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Abstract
The aim of the paper is to develop a proper mathematical formalism

which can help to clarify the necessary conceptual plugins to the special
principle of relativity and leads to a deeper understanding of the principle
in its widest generality.

1 Introduction

The principle of relativity is the assertion that “All the laws of physics take
the same form in any admissible frame of reference.” Since the very first for-
mulation of the general theory of relativity, it has been a hotly debated issue
whether the principle holds true if the set of admissible frames is extended
from the inertial frames to arbitrary frames of reference (Norton 1993). Ein-
stein himself was quite convinced that his requirement of general covariance,
which is satisfied by the theory, expresses precisely the principle of relativity in
it’s extended form (Norton 1988, 1993). In his famous objection, Kretschmann
(Norton 1993) drew attention that it doesn’t seem to do so—any spacetime the-
ory, including special relativity and Newtonian theory, can be given a generally
covariant formulation. How covariance is related to the principle of relativity
is heavily discussed in the context of general relativity up to this day, in con-
nection with some closely related foundational issues such as the meaning of
diffeomorphism symmetry and its implications for the observational basis of
general relativity (Friedman 1983; Brading and Brown 2004; Rovelli 2004; Dieks
2006; Westman and Sonego 2009).

In special relativity, in contrast, these issues—the relation between the spe-
cial relativity principle (RP) and Lorentz covariance, their empirical content
and their applicability to physical theories—are considered completely un-
problematic. As Norton (1993, p. 796) writes:

The lesson of Einsteins’s 1905 paper was simple and clear. To con-
struct a physical theory that satisfied the principle of relativity of
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inertial motion, it was sufficient to ensure that it had a particular
formal property: its laws must be Lorentz covariant. Lorentz co-
variance became synonymous with satisfaction of the principle of
relativity of inertial motion and the whole theory itself, as Einstein
(1940, p. 329) later declared:

The content of the restricted relativity theory can accordingly be
summarized in one sentence: all natural laws must be so condi-
tioned that they are covariant with respect to Lorentz transfor-
mations.

Moreover, this simplification continues with the following idea. Norton (ibid.)
writes:

Selecting suitable transformation laws for the field and other quan-
tities, Einstein was able to show that the laws of electrodynamics
remained unchanged under the Lorentz transformations. That is,
they were Lorentz covariant. [italics added]

There is however some tension between this simplified picture and the concrete
applications and the original understanding of the RP which is supposed to
reflect something from the physical behaviors of both the moving measuring
equipments and the moving physical objects to be measured. We mention two
major problems here in the introduction.

First, if it is true that the RP reduces to the requirement of covariance, and
the transformation rules are “selected” such that the physical equations will be
covariant against these transformations, then the RP becomes a tautology—the
equations are covariant against the transformations that are derived from the
presumed covariance of the equations. This contradicts to the view—shared by
a number of physicists and philosophers (see Brading and Castellani 2008)—
that the statement of relativity/covariance principle, like many other symme-
try principles, must be considered as a contingent, empirically falsifiable, state-
ment. As Houtappel, Van Dam, and Wigner (1963) warn us:

The discovery of Lee, Yang, and Wu, showing, among other facts,
that the laws of nature are not invariant with respect to charge con-
jugation, reminded us of the empirical origin of the laws of invari-
ance in a forcible manner. Before the discoveries of Lee, Yang and
Wu, one could quote Fourier’s principle as an earlier example of an
invariance principle which had to be abandoned because of empir-
ical evidence.

Earman points out a more general epistemological aspect:

[V]iewing symmetry principles as meta-laws doesn’t commit one
to treating them a priori in the sense of known to be true indepen-
dently of experience. For instance, that a symmetry principle func-
tions as a valid meta-law can be known a posteriori by a second level
induction on the character of first-order law candidates that have
passed empirical muster. (Earman 2004, p. 6)

Notice that even the transformation rules must be considered as empirically
falsifiable laws of nature. For, how can we verify even a single instance of the
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covariance principle? One might think that the verification of the covariance
of a given law of physics is only a matter of mathematical verification. But this
is true only if we know the transformation laws of the physical quantities—
against which the physical law in question must be covariant. Consequently,
we must have an independent knowledge of the transformation rules express-
ible in terms of the physical behavior of the measuring equipments—in various
states of motion—by means of which the physical quantities are operationally
defined.1 For, as Einstein emphasizes:

A Priori it is quite clear that we must be able to learn something
about the physical behavior of measuring-rods and clocks from the
equations of transformation, for the magnitudes z, y, x, t are noth-
ing more nor less than the results of measurements obtainable by
means of measuring-rods and clocks. (Einstein 1920, p. 35)

The second problem is related with the proper relationship between the RP
and the requirement of covariance. In its original understanding, the RP is
supposed to reflect the physical behavior of moving physical objects. As Harvey
Brown points out, this is already true in Galileo’s principle:

The process of putting the ship into motion corresponds [. . .] to
what today we call an active pure boost of the laboratory. A key
aspect of Galileo’s principle that we wish to highlight is this. For
Galileo, the boost is a clearly defined operation pertaining to a cer-
tain subsystem of the universe, namely the laboratory (the cabin
and equipment contained in it). The principle compares the out-
come of relevant processes inside the cabin under different states
of inertial motion of the cabin relative to the shore. It is simply as-
sumed by Galileo that the same initial conditions in the cabin can
always be reproduced. What gives the relativity principle empiri-
cal content is the fact that the differing states of motion of the cabin
are clearly distinguishable relative to the earth’s rest frame. (Brown
2005, p. 34)

This is the basis of the typical applications of the RP: the description of the
behavior of a moving object can be reduced to the description of the behavior
of the same object at rest, by applying the transformation laws. (A concrete
example will be discussed in section 2 and in Remark 4.) However, the covari-
ance of the physical equations in itself does not determine which solution of
the equations describes the moving object. As Bell pointed out, discussing the
famous two-spaceship problem:

Lorentz invariance alone shows that for any state of a system at rest
there is a corresponding ‘primed’ state of that system in motion. But
it does not tell us that if the system is set anyhow in motion, it will
actually go into the ’primed’ of the original state, rather than into
the ‘prime’ of some other state of the original system. (Bell 1987,
p. 75)

The concept of covariance does not even refer to the concept of a particular
solution describing a particular behavior of an object. This fact seems to con-

1For a case study illustrating this, see Gömöri and Szabó 2011a.
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tradict to the claim that the RP can be reduced to the simple requirement of
covariance.

As we can see from this brief introduction, there are different, sometimes
controversial, views on the actual content and status of the RP. The aim of this
paper is to develop a precise language in order to provide a precise formulation
of the principle. Our formalism is based on the intuitive concepts and ideas
that have been already discussed in the literature. However, in view of the
fact that the RP is considered as a universal meta-law, which must be valid for
all physical laws in all situations, we try to keep the formalism as general as
possible. The benefit of the formal reconstruction is that it makes explicit all
the necessary conceptual plugins to the principle; it brings out many subtle
details and the related conceptual problems. We are hopeful that our analysis
helps to clarify the above mentioned controversial issues and leads to a deeper
understanding of the principle of relativity in its widest generality.

2 Preliminary considerations

“All the laws of physics take the same form in any inertial frame of reference.”
This is usually regarded as a simple and clear statement. In trying to under-
stand the precise meaning of this sentence one encounters however several
obvious questions.

First of all, it must be clear that the laws of physics in a reference frame K are
meant to be the laws of physics as they are ascertained by an observer living
in reference frame K; less anthropomorphically, as they appear in the results of
the measurements, such that the measuring equipments—and in some sense
the objects to be measured, too—are in K. At this point we encounter the first,
and, as will be discussed below, highly non-trivial conceptual problem: when
can we say that a physical object is “in” an inertial frame of reference?

Of course, it is the same laws of physics which must take the same form
in all inertial frames. It would be absurd to require that, say, the second law
of thermodynamics in K must have the same form as Newton’s force law in
K′. But, what are the same laws of physics in different inertial frames? It is
quite natural to say that the laws of physics can be identified by means of the
physical phenomena they describe. If so, then one can think that the descrip-
tions of the same physical phenomenon must have the same form in all frames of
reference. This is however obviously not the case. For example, consider the
electromagnetic field of a charged particle at rest in K. This phenomenon is de-
scribed in K as it is depicted in Fig. 1A. As is well known, the description of the
same phenomenon in K′ is completely different, Fig. 1B—just take the Lorentz
transformation of the situation in Fig. 1A. (For more details, see Remark 4.)

Thus, the opposite must be true: the RP is about different physical phenom-
ena; different phenomena must have descriptions of the same form in the dif-
ferent inertial frames of reference. In our example, ‘the static electromagnetic
field of the rest charge’ is one phenomenon (Fig. 1A) and ‘the time-dependent
stationary electromagnetic field of the same charge in motion with velocity
v = V’ is the other (Fig. 1C). What the RP asserts is this: the description in the
co-moving inertial frame K′ of the phenomenon depicted in Fig. 1C takes ex-
actly the same form as the description of the phenomenon in Fig. 1A in inertial
frame K (see Fig. 1D). But, in what general sense these two phenomena are the
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(A) (B)

(C) (D)

Figure 1: The descriptions of the same phenomenon in different inertial frames
are different: (A) and (B). In contrast, different phenomena, (A) and (C), have
descriptions of the same form in the two different (co-moving) inertial frames:
(A) and (D)

counterparts of each other?
The next problem is how the phrase “same form” should be understood.

For, formulas (equations, relations, functions, etc.) which are—for example
logically—equivalent may have completely different forms/shapes in some al-
gebraic/typographic sense. So, “same form” must be understood as “same
form up to some equivalent transformations”. Generally, two formulas must be
regarded as equivalent if they express the same physical content, in the sense
that they determine the same relations between the same physical quantities.

This immediately raises the next question: How do we identify the physical
quantities defined by the different observers in different inertial frames. The
obvious solution is that we identify the physical quantities which have identi-
cal empirical definitions. It is however far from obvious how these “identical
empirical definitions” are actually understood. For the empirical/operational
definitions require etalon measuring equipments. But how do the observers in
different reference frames share these etalon measuring equipments? Do they
all base their definitions on the same etalon measuring equipments? Is the prin-
ciple of relativity really understood in this way? Is it true that the laws of
physics in K and K′, which ought to take the same form, are expressed in terms
of physical quantities defined/measured with the same standard measuring
equipments? Not exactly: if the standard measuring equipment by means of
which the observer in K defines a physical quantity ξ is at rest in K and, there-
fore, moving in K′, then the observer in K′ does not define the correspond-
ing ξ ′ as the physical quantity obtainable by means of the original standard
equipment—being at rest in K and moving in K′—but rather as the physical
quantity obtainable by means of the standard equipment in another state of mo-
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tion; namely, at rest relative to K′ and in motion relative to K.
With respect to these considerations, one can give the following preliminary

formulation of the principle (Szabó 2004):

(RP) The description of a phenomenon exhibited by a physical system
co-moving as a whole with an inertial frame K, expressed in terms
of the results of measurements obtainable by means of measur-
ing equipments co-moving with K, takes the same form as the de-
scription of the same phenomenon exhibited by the same physical
system, except that the system is co-moving with another inertial
frame K′, expressed in terms of the measurements with the same
equipments when they are co-moving with K′.

In what follows we translate the above considerations into a mathematical lan-
guage and develop a formalism providing a more precise formulation of the
RP.

3 Conceptual components of the RP

Physical quantities in K Consider an arbitrary collection of physical quanti-
ties ξ1, ξ2, . . . ξn in K, operationally defined by means of some operations with
some equipments being at rest in K (see Remark 1 for a few examples).

The operational counterparts in K′ Let ξ ′1, ξ ′2, . . . ξ ′n denote another collection
of physical quantities that are defined by the same operations with the same equip-
ments, but in different state of motion, namely, in which they are all moving with
constant velocity V relative to K, co-moving with K′. Since, for all i = 1, 2, . . . n,
both ξi and ξ ′i are measured by the same equipment—although in different in-
ertial states of motion—with the same pointer scale, it is plausible to assume
that the possible values of ξi and ξ ′i range over the same σi ⊆ R. We introduce
the following notation: Σ = ×n

i=1σi ⊆ Rn.

Distinction between the quantities in K and K′ It must be emphasized that
quantities ξ1, ξ2, . . . ξn and ξ ′1, ξ ′2, . . . ξ ′n are, a priori, different physical quanti-
ties, due to the fact that the operations by which the quantities are defined are
performed under different physical conditions; with measuring equipments of
different states of motion. Any objective (non-conventional) relationship be-
tween them must be a contingent law of nature. Thus, the same numeric
values, say, (5, 12, . . . 61) ∈ Rn correspond to different states of affairs when
ξ1 = 5, ξ2 = 12, . . . ξn = 61 versus ξ ′1 = 5, ξ ′2 = 12, . . . ξ ′n = 61. Consequently,
(ξ1, ξ2, . . . ξn) and

(
ξ ′1, ξ ′2, . . . ξ ′n

)
are not elements of the same “space of physi-

cal quantities”; although the numeric values of the physical quantities, in both
cases, can be represented in Σ = ×n

i=1σi ⊆ Rn.
To express this difference in the “physical dimensions” mathematically, we

consider two different n-dimensional manifolds, Ω and Ω′, each covered by
one global coordinate system, φ and φ′ respectively, such that φ : Ω → Σ
assigns to every point of Ω one of the possible n-tuples of numerical values
of physical quantities ξ1, ξ2, . . . ξn and φ′ : Ω′ → Σ assigns to every point
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Figure 2: The relativity principle

of Ω′ one of the possible n-tuples of numerical values of physical quanti-
ties ξ ′1, ξ ′2, . . . ξ ′n (Fig. 2). In this way, a point ω ∈ Ω represents the class
of physical constellations in which the quantities ξ1, ξ2, . . . ξn take the values
ξ1 = φ1(ω), ξ2 = φ2(ω), . . . ξn = φn(ω); similarly, a point ω′ ∈ Ω′ represents
the physical constellation characterized by ξ ′1 = φ′1(ω

′), ξ ′2 = φ′2(ω
′), . . . ξ ′n =

φ′n(ω
′).2 Again, these physical constellations are generally different, even in

case of φ(ω) = φ′(ω′) ∈ Rn.

Admissible values In the above sense, the points of Ω and the points of Ω′

range over all possible value combinations of physical quantities ξ1, ξ2, . . . ξn
and ξ ′1, ξ ′2, . . . ξ ′n. It might be the case however that some combinations are
impossible, in the sense that they never come to existence in the physical world.
Let us denote by R ⊆ Ω and R′ ⊆ Ω′ the physically admissible parts of Ω and
Ω′. Note that φ(R) is not necessarily identical with φ′(R′).3

Putting primes We shall use a bijection PV : Ω → Ω′ (“putting primes”; Bell
1987, p. 73) defined by means of the two coordinate maps φ and φ′:

PV
de f
=
(
φ′
)−1 ◦ φ (1)

Transformation law In contrast with PV, we now introduce the concept of
what we call the “transformation” of physical quantities. It is conceived as a
bijection

TV : Ω ⊇ R→ R′ ⊆ Ω′ (2)

determined by the contingent fact that whenever a physical constellation be-
longs to the class represented by some ω ∈ R then it also belongs to the class
represented by TV(ω) ∈ R′, and vice versa. Since ξ1, ξ2, . . . ξn can be various

2φi = πi ◦ φ, where πi is the i-th coordinate projection in Rn.
3One can show however that φ(R) = φ′(R′) if the RP, that is (7), holds.
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physical quantities in the various contexts, nothing guarantees that such a bi-
jection exists. We assume however the existence of TV.

Remark 1. It is worthwhile to consider several examples.

(a) Let (ξ1, ξ2) be (p, T), the pressure and the temperature of a given
(equilibrium) gas; and let

(
ξ ′1, ξ ′2

)
be (p′, T′), the pressure and the

temperature of the same gas, measured by the moving observer in
K′. In this case, there exists a one-to-one TV:

p′ = p (3)

T′ = Tγ−1 (4)

where γ =
(

1− V2

c2

)− 1
2 (Tolman 1949, pp. 158–159).4 A point ω ∈

Ω of coordinates, say, p = 101325 and T = 300 (in units Pa and ◦K)
represents the class of physical constellations—the class of possi-
ble worlds—in which the gas in question has pressure of 101325 Pa
and temperature of 300 ◦K. Due to (4), this class of physical con-
stellations is different from the one represented by PV (ω) ∈ Ω′ of
coordinates p′ = 101325 and T′ = 300; but it is identical to the
class of constellations represented by TV (ω) ∈ Ω′ of coordinates
p′ = 101325 and T′ = 300γ−1.

(b) Let (ξ1, ξ2, . . . ξ10) be
(
t, x, y, z, Ex, Ey, Ez, rx, ry, rz

)
, the time, the

space coordinates where the electric field strength is taken, the three
components of the field strength, and the space coordinates of a
particle. And let

(
ξ ′1, ξ ′2, . . . ξ ′10

)
be
(

t′, x′, y′, z′, E′x, E′y, E′z, r′x, r′y, r′z
)

,
the similar quantities obtainable by means of measuring equip-
ments co-moving with K′. In this case, there is no suitable one-
to-one TV, as the electric field strength in K does not determine the
electric field strength in K′, and vice versa.

(c) Let (ξ1, ξ2, . . . ξ13) be
(
t, x, y, z, Ex, Ey, Ez, Bx, By, Bz, rx, ry, rz

)
and let(

ξ ′1, ξ ′2, . . . ξ ′13
)

be
(

t′, x′, y′, z′, E′x, E′y, E′z, B′x, B′y, B′z, r′x, r′y, r′z
)

, where

Bx, By, Bz and B′x, B′y, B′z are the magnetic field strengths in K and
K′. In this case, in contrast with (b), the well known Lorentz trans-
formations of the spatio-temporal coordinates and the electric and
magnetic field strengths constitute a proper one-to-one TV. y

Description of a phenomenon Next we turn to the general formulation of the
concept of description of a particular phenomenon exhibited by a physical system,
in terms of physical quantities ξ1, ξ2, . . . ξn in K. We are probably not far from
the truth if we stipulate that such a description is, in its most abstract sense, a
relation between physical quantities ξ1, ξ2, . . . ξn; in other words, it can be given
as a subset F ⊂ R.

Remark 2. Consider the above example (a) in Remark 1. An isochoric process
of the gas can be described by the subset F that is, in φ-coordinates, determined

4There is a debate over the proper transformation rules (Georgieu 1969; Sewell 2008).
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by the following single equation:

F {p = κT (5)

with a certain constant κ.
To give another example, consider the case (b). The relation F given by

equations

F



Ex(t, x, y, z) = E0

Ey(t, x, y, z) = 0

Ez(t, x, y, z) = 0
rx(t) = r0 + v0t
ry(t) = 0

rz(t) = 0

(6)

with some specific values of E0, r0, v0 describes a neutral particle moving with
constant velocity in a static homogeneous electric field. y

Physical equations Of course, one may not assume that an arbitrary relation
F ⊂ R has physical meaning. Let E ⊂ 2R be the set of those F ⊂ R which
describe a particular behavior of the system. We shall call E the set of equations
describing the physical system in question. The term is entirely justified. In
practical calculations, two systems of equations are regarded to be equivalent
if and only if they have the same solutions. Therefore, a system of equations
can be identified with the set of its solutions. In general, the equations can be
algebraic equations, ordinary and partial integro-differential equations, linear
and nonlinear, whatever. So, in its most abstract sense, a system of equations
is a set of subsets of R.

Now, consider the following subsets5 of Ω′, determined by an F ∈ E :

Primed solution PV(F) ⊂ Ω′: the “primed F”, that is a relation “of exactly
the same form as F, but in the primed variables ξ ′1, ξ ′2, . . . ξ ′n”. The quotation
marks are important. Since one and the same F ⊂ Ω can be given in many
different “forms”, by means of different numbers of different equations, func-
tions, relations, of different types. That is why we formalized the concept
of a description of a phenomenon as an abstract relation between quantities
ξ1, ξ2, . . . ξn, given in the form of a subset of Ω. Similarly, subset PV(F) is an
abstract relation between ξ ′1, ξ ′2, . . . ξ ′n, which can be thought of in many differ-
ent equivalent “forms”. So, whether F and PV(F) are “of the same form” may
or may not be manifestly apparent (cf. Friedman 1983, p. 150). Also note that
relation PV(F) does not necessarily describe a true physical situation, since it
can be not realized in nature.

Same solution expressed in primed variables TV(F) ⊆ R′: which is the same
description of the same physical situation as F, but expressed in the primed
variables.

5We denote the map of type Ω → Ω′ and its direct image maps of type 2Ω → 2Ω′ and 22Ω →
22Ω′

or their restrictions by the same symbol.
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The same but in different state of motion We need one more concept. The
RP is about the connection between two situations: one is in which the system,
as a whole, is at rest relative to inertial frame K, the other is in which the system
shows the similar behavior, but being in a collective motion relative to K, co-
moving with K′. In other words, we assume the existence of a map MV : E →
E , assigning to each F ∈ E , stipulated to describe a phenomenon exhibited by
a system co-moving with inertial frame K, another relation MV(F) ∈ E , that
describes the same physical system exhibiting the same phenomenon as the
one described by F, except that the system is in motion with velocity V relative
to K, that is, co-moving with inertial frame K′.

4 The formal statement of the RP

Now, applying all these concepts, what the RP states is the following:

TV (MV(F)) = PV(F) for all F ∈ E (7)

or equivalently,

PV(F) ⊂ R′ and MV(F) = T−1
V (PV(F)) for all F ∈ E (8)

Remark 3. Notice that, for a given fixed F, everything on the right hand side of
the equation in (8), PV and TV, are determined only by the physical behaviors of
the measuring equipments when they are in various states of motion. In contrast,
the meaning of the left hand side, MV(F), depends on the physical behavior of
the object physical system described by F and MV(F), when it is in various states
of motion. That is to say, the two sides of the equation reflect the behaviors of
different parts of the physical reality; and the RP expresses a law-like regularity
between the behaviors of these different parts. y

Remark 4. Let us illustrate these concepts with a well-known textbook exam-
ple of a static versus uniformly moving charged particle. The static field of a
charge q being at rest at point (x0, y0, z0) in K is the following:

F



Ex(t, x, y, z) =
q (x− x0)(

(x− x0)
2 + (y− y0)

2 + (z− z0)
2
)3/2

Ey(t, x, y, z) =
q (y− y0)(

(x− x0)
2 + (y− y0)

2 + (z− z0)
2
)3/2

Ez(t, x, y, z) =
q (z− z0)(

(x− x0)
2 + (y− y0)

2 + (z− z0)
2
)3/2

Bx(t, x, y, z) = 0
By(t, x, y, z) = 0

Bz(t, x, y, z) = 0

(9)

The stationary field of a charge q moving at constant velocity V = (V, 0, 0)
relative to K can be obtained by solving the equations of electrodynamics (in
K) with the time-depending source (for example, Jackson 1999, pp. 661–665):
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MV(F)



Ex(t, x, y, z) =
qX0(

X2
0 + (y− y0)

2 + (z− z0)
2
)3/2

Ey(t, x, y, z) =
γq (y− y0)(

X2
0 + (y− y0)

2 + (z− z0)
2
)3/2

Ez(t, x, y, z) =
γq (z− z0)(

X2
0 + (y− y0)

2 + (z− z0)
2
)3/2

Bx(t, x, y, z) = 0

By(t, x, y, z) = −c−2VEz(t, x, y, z)

Bz(t, x, y, z) = c−2VEy(t, x, y, z)

(10)

where where (x0, y0, z0) is the initial position of the particle at t = 0, X0 =
γ (x− (x0 + Vt)).

Now, we form the same expressions as (9) but in the primed variables of the
co-moving reference frame K′:

PV (F)



E′x′(t
′, x′, y′, z′) =

q′ (x′ − x′0)((
x′ − x′0

)2
+
(
y′ − y′0

)2
+
(
z′ − z′0

)2
)3/2

E′y′(t
′, x′, y′, z′) =

q′ (y′ − y′0)((
x′ − x′0

)2
+
(
y′ − y′0

)2
+
(
z′ − z′0

)2
)3/2

E′z′(t
′, x′, y′, z′) =

q′ (z′ − z′0)((
x′ − x′0

)2
+
(
y′ − y′0

)2
+
(
z′ − z′0

)2
)3/2

B′x′(t
′, x′, y′, z′) = 0

B′y′(t
′, x′, y′, z′) = 0

B′z′(t
′, x′, y′, z′) = 0

(11)

By means of the Lorentz transformation rules of the space-time coordinates,
the field strengths and the electric charge (e.g. Tolman 1949), one can express
(11) in terms of the original variables of K:

T−1
V (PV(F))



Ex(t, x, y, z) =
qX0(

X2
0 + (y− y0)

2 + (z− z0)
2
)3/2

Ey(t, x, y, z) =
γq (y− y0)(

X2
0 + (y− y0)

2 + (z− z0)
2
)3/2

Ez(t, x, y, z) =
γq (z− z0)(

X2
0 + (y− y0)

2 + (z− z0)
2
)3/2

Bx(t, x, y, z) = 0

By(t, x, y, z) = −c−2VEz(t, x, y, z)

Bz(t, x, y, z) = c−2VEy(t, x, y, z)

(12)
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We find that the result is indeed the same as (10) describing the field of the
moving charge: MV(F) = T−1

V (PV(F)). That is to say, the RP seems to be true
in this particular case.

Reversely, assuming that the particle + electromagnetic field system satisfies
the RP, that is, (8) holds for the equations of electrodynamics, one can derive the
stationary field of a uniformly moving point charge (10) from the static field
(9). y

5 Covariance

Now we have a strict mathematical formulation of the RP for a physical system
described by a system of equations E . Remarkably, however, we still have not
encountered the concept of “covariance” of equations E . The reason is that the
RP and the covariance of equations E are not equivalent—in contrast to what
many believe. In fact, the logical relationship between the two conditions is
much more complex. To see this relationship in more detail, we previously
need to clarify a few things.

Consider the following two sets: PV(E) = {PV(F)|F ∈ E} and TV(E) =
{TV(F)|F ∈ E}. Since a system of equations can be identified with its set of
solutions, PV(E) ⊂ 2Ω′ and TV(E) ⊂ 2R′ can be regarded as two systems of
equations for functional relations between ξ ′1, ξ ′2, . . . ξ ′n. In the primed vari-
ables, PV(E) has “the same form” as E . Nevertheless, it can be the case that
PV(E) does not express a true physical law, in the sense that its solutions do
not necessarily describe true physical situations. In contrast, TV(E) is nothing
but E expressed in variables ξ ′1, ξ ′2, . . . ξ ′n.

Now, covariance intuitively means that equations E “preserve their forms
against the transformation TV”. That is, in terms of the formalism we devel-
oped:

TV(E) = PV(E) (13)

or, equivalently,
PV(E) ⊂ 2R′ and E = T−1

V (PV(E)) (14)

The first thing we have to make clear is that—even if we know or presume
that it holds—covariance (14) is obviously not sufficient for the RP (8). For, (14)
only guarantees the invariance of the set of solutions, E , against T−1

V ◦ PV ,
but it says nothing about which solution of E corresponds to which solution.
While it is the very essence of the RP that it is solution MV(F)—describing the
same physical system exhibiting the same phenomenon as the one described
by F, except that the system is in motion with velocity V relative to K—which
must be equal to solution T−1

V ◦ PV(F). For example, what we use in the above
mentioned textbook derivation of the stationary electromagnetic field of a uni-
formly moving point charge (end of Remark 4) is not the covariance of the
equations—that would be not enough—but statement (8), that is, what the RP
claims about the solutions of the equations in detail.

It must be clear that the fact that covariance (14) does not imply the RP (8)
is simply a logical fact. This fact is prior to the physical problem of whether the
RP holds for a given physical situation or not; whether we have a physically
meaningful, unambiguously defined map MV : E → E ; whether and under

12



Figure 3: The RP only implies that TV(E) ⊇ TV ◦MV (E) = PV (E). Covariance
of E would require that TV(E) = PV(E), which is generally not the case

what conditions solution MV(F) really describes “the system set anyhow in
motion” in reality (cf. Jánossy 1971, pp. 207–210; Bell 1987, p. 75; Szabó 2004).

In a precise sense, covariance is not only not sufficient for the RP, but it is
not even necessary (Fig. 3). The RP only implies that

TV(E) ⊇ TV (MV (E)) = PV (E) (15)

(7) implies (13) only if we have the following extra condition:

MV (E) = E (16)

6 Initial and boundary conditions

Let us finally consider the situation when the solutions of a system of equa-
tions E are specified by some extra conditions—initial and/or boundary value
conditions, for example. In our general formalism, an extra condition for E is
a system of equations ψ ⊂ 2Ω such that there exists exactly one solution [ψ]E
satisfying both E and ψ. That is, E ∩ ψ = {[ψ]E}, where {[ψ]E} is a singleton
set. Since E ⊂ 2R, without loss of generality we may assume that ψ ⊂ 2R.

Since PV and TV are injective, PV (ψ) and TV (ψ) are extra conditions for
equations PV (E) and TV (E) respectively, and we have

PV ([ψ]E ) = [PV (ψ)]PV(E) (17)

TV ([ψ]E ) = [TV (ψ)]TV(E) (18)

for all extra conditions ψ for E . Similarly, if PV(E), PV (ψ) ⊂ 2R′ then
T−1

V (PV (ψ)) is an extra condition for T−1
V (PV (E)), and[

T−1
V (PV (ψ))

]
T−1

V (PV(E))
= T−1

V

(
[PV(ψ)]PV(E)

)
(19)

If equations E satisfy the covariance condition (14), we have[
T−1

V (PV (ψ))
]
E
= T−1

V

(
[PV(ψ)]PV(E)

)
(20)
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That is to say, solving the primed equation with the primed extra conditions is
equivalent to first expressing the primed extra conditions in the original quan-
tities and then solving the original equations (cf. Houtappel, Van Dam, and
Wigner 1963). Notice however that it by no means follows from the covari-
ance of equations E that the primed extra conditions determine the solution
describing the moving object; that is, it can be the case that

[
T−1

V (PV (ψ))
]
E
6=

MV ([ψ]E )—this is the difference between the RP and the covariance require-
ment.

Now consider a set of extra conditions C ⊂ 22R
and assume that C is a

parametrizing set of extra conditions for E ; by which we mean that for all F ∈ E
there exists exactly one ψ ∈ C such that F = [ψ]E ; in other words,

C 3 ψ 7→ [ψ]E ∈ E (21)

is a bijection.
MV : E → E was introduced as a map between solutions of E . Now, as there

is a one-to-one correspondence between the elements of C and E , it generates
a map MV : C → C, such that

[MV(ψ)]E = MV ([ψ]E ) (22)

Thus, from (17) and (22), the RP, that is (7), has the following form:

TV ([MV(ψ)]E ) = [PV(ψ)]PV(E) for all ψ ∈ C (23)

or, equivalently, (8) reads

[PV(ψ)]PV(E) ⊂ R′ and [MV(ψ)]E = T−1
V

(
[PV(ψ)]PV(E)

)
(24)

One might make use of the following theorem:

Theorem 1. Assume that the system of equations E ⊂ 2R is covariant, that is, (13) is
satisfied. Then,

(i) for all ψ ∈ C, TV (MV (ψ)) is an extra condition for the system of equations
PV (E), and, (23) is equivalent to the following condition:

[TV (MV(ψ))]PV(E) = [PV(ψ)]PV(E) (25)

(ii) for all ψ ∈ C, PV (ψ) ⊂ 2R′ , T−1
V (PV (ψ)) is an extra condition for the system

of equations E and (24) is equivalent to the following condition:

[MV(ψ)]E =
[

T−1
V (PV (ψ))

]
E

(26)

Proof. (i) Obviously, TV (E) ∩ TV (MV (ψ)) exists and is a singleton; and, due
to (13), it is equal to PV (E) ∩ TV (MV (ψ)); therefore this latter is a singleton,
too. Applying (18) and (13), we have

TV ([MV(ψ)]E ) = [TV (MV (ψ))]TV(E) = [TV (MV (ψ))]PV(E) (27)

therefore, (25) implies (24).
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(ii) Similarly, due to PV (ψ) ⊂ 2R′ and (14), E ∩ T−1
V (PV (ψ)) exists and is

a singleton. Applying (19) and (14), we have

T−1
V

(
[PV(ψ)]PV(E)

)
=
[

T−1
V (PV (ψ))

]
T−1

V (PV(E))
=
[

T−1
V (PV (ψ))

]
E

(28)

that is, (26) implies (24).

Remark 5. Let us note a few important—but often overlooked—facts which
can easily be seen in the formalism we developed:

(a) The covariance of a set of equations E does not imply the covariance
of a subset of equations separately. It is because a smaller set of
equations corresponds to an E∗ ⊂ 2R such that E ⊂ E∗; and it does
not follow from (13) that TV(E∗) = PV(E∗).

(b) Similarly, the covariance of a set of equations E does not guarantee
the covariance of an arbitrary set of equations which is only satis-
factory to E ; for example, when the solutions of E are restricted by
some extra conditions. Because from (13) it does not follow that
TV(E∗) = PV(E∗) for an arbitrary E∗ ⊂ E .

(c) The same holds, of course, for the combination of cases (a) and (b);
for example, when we have a smaller set of equations E∗ ⊃ E to-
gether with some extra conditions ψ ⊂ 2R. For, (13) does not imply
that TV(E∗ ∩ ψ) = PV(E∗ ∩ ψ).

(d) However, covariance is guaranteed if a covariant set of equations is
restricted with a covariant set of extra conditions; because TV(E) =
PV(E) and TV(ψ) = PV(ψ) trivially imply that TV(E ∩ψ) = PV(E ∩
ψ). y

7 Concluding discussions and open problems

As we have seen, the RP does not reduce to the covariance of the physical equa-
tions, and the precise formulation of the RP is a much more difficult matter. It
requires several conceptual plugins, without which the RP would be simply
meaningless. In section 3 we gave the explicit formulation of these concepts in
our formalism. The concrete meanings of these generally formalized concep-
tual plugins are to be specified in the concrete physical contexts.

It must be mentioned that one of these concepts, MV : E → E , which
carries an essential part of the physical content of the RP, seems to be especially
problematic. For, what does it generally mean to say that a solution, MV(F),
describes the same physical system exhibiting the same phenomenon as the
one described by F, except that the system is in motion with velocity V relative
to K? As it was pointed out in (Szabó 2004), there is no clear and unambiguous
answer to this question, even in very simple situations.

In fact the same question can be asked with respect to the definitions of
quantities ξ ′1, ξ ′2, . . . ξ ′n—and, therefore, with respect to the meanings of TV and
PV. For, ξ ′1, ξ ′2, . . . ξ ′n are not simply arbitrary variables assigned to reference
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Figure 4: The stationary field of a uniformly moving point charge is in collec-
tive motion together with the point charge

frame K′, in one-to-one relations with ξ1, ξ2, . . . ξn, but the physical quantities
obtainable by means of the same operations with the same measuring equip-
ments as in the operational definitions of ξ1, ξ2, . . . ξn, except that everything
is in a collective motion with velocity V. Therefore, we should know what we
mean by “the same measuring equipment but in collective motion”. From this
point of view, it does not matter whether the system in question is the object to
be observed or a measuring equipment involved in the observation.

At this level of generality we only want to point out two things. First, what-
ever is the definition of MV : E → E in the given context, the following is a
minimum requirement for the RP to have the assumed physical meaning:

(M) Every relation F ∈ E must describe a phenomenon which can be
meaningfully characterized as such that the physical system ex-
hibiting this phenomenon is co-moving with some inertial frame
of reference.

Recall that this minimum requirement is, tacitly, already there in Galileo’s prin-
ciple. As Brown points out in the passage we quoted in the Introduction: “The
principle compares the outcome of relevant processes inside the cabin under
different states of inertial motion of the cabin relative to the shore.”

A simple example for a system satisfying condition (M) is the one discussed
in Remark 4: solutions (9) and (10) both describe a system of charged particle +
electromagnetic field which are in collective rest and motion respectively. The
electromagnetic field is in collective motion with the point charge of velocity V
(Fig. 4) in the following sense:

E(t, x, y, z) = E(t− δt, x−Vδt, y, z) (29)
B(t, x, y, z) = B(t− δt, x−Vδt, y, z) (30)

But, generally, condition (M) by no means requires that the system be
in a simple stationary state and all parts move with the same collective
velocity—the objects contained in Galileo’s cabin may exhibit very complex
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time-dependent behavior; the fishes may swim with their fins, the butterflies
may move their wings, the particles of the smoke may follow a very complex
dynamics.

Notice that requirement (M) does not even say anything about whether and
how the fact that the system in question is co-moving with a reference frame
is reflected in a solution F ∈ E . It does not even require that this fact can be
expressed in terms of quantities ξ1, ξ2, . . . ξn. It only requires that each F ∈ E
belong to a physical situation in which it is meaningful to say—perhaps in
terms of quantities different from ξ1, ξ2, . . . ξn—that the system is at rest or in
motion relative to an inertial reference frame. How a concrete physical situa-
tion can be so characterized is a separate problem, which can be discussed in
the particular contexts.6

The second thing to be said about MV(F) is that it is a notion determined
by the concrete physical context; but it is not equal to the “Lorentz boosted
solution” T−1

V (PV(F)) by definition —as a little reflection shows:

(a) In this case, (8) would read

T−1
V (PV(F)) = T−1

V (PV(F)) (31)

That is, the RP would become a tautology; a statement which is
always true, independently of any contingent fact of nature; inde-
pendently of the actual behavior of moving physical objects; and
independently of the actual empirical meanings of physical quan-
tities ξ ′1, ξ ′2, . . . ξ ′n. But, the RP is supposed to be a fundamental law
of nature. Note that a tautology is entirely different from a funda-
mental principle, even if the principle is used as a fundamental hy-
pothesis or fundamental premise of a theory, from which one de-
rives further physical statements. For, a fundamental premise, as
expressing a contingent fact of nature, is potentially falsifiable by
testing its consequences; a tautology is not.

(b) Even if accepted, MV(F)
de f
= T−1

V (PV(F)) can provide physical
meaning to MV(F) only if we know the meanings of TV and PV, that
is, if we know the empirical meanings of the quantities denoted by
ξ ′1, ξ ′2, . . . ξ ′n. But, the physical meaning of ξ ′1, ξ ′2, . . . ξ ′n are obtained
from the operational definitions: they are the quantities obtained
by “the same measurements with the same equipments when they
are co-moving with K′ with velocity V relative to K”. Symbolically,
we need, priory, the concepts of MV(ξi-equipment at rest). And this
is a conceptual circularity: in order to have the concept of what
it is to be an MV(brick at rest) the (size)’ of which we would like
to ascertain, we need to have the concept of what it is to be an
MV(measuring rod at rest)—which is exactly the same conceptual
problem.

(c) One might claim that we do not need to specify the concepts of
MV(ξi-equipment at rest) in order to know the values of quantities

6For example, even this minimum requirement can raise non-trivial questions in electrodynam-
ics (Gömöri and Szabó 2011b).
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ξ ′1, ξ ′2, . . . ξ ′n we obtain by the measurements with the moving equip-
ments, given that we can know the transformation rule TV indepen-
dently of knowing the operational definitions of ξ ′1, ξ ′2, . . . ξ ′n. Typi-
cally, TV is thought to be derived from the assumption that the RP
(8) holds. If however MV is, by definition, equal to T−1

V ◦ PV, then
in place of (8) we have the tautology (31), which does not determine
TV.

(d) Therefore, unsurprisingly, it is not the RP from which the transfor-
mation rules are routinely deduced, but the covariance (14). As we
have seen, however, covariance is, in general, neither sufficient nor
necessary for the RP. Whether (8) implies (14) hinges on the physi-
cal fact whether (16) is satisfied. But, if MV is taken to be T−1

V ◦ PV
by definition, the RP becomes true—in the form of tautology (31)—
but does not imply covariance T−1

V ◦ PV(E) = E .

(e) Even if we assume that a “transformation rule” function φ′ ◦ TV ◦
φ−1 were derived from some independent premises—from the in-
dependent assumption of covariance, for example—how do we
know that the TV we obtained and the quantities of values φ′ ◦ TV ◦
φ−1 (ξ1, ξ2, . . . ξn) are correct plugins for the RP? How could we ver-
ify that φ′ ◦ TV ◦ φ−1 (ξ1, ξ2, . . . ξn) are indeed the values measured
by a moving observer applying the same operations with the same
measuring equipments, etc.?—without having an independent con-
cept of MV, at least for the measuring equipments?

(f) One could argue that we do not need such a verification; φ′ ◦ TV ◦
φ−1 (ξ1, ξ2, . . . ξn) can be regarded as the empirical definition of the
primed quantities:

(
ξ ′1, ξ ′2, . . . ξ ′n

) de f
= φ′ ◦ TV ◦ φ−1 (ξ1, ξ2, . . . ξn) (32)

This is of course logically possible. The operational definition of the
primed quantities would say: ask the observer at rest in K to mea-
sure ξ1, ξ2, . . . ξn with the measuring equipments at rest in K, and
then perform the mathematical operation (32). In this way, how-
ever, even the transformation rules would become tautologies; they
would be true, no matter how the things are in the physical world.

(g) Someone might claim that the identity of MV with T−1
V ◦ PV is not a

simple stipulation but rather an analytic truth which follows from
the identity of the two concepts. Still, if that were the case, RP would
be a statement which is true in all possible worlds; independently of
any contingent fact of nature; independently of the actual behavior
of moving physical objects.

(h) On the contrary, as we have already pointed out in Remark 3,
MV(F) and T−1

V (PV(F)) are different concepts, referring to different
features of different parts of the physical reality. Any connection
between the two things must be a contingent fact of the world.
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(i) T−1
V ◦ PV is a 2R → 2R map which is completely determined by

the physical behaviors of the measuring equipments. On the other
hand, whether the elements of E ⊂ 2R satisfy condition (M) and
whether T−1

V ◦ PV(E) ⊆ E depend on the actual physical properties
of the object physical system.

(j) Let us note that in the standard textbook applications of the RP MV
is used as an independent concept, without any prior reference to
the Lorentz boost T−1

V ◦ PV. For example, we do not need to refer to
the Lorentz transformations in order to understand the concept of
‘the stationary electromagnetic field of a uniformly moving point
charge’; as we are capable to solve the electrodynamical equations
for such a situation, within one single frame of reference, without
even knowing of the Lorentz transformation rules. y
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