    Get PDF
    Diffeomorphism invariance is sometimes taken to be a criterion of background independence. This claim is commonly accompanied by a second, that the genuine physical magnitudes (the "observables") of background-independent theories and those of background-dependent (non-diffeomorphism-invariant) theories are essentially different in nature. I argue against both claims. Background-dependent theories can be formulated in a diffeomorphism-invariant manner. This suggests that the nature of the physical magnitudes of relevantly analogous theories (one background free, the other background dependent) is essentially the same. The temptation to think otherwise stems from a misunderstanding of the meaning of spacetime coordinates in background-dependent theories.Comment: 42 page
    • 

    corecore