7 research outputs found

    Formal Probabilistic Analysis of a Wireless Sensor Network for Forest Fire Detection

    Full text link
    Wireless Sensor Networks (WSNs) have been widely explored for forest fire detection, which is considered a fatal threat throughout the world. Energy conservation of sensor nodes is one of the biggest challenges in this context and random scheduling is frequently applied to overcome that. The performance analysis of these random scheduling approaches is traditionally done by paper-and-pencil proof methods or simulation. These traditional techniques cannot ascertain 100% accuracy, and thus are not suitable for analyzing a safety-critical application like forest fire detection using WSNs. In this paper, we propose to overcome this limitation by applying formal probabilistic analysis using theorem proving to verify scheduling performance of a real-world WSN for forest fire detection using a k-set randomized algorithm as an energy saving mechanism. In particular, we formally verify the expected values of coverage intensity, the upper bound on the total number of disjoint subsets, for a given coverage intensity, and the lower bound on the total number of nodes.Comment: In Proceedings SCSS 2012, arXiv:1307.802

    Formalization of Measure Theory and Lebesgue Integration for Probabilistic Analysis in HOL

    Get PDF
    Dynamic systems that exhibit probabilistic behavior represent a large class of man-made systems such as communication networks, air traffic control, and other mission-critical systems. Evaluation of quantitative issues like performance and dependability of these systems is of paramount importance. In this paper, we propose a generalized methodology to formally reason about probabilistic systems within a theorem prover. We present a formalization of measure theory in the HOL theorem prover and use it to formalize basic concepts from the theory of probability. We also use the Lebesgue integration to formalize statistical properties of random variables. To illustrate the practical effectiveness of our methodology, we formally prove classical results from the theories of probability and information and use them in a data compression application in HOL

    Formalization of Continuous Time Markov Chains with Applications in Queueing Theory

    Get PDF
    The performance analysis of engineering systems have become very critical due to their usage in safety and mission critical domains such as military and biomedical devices. Such an analysis is often carried out based on the Markovian (or Markov Chains based) models of underlying software and hardware components. Furthermore, some important properties can only be captured by queueing theory which involves Markov Chains with continuous time behavior. Classically, the analysis of such models has been performed using paper-and-pencil based proofs and computer simulation, both of which cannot provide perfectly accurate results due to the error-prone nature of manual proofs and the non-exhaustive nature of simulation. Recently, model checking based formal methods have also been used to analyze Markovian and queuing systems. However, such an approach is only applicable for small systems and cannot certify generic properties due to the sate-space explosion problem. In this thesis, we propose to use higher-order-logic theorem proving as a complementary approach to conduct the formal analysis of queueing systems. To this aim, we present the higher-order-logic formalization of the Poisson process which is the foremost step to model queueing systems. We also verify some of its classical properties such as exponentially distributed inter-arrival time, memoryless property and independent and stationary increments. Moreover, we used the formalization of the Poisson process to model and verify the error probability of a generic optical communication system. Then we present the formalization of Continuous-Time Markov Chains along with the Birth-Death process. Lastly, we demonstrate the utilization of our developed infrastructure by presenting the formalization of an M/M/1 queue which is widely used to model telecommunication systems. We also formally verified the generic result about the average waiting time for any given queue

    Information-Theoretic Analysis using Theorem Proving

    Get PDF
    Information theory is widely used for analyzing a wide range of scientific and engineering problems, including cryptography, neurobiology, quantum computing, plagiarism detection and other forms of data analysis. Despite the safety-critical nature of some of these applications, most of the information-theoretic analysis is done using informal techniques, mainly computer simulation and paper-and-pencil analysis, and thus cannot be completely relied upon. The unreliable nature of the produced results poses a serious problem in safety-critical applications and may result in heavy financial losses or even the loss of human life. In order to overcome the inaccuracy limitations of these techniques, this thesis proposes to conduct the analysis within the trusted kernel of a higher-order-logic (HOL) theorem prover. For this purpose, we provide HOL formalizations of the fundamental theories of measure, Lebesgue integration and probability and use them to formalize some of the most widely used information-theoretic principles. We use the Kullback-Leibler divergence as a unified measure of information which is in turn used to define the main measures of information like the Shannon entropy, mutual information and conditional mutual information. Furthermore, we introduce two new measures of information leakage, namely the information leakage degree and the conditional information leakage degree and compare them with existing measures. We illustrate the usefulness of the proposed framework by tackling various applications including the performance analysis of a communication encoder used in the proof of the Shannon source coding theorem, the quantitative analysis of privacy properties of a digital communications mixer and the one-time pad encryption system using information-theoretic measures

    Formalization of Discrete-time Markov Chains in HOL

    Get PDF
    Markov chains are extensively used in the modeling and analysis of engineering and scientific problems which can be expressed as random processes with the memoryless property. Usually, paper-and-pencil proofs, simulation or computer algebra software are used to analyze Markovian models. However, these techniques either are not scalable or do not guarantee accurate results, which are vital in safety-critical systems. To improve the accuracy of the analysis, probabilistic model checking has been recently proposed to formally analyze Markovian systems. However, model checking suffers from the inherent state-explosion problem and thus has a very limited scope in terms of analyzing Markovian models.\newline \indent In order to overcome the above mentioned limitations, this thesis advocates the usage of higher-order-logic theorem proving for conducting the analysis of Markov chains. We present the higher-order-logic formalization of Discrete-time Markov Chains with finite number of discrete states. We also verify some of their most widely used properties using a theorem prover. These foundations allow us to formally express and reason about Markov chains within the sound core of a theorem prover and thus attain precise results. Moreover, by building upon these foundational results, this thesis also presents the formalization of classified discrete-time Markov chains and hidden Markov chains in higher-order logic. These are widely used concepts in the analysis of Markovian models and thus allow us to tackle the formal analysis of a wide range of engineering and scientific systems. For illustration purposes, the thesis also presents some applications including a binary communication channel, the automatic mail quality measurement (AMQM) protocol, a DNA sequence, a least recently used (LRU) stack model and the birth-death process

    Continuous probability distributions in model-based specification languages

    Get PDF
    PhD ThesisModel-based speci cation languages provide a means for obtaining assurance of dependability of complex computer-based systems, but provide little support for modelling and analysing fault behaviour, which is inherently probabilistic in nature. In particular, the need for a detailed account of the role of continuous probability has been largely overlooked. This thesis addresses the role of continuous probability in model-based speci cation languages. A model-based speci cation language (sGCL) that supports continuous probability distributions is de ned. The use of sGCL and how it interacts with engineering practices is also explored. In addition, a re nement ordering for continuous probability distributions is given, and the challenge of combining non-determinism and continuous probability is discussed in depth. The thesis is presented in three parts. The rst uses two case studies to explore the use of probability in formal methods. The rst case study, on ash memory, is used to present the capabilities of probabilistic formal methods and to determine the kinds of questions that require continuous probability distributions to answer. The second, on an emergency brake system, illustrates the strengths and weaknesses of existing languages and provides a basis for exploring a prototype language that includes continuous probability. The second part of the thesis gives the formal de nition of sGCL's syntax and semantics. The semantics is made up of two parts, the proof theory (transformer semantics) and the underpinning mathematics (relational semantics). The additional language constructs and semantical features required to include non-determinism as well as continuous probability are also discussed. The most challenging aspect lies in proving the consistency of the semantics when non-determinism is also included. The third part uses a nal case study, on an aeroplane pitch monitor, to demonstrate the use of sGCL. The new analysis techniques provided by sGCL, and how they t in with engineering practices, are explored.EPSRC: The School of Computing Science, Newcastle University: DEPLOY project

    Formal Reliability Analysis using Higher-order Logic Theorem Proving

    Get PDF
    Traditional techniques used in the reliability analysis of engineering systems have limitations. Paper-and-pencil based analysis is prone to human error and simulation based techniques cannot be computationally one hundred percent accurate. An alternative to these two traditional approaches is modeling and analysis of reliability of systems using formal methods based techniques such as probabilistic theorem proving. Probabilistic theorem proving using higher-order logic can be used for modeling and analysis of reliability of engineering systems provided a certain reasoning infrastructure is developed. The developed infrastructure can include random variables, their probabilistic and statistical properties, and basic reliability theory concepts such as survival and hazard functions. This thesis describes state-of-the-art research in reliability analysis using theorem proving. It also describes the main contributions of this thesis which include: the formalization of statistical properties of continuous random variables, the formalization of multiple continuous random variables and the formalization of the basic notions of reliability that can be applied to single and multiple component systems. Engineering applications of the formalization are presented that illustrate the usefulness of our formalization infrastructure. These applications include reliability analysis of electronic system components such as a capacitor and an underground power transmission cable. We also present the reliability analysis of an automobile transmission using our higher-order logic formalization. To the best of our knowledge, for the very first time, the use of theorem proving based infrastructure enables formal reliability analysis of engineering systems that is computationally one hundred percent accurate and sound. The analysis is performed using real and true random variables. We show that the results presented in this thesis are general and can be applied to many reliability engineering problems
    corecore