7,622 research outputs found

    Formal Specification and Verification of a Coordination Protocol for an Automated Air Traffic Control System

    Get PDF
    Safe separation between aircraft is the primary consideration in air trafficcontrol. To achieve the required level of assurance for this safety-critical application,the Automated Airspace Concept (AAC) proposes three levels of conflict detectionand resolution. Recently, a high-level operational concept was proposed to definethe cooperation between components in the AAC. However, the proposed coordinationprotocol has not been formally studied. We use formal verification techniquesto ensure there are no potentially catastrophic design flaws remaining in the AACdesign before the next stage of production.We formalize the high-level operational concept, which was previously describedonly in natural language, in NuSMV and perform model validation by checkingagainst LTL/CTL specifications we derive from the system description. We writeLTL specifications describing safe system operations and use model checking forsystem verification. We employ specification debugging to ensure correctness ofboth sets of formal specifications and model abstraction to reduce model checkingtime and enable fast, design-time checking. We analyze two counterexamplesrevealing unexpected emergent behaviors in the operational concept that triggereddesign changes by system engineers to meet safety standards. Our experience reportilluminates the application of formal methods in real safety-critical system developmentby detailing a complete end-to-end design-time verification process includingall models and specifications

    On the Security of the Automatic Dependent Surveillance-Broadcast Protocol

    Full text link
    Automatic dependent surveillance-broadcast (ADS-B) is the communications protocol currently being rolled out as part of next generation air transportation systems. As the heart of modern air traffic control, it will play an essential role in the protection of two billion passengers per year, besides being crucial to many other interest groups in aviation. The inherent lack of security measures in the ADS-B protocol has long been a topic in both the aviation circles and in the academic community. Due to recently published proof-of-concept attacks, the topic is becoming ever more pressing, especially with the deadline for mandatory implementation in most airspaces fast approaching. This survey first summarizes the attacks and problems that have been reported in relation to ADS-B security. Thereafter, it surveys both the theoretical and practical efforts which have been previously conducted concerning these issues, including possible countermeasures. In addition, the survey seeks to go beyond the current state of the art and gives a detailed assessment of security measures which have been developed more generally for related wireless networks such as sensor networks and vehicular ad hoc networks, including a taxonomy of all considered approaches.Comment: Survey, 22 Pages, 21 Figure

    A Multi-Agent Approach for Designing Next Generation of Air Traffic Systems

    Get PDF
    This work was funded by Spanish Ministry of Economy and Competitiveness under grant TEC2011-28626 C01-C02, and by the Government of Madrid under grant S2009/TIC-1485 (CONTEXTS)

    Model Checking at Scale: Automated Air Traffic Control Design Space Exploration

    Get PDF
    Many possible solutions, differing in the assumptions and implementations of the components in use, are usually in competition during early design stages. Deciding which solution to adopt requires considering several trade-offs. Model checking represents a possible way of comparing such designs, however, when the number of designs is large, building and validating so many models may be intractable. During our collaboration with NASA, we faced the challenge of considering a design space with more than 20,000 designs for the NextGen air traffic control system. To deal with this problem, we introduce a compositional, modular, parameterized approach combining model checking with contract-based design to automatically generate large numbers of models from a possible set of components and their implementations. Our approach is fully automated, enabling the generation and validation of all target designs. The 1,620 designs that were most relevant to NASA were analyzed exhaustively. To deal with the massive amount of data generated, we apply novel data-analysis techniques that enable a rich comparison of the designs, including safety aspects. Our results were validated by NASA system designers, and helped to identify novel as well as known problematic configurations

    Specification: The Biggest Bottleneck in Formal Methods and Autonomy

    Get PDF
    Advancement of AI-enhanced control in autonomous systems stands on the shoulders of formal methods, which make possible the rigorous safety analysis autonomous systems require. An aircraft cannot operate autonomously unless it has design-time reasoning to ensure correct operation of the autopilot and runtime reasoning to ensure system health management, or the ability to detect and respond to off-nominal situations. Formal methods are highly dependent on the specifications over which they reason; there is no escaping the “garbage in, garbage out” reality. Specification is difficult, unglamorous, and arguably the biggest bottleneck facing verification and validation of aerospace, and other, autonomous systems. This VSTTE invited talk and paper examines the outlook for the practice of formal specification, and highlights the on-going challenges of specification, from design-time to runtime system health management. We exemplify these challenges for specifications in Linear Temporal Logic (LTL) though the focus is not limited to that specification language. We pose challenge questions for specification that will shape both the future of formal methods, and our ability to more automatically verify and validate autonomous systems of greater variety and scale. We call for further research into LTL Genesis

    Evaluating humanhuman communication protocols with miscommunication generation and model checking

    Get PDF
    Abstract. Human-human communication is critical to safe operations in domains such as air transportation where airlines develop and train pilots on communication procedures with the goal to ensure that they check that verbal air traffic clearances are correctly heard and executed. Such communication protocols should be designed to be robust to miscommunication. However, they can fail in ways unanticipated by designers. In this work, we present a method for modeling human-human communication protocols using the Enhanced Operator Function Model with Communications (EOFMC), a task analytic modeling formalism that can be interpreted by a model checker. We describe how miscommunications can be generated from instantiated EOFMC models of human-human communication protocols. Using an air transportation example, we show how model checking can be used to evaluate if a given protocol will ensure successful communication. Avenues of future research are explored
    • …
    corecore