8 research outputs found

    Towards Model Checking Executable UML Specifications in mCRL2

    Get PDF
    We describe a translation of a subset of executable UML (xUML) into the process algebraic specification language mCRL2. This subset includes class diagrams with class generalisations, and state machines with signal and change events. The choice of these xUML constructs is dictated by their use in the modelling of railway interlocking systems. The long-term goal is to verify safety properties of interlockings modelled in xUML using the mCRL2 and LTSmin toolsets. Initial verification of an interlocking toy example demonstrates that the safety properties of model instances depend crucially on the run-to-completion assumptions

    Verification of interlocking systems using statistical model checking

    Get PDF
    In the railway domain, an interlocking is the system ensuring safe train traffic inside a station by controlling its active elements such as the signals or points. Modern interlockings are configured using particular data, called application data, reflecting the track layout and defining the actions that the interlocking can take. The safety of the train traffic relies thereby on application data correctness, errors inside them can cause safety issues such as derailments or collisions. Given the high level of safety required by such a system, its verification is a critical concern. In addition to the safety, an interlocking must also ensure that availability properties, stating that no train would be stopped forever in a station, are satisfied. Most of the research dealing with this verification relies on model checking. However, due to the state space explosion problem, this approach does not scale for large stations. More recently, a discrete event simulation approach limiting the verification to a set of likely scenarios, was proposed. The simulation enables the verification of larger stations, but with no proof that all the interesting scenarios are covered by the simulation. In this paper, we apply an intermediate statistical model checking approach, offering both the advantages of model checking and simulation. Even if exhaustiveness is not obtained, statistical model checking evaluates with a parametrizable confidence the reliability and the availability of the entire system.Comment: 12 pages, 3 figures, 2 table

    Automatic instantiation of abstract tests on specific configurations for large critical control systems

    Full text link
    Computer-based control systems have grown in size, complexity, distribution and criticality. In this paper a methodology is presented to perform an abstract testing of such large control systems in an efficient way: an abstract test is specified directly from system functional requirements and has to be instantiated in more test runs to cover a specific configuration, comprising any number of control entities (sensors, actuators and logic processes). Such a process is usually performed by hand for each installation of the control system, requiring a considerable time effort and being an error prone verification activity. To automate a safe passage from abstract tests, related to the so called generic software application, to any specific installation, an algorithm is provided, starting from a reference architecture and a state-based behavioural model of the control software. The presented approach has been applied to a railway interlocking system, demonstrating its feasibility and effectiveness in several years of testing experience

    Formally verified asymptotic consensus in robust networks

    Full text link
    Distributed architectures are used to improve performance and reliability of various systems. Examples include drone swarms and load-balancing servers. An important capability of a distributed architecture is the ability to reach consensus among all its nodes. Several consensus algorithms have been proposed, and many of these algorithms come with intricate proofs of correctness, that are not mechanically checked. In the controls community, algorithms often achieve consensus asymptotically, e.g., for problems such as the design of human control systems, or the analysis of natural systems like bird flocking. This is in contrast to exact consensus algorithm such as Paxos, which have received much more recent attention in the formal methods community. This paper presents the first formal proof of an asymptotic consensus algorithm, and addresses various challenges in its formalization. Using the Coq proof assistant, we verify the correctness of a widely used consensus algorithm in the distributed controls community, the Weighted-Mean Subsequence Reduced (W-MSR) algorithm. We formalize the necessary and sufficient conditions required to achieve resilient asymptotic consensus under the assumed attacker model. During the formalization, we clarify several imprecisions in the paper proof, including an imprecision on quantifiers in the main theorem.Comment: This paper has been accepted for publication at the TACAS,2024 conferenc

    Formal Verification and Validation of ERTMS Industrial Railway Train Spacing System

    Full text link
    Abstract. Formal verification and validation is a fundamental step for the certifi-cation of railways critical systems. Many railways safety standards (e.g. the CEN-ELEC EN-50126, EN-50128 and EN-50129 standards implement the mandatory safety requirements of IEC-61508-7 standard for Functional and Safety) currently mandate the use of formal methods in the design to certify correctness. In this paper we describe an industrial application of formal methods for the ver-ification and validation of “Logica di Sicurezza ” (LDS), the safety logic of a railways ERTMS Level 2 system developed by Ansaldo-STS. LDS is a generic control software that needs to be instantiated on a railways network configuration. We developed a methodology for the verification and validation of a critical sub-set of LDS deployed on typical realistic railways network configurations. To show feasibility, effectiveness and scalability, we have experimented with several state of the art symbolic software model checking techniques and tools on different network configurations. From the experiments, we have successfully identified an effective strategy for the verification and validation of our case study. More-over, the results of experiments show that formal verification and validation is feasible and effective, and also scales reasonably well with the size of the config-uration. Given the results, Ansaldo-STS is currently integrating the methodology in its internal Development and Verification & Validation Flow.

    Integrated application of compositional and behavioural safety analysis

    Get PDF
    To address challenges arising in the safety assessment of critical engineering systems, research has recently focused on automating the synthesis of predictive models of system failure from design representations. In one approach, known as compositional safety analysis, system failure models such as fault trees and Failure Modes and Effects Analyses (FMEAs) are constructed from component failure models using a process of composition. Another approach has looked into automating system safety analysis via application of formal verification techniques such as model checking on behavioural models of the system represented as state automata. So far, compositional safety analysis and formal verification have been developed separately and seen as two competing paradigms to the problem of model-based safety analysis. This thesis shows that it is possible to move forward the terms of this debate and use the two paradigms synergistically in the context of an advanced safety assessment process. The thesis develops a systematic approach in which compositional safety analysis provides the basis for the systematic construction and refinement of state-automata that record the transition of a system from normal to degraded and failed states. These state automata can be further enhanced and then be model-checked to verify the satisfaction of safety properties. Note that the development of such models in current practice is ad hoc and relies only on expert knowledge, but it being rationalised and systematised in the proposed approach – a key contribution of this thesis. Overall the approach combines the advantages of compositional safety analysis such as simplicity, efficiency and scalability, with the benefits of formal verification such as the ability for automated verification of safety requirements on dynamic models of the system, and leads to an improved model-based safety analysis process. In the context of this process, a novel generic mechanism is also proposed for modelling the detectability of errors which typically arise as a result of component faults and then propagate through the architecture. This mechanism is used to derive analyses that can aid decisions on appropriate detection and recovery mechanisms in the system model. The thesis starts with an investigation of the potential for useful integration of compositional and formal safety analysis techniques. The approach is then developed in detail and guidelines for analysis and refinement of system models are given. Finally, the process is evaluated in three cases studies that were iteratively performed on increasingly refined and improved models of aircraft and automotive braking and cruise control systems. In the light of the results of these studies, the thesis concludes that integration of compositional and formal safety analysis techniques is feasible and potentially useful in the design of safety critical systems

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore