606 research outputs found

    Automotive Ethernet architecture and security: challenges and technologies

    Get PDF
    Vehicle infrastructure must address the challenges posed by today's advances toward connected and autonomous vehicles. To allow for more flexible architectures, high-bandwidth connections and scalability are needed to connect many sensors and electronic control units (ECUs). At the same time, deterministic and low latency is a critical and significant design requirement to support urgent real-time applications in autonomous vehicles. As a recent solution, the time-sensitive network (TSN) was introduced as Ethernet-based amendments in IEEE 802.1 TSN standards to meet those needs. However, it had hurdle to be overcome before it can be used effectively. This paper discusses the latest studies concerning the automotive Ethernet requirements, including transmission delay studies to improve worst-case end-to-end delay and end-to-end jitter. Also, the paper focuses on the securing Ethernet-based in-vehicle networks (IVNs) by reviewing new encryption and authentication methods and approaches

    An integrated security Protocol communication scheme for Internet of Things using the Locator/ID Separation Protocol Network

    Get PDF
    Internet of Things communication is mainly based on a machine-to-machine pattern, where devices are globally addressed and identified. However, as the number of connected devices increase, the burdens on the network infrastructure increase as well. The major challenges are the size of the routing tables and the efficiency of the current routing protocols in the Internet backbone. To address these problems, an Internet Engineering Task Force (IETF) working group, along with the research group at Cisco, are still working on the Locator/ID Separation Protocol as a routing architecture that can provide new semantics for the IP addressing, to simplify routing operations and improve scalability in the future of the Internet such as the Internet of Things. Nonetheless, The Locator/ID Separation Protocol is still at an early stage of implementation and the security Protocol e.g. Internet Protocol Security (IPSec), in particular, is still in its infancy. Based on this, three scenarios were considered: Firstly, in the initial stage, each Locator/ID Separation Protocol-capable router needs to register with a Map-Server. This is known as the Registration Stage. Nevertheless, this stage is vulnerable to masquerading and content poisoning attacks. Secondly, the addresses resolving stage, in the Locator/ID Separation Protocol the Map Server (MS) accepts Map-Request from Ingress Tunnel Routers and Egress Tunnel Routers. These routers in trun look up the database and return the requested mapping to the endpoint user. However, this stage lacks data confidentiality and mutual authentication. Furthermore, the Locator/ID Separation Protocol limits the efficiency of the security protocol which works against redirecting the data or acting as fake routers. Thirdly, As a result of the vast increase in the different Internet of Things devices, the interconnected links between these devices increase vastly as well. Thus, the communication between the devices can be easily exposed to disclosures by attackers such as Man in the Middle Attacks (MitM) and Denial of Service Attack (DoS). This research provided a comprehensive study for Communication and Mobility in the Internet of Things as well as the taxonomy of different security protocols. It went on to investigate the security threats and vulnerabilities of Locator/ID Separation Protocol using X.805 framework standard. Then three Security protocols were provided to secure the exchanged transitions of communication in Locator/ID Separation Protocol. The first security protocol had been implemented to secure the Registration stage of Locator/ID separation using ID/Based cryptography method. The second security protocol was implemented to address the Resolving stage in the Locator/ID Separation Protocol between the Ingress Tunnel Router and Egress Tunnel Router using Challenge-Response authentication and Key Agreement technique. Where, the third security protocol had been proposed, analysed and evaluated for the Internet of Things communication devices. This protocol was based on the authentication and the group key agreement via using the El-Gamal concept. The developed protocols set an interface between each level of the phase to achieve security refinement architecture to Internet of Things based on Locator/ID Separation Protocol. These protocols were verified using Automated Validation Internet Security Protocol and Applications (AVISPA) which is a push button tool for the automated validation of security protocols and achieved results demonstrating that they do not have any security flaws. Finally, a performance analysis of security refinement protocol analysis and an evaluation were conducted using Contiki and Cooja simulation tool. The results of the performance analysis showed that the security refinement was highly scalable and the memory was quite efficient as it needed only 72 bytes of memory to store the keys in the Wireless Sensor Network (WSN) device

    UXS AUTHENTICATION AND KEY EXCHANGE REQUIREMENTS FOR MULTIDOMAIN OPERATION AND JOINT INTEROPERABILITY

    Get PDF
    Within the Joint All Domain Command and Control (C2) sensor network and the Navy’s Project Overmatch, unmanned systems (UxS) are a shared capability that extends reach and capacity of the military force to enhance tactics in contested spaces. This has increased research into interoperable network frameworks to securely and efficiently C2 distributed UxS forces. To date, antiquated technologies, stove-piped and proprietary business practices limit or obscure the pursuit of emerging industry techniques that provide security features required for today’s modernized force—leaving more questions than facts. Moreover, UxS power and processing limitations and constrained operating environments prohibit the use of existing modern communications protocols. However, developments in message layer security (MLS), a secure and efficient group communication protocol, could be the ideal choice for UxS teaming. This thesis documents results gathered from a qualitative study that finds MLS the best option for UxS group security and efficiency. It also documents the integration of MLS into the ScanEagle unmanned aerial vehicle (UAV) and Naval Information Warfare Pacific CASSMIR unmanned surface vehicle (USV). The implementation provides a concept of operation to demonstrate the use of MLS to provide secure and efficient C2 and exchange of data between the UAV and USV in a multi-domain ad-hoc network configuration. The experiments conducted are in a virtual environment and the physical UxS.Lieutenant, United States NavyLieutenant, United States NavyApproved for public release. Distribution is unlimited

    Project BeARCAT : Baselining, Automation and Response for CAV Testbed Cyber Security : Connected Vehicle & Infrastructure Security Assessment

    Get PDF
    Connected, software-based systems are a driver in advancing the technology of transportation systems. Advanced automated and autonomous vehicles, together with electrification, will help reduce congestion, accidents and emissions. Meanwhile, vehicle manufacturers see advanced technology as enhancing their products in a competitive market. However, as many decades of using home and enterprise computer systems have shown, connectivity allows a system to become a target for criminal intentions. Cyber-based threats to any system are a problem; in transportation, there is the added safety implication of dealing with moving vehicles and the passengers within

    Securing Handover in Wireless IP Networks

    Get PDF
    In wireless and mobile networks, handover is a complex process that involves multiple layers of protocol and security executions. With the growing popularity of real time communication services such as Voice of IP, a great challenge faced by handover nowadays comes from the impact of security implementations that can cause performance degradation especially for mobile devices with limited resources. Given the existing networks with heterogeneous wireless access technologies, one essential research question that needs be addressed is how to achieve a balance between security and performance during the handover. The variations of security policy and agreement among different services and network vendors make the topic challenging even more, due to the involvement of commercial and social factors. In order to understand the problems and challenges in this field, we study the properties of handover as well as state of the art security schemes to assist handover in wireless IP networks. Based on our analysis, we define a two-phase model to identify the key procedures of handover security in wireless and mobile networks. Through the model we analyze the performance impact from existing security schemes in terms of handover completion time, throughput, and Quality of Services (QoS). As our endeavor of seeking a balance between handover security and performance, we propose the local administrative domain as a security enhanced localized domain to promote the handover performance. To evaluate the performance improvement in local administrative domain, we implement the security protocols adopted by our proposal in the ns-2 simulation environment and analyze the measurement results based on our simulation test

    Securing SOME/IP for In-Vehicle Service Protection

    Get PDF
    Although high-speed in-vehicle networks are being increasingly adopted by the industry to support emerging use cases, previous research already demonstrated that car hacking is a real threat. This paper formalizes a novel framework proposed to provide improved security to the emerging SOME/IP middleware, without introducing at the same time limitations in the communication patterns available. Most notably, the entire traffic matrix is designed to be configured using simple high-level rules, clearly stating who can talk to whom according to the service abstraction adopted by SOME/IP. Three incremental security levels are made available, accounting for different services being associated with different requirements. The core security protocol, encompassing a session establishment phase followed by the transmission of secured SOME/IP messages, has been formally verified, to prove its correctness in terms of authentication and secrecy properties. Performance-wise, in-depth experimental evaluations conducted with an extended version of vsomeip confirmed the introduction of quite limited penalties compared to the bare unsecured implementation

    Ein mehrschichtiges sicheres Framework für Fahrzeugsysteme

    Get PDF
    In recent years, significant developments were introduced within the vehicular domain, evolving the vehicles to become a network of many embedded systems distributed throughout the car, known as Electronic Control Units (ECUs). Each one of these ECUs runs a number of software components that collaborate with each other to perform various vehicle functions. Modern vehicles are also equipped with wireless communication technologies, such as WiFi, Bluetooth, and so on, giving them the capability to interact with other vehicles and roadside infrastructure. While these improvements have increased the safety of the automotive system, they have vastly expanded the attack surface of the vehicle and opened the door for new potential security risks. The situation is made worse by a lack of security mechanisms in the vehicular system which allows the escalation of a compromise in one of the non-critical sub-systems to threaten the safety of the entire vehicle and its passengers. This dissertation focuses on providing a comprehensive framework that ensures the security of the vehicular system during its whole life-cycle. This framework aims to prevent the cyber-attacks against different components by ensuring secure communications among them. Furthermore, it aims to detect attacks which were not prevented successfully, and finally, to respond to these attacks properly to ensure a high degree of safety and stability of the system.In den letzten Jahren wurden bedeutende Entwicklungen im Bereich der Fahrzeuge vorgestellt, die die Fahrzeuge zu einem Netzwerk mit vielen im gesamten Fahrzeug verteile integrierte Systeme weiterentwickelten, den sogenannten Steuergeräten (ECU, englisch = Electronic Control Units). Jedes dieser Steuergeräte betreibt eine Reihe von Softwarekomponenten, die bei der Ausführung verschiedener Fahrzeugfunktionen zusammenarbeiten. Moderne Fahrzeuge sind auch mit drahtlosen Kommunikationstechnologien wie WiFi, Bluetooth usw. ausgestattet, die ihnen die Möglichkeit geben, mit anderen Fahrzeugen und der straßenseitigen Infrastruktur zu interagieren. Während diese Verbesserungen die Sicherheit des Fahrzeugsystems erhöht haben, haben sie die Angriffsfläche des Fahrzeugs erheblich vergrößert und die Tür für neue potenzielle Sicherheitsrisiken geöffnet. Die Situation wird durch einen Mangel an Sicherheitsmechanismen im Fahrzeugsystem verschärft, die es ermöglichen, dass ein Kompromiss in einem der unkritischen Subsysteme die Sicherheit des gesamten Fahrzeugs und seiner Insassen gefährdet kann. Diese Dissertation konzentriert sich auf die Entwicklung eines umfassenden Rahmens, der die Sicherheit des Fahrzeugsystems während seines gesamten Lebenszyklus gewährleistet. Dieser Rahmen zielt darauf ab, die Cyber-Angriffe gegen verschiedene Komponenten zu verhindern, indem eine sichere Kommunikation zwischen ihnen gewährleistet wird. Darüber hinaus zielt es darauf ab, Angriffe zu erkennen, die nicht erfolgreich verhindert wurden, und schließlich auf diese Angriffe angemessen zu reagieren, um ein hohes Maß an Sicherheit und Stabilität des Systems zu gewährleisten

    MedLAN: Compact mobile computing system for wireless information access in emergency hospital wards

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.As the need for faster, safer and more efficient healthcare delivery increases, medical consultants seek new ways of implementing a high quality telemedical system, using innovative technology. Until today, teleconsultation (the most common application of Telemedicine) was performed by transferring the patient from the Accidents and Emergency ward, to a specially equipped room, or by moving large and heavy machinery to the place where the patient resided. Both these solutions were unpractical, uneconomical and potentially dangerous. At the same time wireless networks became increasingly useful in point-of-care areas such as hospitals, because of their ease of use, low cost of installation and increased flexibility. This thesis presents an integrated system called MedLAN dedicated for use inside the A&E hospital wards. Its purpose is to wirelessly support high-quality live video, audio, high-resolution still images and networks support from anywhere there is WLAN coverage. It is capable of transmitting all of the above to a consultant residing either inside or outside the hospital, or even to an external place, thorough the use of the Internet. To implement that, it makes use of the existing IEEE 802.11b wireless technology. Initially, this thesis demonstrates that for specific scenarios (such as when using WLANs), DICOM specifications should be adjusted to accommodate for the reduced WLAN bandwidth. Near lossless compression has been used to send still images through the WLANs and the results have been evaluated by a number of consultants to decide whether they retain their diagnostic value. The thesis further suggests improvements on the existing 802.11b protocol. In particular, as the typical hospital environment suffers from heavy RF reflections, it suggests that an alternative method of modulation (OFDM) can be embedded in the 802.11b hardware to reduce the multipath effect, increase the throughput and thus the video quality sent by the MedLAN system. Finally, realising that the trust between a patient and a doctor is fundamental this thesis proposes a series of simple actions aiming at securing the MedLAN system. Additionally, a concrete security system is suggested, that encapsulates the existing WEP security protocol, over IPSec
    corecore