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Abstract

Formalization of Continuous Time Markov Chains with Applications

in Queueing Theory

Donia Chaouch

The performance analysis of engineering systems have become very critical due to

their usage in safety and mission critical domains such as military and biomedical de-

vices. Such an analysis is often carried out based on the Markovian (or Markov Chains

based) models of underlying software and hardware components. Furthermore, some

important properties can only be captured by queueing theory which involves Markov

Chains with continuous time behavior. Classically, the analysis of such models has

been performed using paper-and-pencil based proofs and computer simulation, both

of which cannot provide perfectly accurate results due to the error-prone nature of

manual proofs and the non-exhaustive nature of simulation. Recently, model check-

ing based formal methods have also been used to analyze Markovian and queuing

systems. However, such an approach is only applicable for small systems and cannot

certify generic properties due to the sate-space explosion problem.

In this thesis, we propose to use higher-order-logic theorem proving as a comple-

mentary approach to conduct the formal analysis of queueing systems. To this aim,

we present the higher-order-logic formalization of the Poisson process which is the

foremost step to model queueing systems. We also verify some of its classical prop-

erties such as exponentially distributed inter-arrival time, memoryless property and

independent and stationary increments. Moreover, we used the formalization of the

Poisson process to model and verify the error probability of a generic optical com-

munication system. Then we present the formalization of Continuous-Time Markov
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Chains along with the Birth-Death process. Lastly, we demonstrate the utilization

of our developed infrastructure by presenting the formalization of an M/M/1 queue

which is widely used to model telecommunication systems. We also formally verified

the generic result about the average waiting time for any given queue.
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Chapter 1

Introduction

1.1 Motivation

Most of the important engineering systems encountered in our everyday life have

random nature, i.e., their actual or future behavior is unpredictable due to various

environmental conditions. The analysis of such systems involves probabilistic anal-

ysis, where we use probability theory principles to mathematically model elements

of randomness and uncertainty in order to measure the likeliness of occurrence of

a particular event. More specifically, probability theory has grown to be one of the

most important branch of mathematics which is used for the probabilistic analysis of

random experiments, providing the basis to model the complex behavior of numerous

engineering systems.

A Markov process is a random process which exhibits the Memoryless property

(also known as the Markov property) [15], which states that the future behavior

of the process only depends on its current state regardless of its past behavior. In

the probability literature, Markovian systems are usually divided into four types

which are essentially based on their time and state parameters [15]: discrete-time and

discrete state, continuous-time and continuous state, continuous-time and discrete

state, and discrete-time and continuous state. The continuous-time and discrete state

Markov Process is usually called Continuous-Time Markov Chain (CTMC) [15] which
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describes the collection of random variables that takes values in a countable set or

countably infinite set where elements of this set represent possible states and the chain

transits from one state to the other. Moreover, the sojourn time (total time spent in

one state) is random (particularly, exponentially distributed). CTMC is considered

as the basic concept of many mathematical theories, such as the embedded Markov

chain theory, hidden Markov models and Queueing theory.

CTMC is widely used to model and analyze complex software and hardware sys-

tems in a variety of areas such as engineering, basic sciences, health care, finance,

etc., as shown in Figure 1.1.

Figure 1.1: Markov Chain Application Fields

For instance, the CTMC theory can be applied in constructing the reliability

models and analyzing system performance, e.g., software-based control systems and

their dependability properties can be modeled as CTMC since they exhibit a stochas-

tic behavior. A potential case study can illustrate the dependability analysis in an

embedded control system where delays can occur due to failure of a component, a
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transient fault or processor reboot. All these delays are distributed exponentially;

hence the system can be modeled as a CTMC and its analysis can give a clear idea

about the performance and reliability of the system [56].

CTMC can also be used to model the progression of some diseases such as breast

cancer [20]. This study started when researchers noted that women above forty have

less chances of fighting this disease when using mammographic screening compared to

younger women. Consequently, a series of Markov-chain models have been developed

to estimate the tumor progression rates and sensitivity. The main parameter to

estimate in this study is the mean sojourn time (the average duration of the preclinical

screen-detectable period) which is set to be less than two years to achieve a reduction

in cancer mortality. Further, this study can be useful in the design and analysis of

future studies of breast cancer screening [20].

Combined with related probabilistic models, CTMCs are nowadays the basis of

many algorithms for the analysis of biological sequences, like comparative sequence

analysis, in particular the annotation of simultaneous alignment and multiple align-

ments [77]. This combination has been mainly used to predict genes and conserved

regions in DNA sequences, secondary structures and transmembrane topologies in

protein sequences and base pairing structures in DNA sequences [77]. In addition to

this, CTMC has been applied to model reaction networks, which are chemical sys-

tems involving multiple reactions and chemical elements. The system is treated as a

CTMC where its states correspond to the number of molecules of each species and the

reactions are modeled as possible transitions between the molecules [58]. Chemical

reactions are mainly used for the experiments validation with an ultimate goal of new

drugs discovery for the treatment of different diseases.

A variety of network’s security problems are today described as Markov chains,

e.g., the case of a virus infecting a network and multiplying through the connected

nodes. Once a node is infected, the virus remains at that node and repeatedly tries

to infect any of the neighboring nodes while they remain uninfected. This model is

based on a probabilistic extension of KLAIM (Kernel Language for Agents Interaction
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and Mobility) [81] and CTMC where the behavior of the network and the individual

nodes is determined by a probabilistic allocation environments, which describe the

logical neighborhood of each node [57].

Numerous queueing models are built on the CTMC concepts. For example, the

M/M/1 queue is a CTMC over the non-negative integers where upward transitions

from n to n+1 occur at rate λ according to a Poisson process which describe arrivals

to the queue, while backward transitions from n to n − 1 occur at rate μ which

describe completed services. When analyzing queueing systems, it is very important

Figure 1.2: Flow Diagram of the M/M/1 Queue

to assess important characteristics, like the measure of the typical waiting time of

a customer or the manner in which customers accumulate needs to be verified [24].

Moreover probability distributions or their expected values are also parameters of

great interests [24].

In order to formally model and analyze queueing systems, the birth-death process

[98] is deployed as a simple yet important form of CTMCs. In a Markov model of

a queue, the state represents the number of costumers in the queuing system while

transitions occur only between adjacent states. Using CTMC, a variety of queues

with memoryless arrival processes and service time can be modeled. For example, the

M/M/1 queue [98] is a very common model where arrivals follow a Poisson process

and service times are exponentially distributed.

With the increasing usage of engineering systems in safety-critical domains, such

as medicine, transportation and communication systems, accurate, precise and scal-

able analysis techniques have become a dire need of the present era. Traditionally,
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paper-and-pencil proofs have been used for conducting probabilistic analysis. How-

ever, when it comes to complex computations and scalability, this method fails to

maintain the correctness of large proofs due to the risk of human error. The second

commonly used analysis method is computer based techniques, which can be divided

into two main streams, i.e., the simulations based methods and the computer algebra

systems (CAS). The main idea of simulation based methods is to construct a system

model that can be simulated with unlimited variations producing different scenarios.

In the second alternative, i.e., computer algebra systems, the mathematical computa-

tions are done using symbolic algorithms, and hence they are better than simulation

based analysis. But analysis based on both computer simulations and computer alge-

bra systems cannot provide 100% percent accurate results. In computer simulation,

the analysis is based on different approximations which may lead to an erroneous

analysis. On the other hand computer algebra systems, which are very efficient for

mathematical computation, are not sound because the computed results are not al-

ways mathematically correct. For example, in Maple [65], if we give the following

input:
x2 − 1

x− 1
(1)

the result will be x + 1, which is an over simplification, as the case x = 1 is ignored

since it gives an indeterminate value 0
0
.

The accuracy is the main concern of system analysis because any minor error can

lead to disastrous consequences, which may result in the loss of human lives. Some

consequences of erroneous simulations based analysis include, the Ariane 5 crash in

1996 due to data conversion error that resulted in the loss of more than 370 million

US$ [30] and the Air France flight 447 crash due to inaccurate air speed measurement

by the sensors, which resulted in the loss of 228 human lives [25]. Due to above

mentioned limitations, the traditional analysis techniques cannot be relied upon for

the analysis of Markov chains systems.

Formal methods [37] allow accurate and precise analysis and provide means to

overcome the limitations of traditional approaches. Formal methods tend to develop
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a mathematical model for a given system, this model is analyzed using mathemati-

cal reasoning which help in catching critical design errors that are often ignored by

traditional techniques like numerical methods. The two most commonly used formal

methods techniques are model checking [10] and theorem proving [40]. Model check-

ing is an automatic verification technique for systems that can be expressed as finite-

state machines. On the other hand, theorem proving is an interactive verification

technique, which is more powerful in terms of expressiveness (e.g., higher-order-logic)

and mathematical analysis.

Given the sophistication of the present age Markov chain systems and their exten-

sive usage in safety-critical applications, there is a dire need of using formal techniques

in this domain. In fact, the applicability of formal methods for queueing system anal-

ysis is limited. This thesis presents some mathematical foundations that provide a

novel platform for the formal analysis of queueing systems using higher-order-logic

theorem proving. The ability to accurately conduct these analysis may prove to be a

very useful feature for the systems used in safety-critical domains.

1.2 Related Work

There exists a significant amount of research going on in the area of Markov chains and

Queueing systems. In this section, we present existing state-of-the-art techniques for

these system analysis. Traditionally, the analysis of Markov chains based models has

been done using paper-and-pencil proof methods. However, considering the complex-

ity of present age engineering and scientific systems, such kind of analysis can hardly

guarantee accurate analysis due to the risk of human errors. Thus, computer-based

techniques have been proposed as an alternative to the traditional approaches.

1.2.1 Simulation

Simulation is one of the widely used computer based probabilistic analysis technique

for Markov chain models. Markov chain Monte Carlo (MCMC) methods [64] have
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emerged as the main simulation algorithm for sampling from a probability distri-

bution, which are based on constructing a Markov chain that has an approximate

distribution in terms of the residual effect of the initial position. MCMC methods

sample successively from a target distribution and each sample depends only on the

previous one, hence the notion of the Markov chain. Approximately, the constructed

Markov chain has the desired distribution in terms of the residual effect of the initial

position. Although some more sophisticated MCMC-based algorithms are capable

of producing exact samples matching the given probability distribution, they often

introduce additional computation overhead and unbounded running time [100].

Additionally, reliability evaluation tools and Markov analyzers uses numerical

methods in order to model and analyze the reliability, maintainability or safety of sys-

tems based on Markovian models. These tools offer simplistic modeling approaches

and are more flexible compared to traditional techniques. Some prevalent tool ex-

amples include Möbius [73] and SHARPE [89]. They mainly provide the services on

analyzing the failure or repair of a model, which may occur in the lifetime of any prod-

uct. Some other software tools used for evaluating performance, e.g., MACOM [87]

and HYDRA [53], use a popular Markovian process algebra [12], i.e., PEPA [80], to

model systems and efficiently compute passage time densities and quantities in large-

scale Markov chains. Since most of the models are complex, they are analyzed using

expanded iterative methods, which often lead to approximations because the compu-

tations stop at some convergence point. Hence, the results might become untrusted

since numerical computations are certainly affected by roundoff and truncation errors.

Although simulation techniques are widespread and able to provide a practical

feedback when it comes to analyzing real-world systems but like most of the other

analysis methods, they have their drawbacks. Generally, the used algorithms are

based on numerical methods which lead to inaccurate results. In addition, many

rounding errors also creep into the analysis due to the involvement of computer arith-

metics.
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These limitations are considered as serious problems especially while analyzing

highly sensitive and safety-critical applications, such as nuclear reactor controllers or

aerospace computing systems.

1.2.2 Computer Algebra Systems

In order to overcome the inaccurate results generated by applying numerical methods,

computer algebra systems (CAS) offer a fully automated and friendly human-machine

interface which supports Markovian models analysis in symbolic form. Recently, the

CAS based tool, Mathematica [66], has introduced a Markov chain analysis tool-

box which provides a completely automatic analysis. Moreover, Mathematica has

been long used to derive symbolic Maximum Likelihood estimator [85]. One of its

important task is constructing the log-likelihood for a random sample consisting of

Poisson Random Variable [86]. Another well-known CAS, Maple [65], also utilizes

Markov chains for solving many problems like financial problems, by automatically

constructing transition matrices in Markovian models.

Symbolic computation has its limitations and thus cannot always supersede nu-

merical solutions. In fact the results often include approximations due to the utiliza-

tion of some numerical methods, such as the Jacobi Over-Relaxation, Gauss-Seidel

and Successive Over-Relaxation algorithms [11]. However, the simplifications per-

formed in the CASs are not strictly logical as they are not able to deal with side

conditions. For example, Mathematica returns 1 as the answer when given x/x as

the input. It is clear that x/x = 1 holds only when x �= 0 [60]. Another serious

analysis issue is caused by the use complex symbolic manipulation algorithms, which

have not been verified.

1.2.3 Probabilistic Model Checking

Probabilistic Model Checking is a formal verification technique that allows the analy-

sis of systems exhibiting Markovian behavior. It supports various tools that combine
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a range of techniques for calculating the likelihood of the occurrence of certain events

during the execution of the system and can establish properties to be considered.

However, some important probabilistic questions are hard to be answered directly for

the reason that the logics used to express the properties are limited in expressive-

ness. Some of the most widely used probabilistic model checkers include PRISM [83],

VESTA [1] and Ymer [99]. In this context, we can mention the work of Bortolussi et.

al. [2] where they used the Statistical Model Checking (SMC) [52] approach based on

Bayesian statistics and advanced machine learning (Gaussian processes, the GPU-CB

algorithm [94]), in order to learn about the parameters of stochastic processes from

observations of the state of the system. They specified an analytical expression for

the log-likelihood for both CTMC and Poisson process [2].

Also, we can mention the ErlangenTwente Markov Chain Checker [9] which sup-

ports the model checking of CTMCs using temporal logic specifications called con-

tinuous time stochastic logic (CSL) [93]. This tool was proven to be inefficient when

it comes to accuracy of numerical and verification results [46].

Several other formal CTMC analysis tools are available, for example MARCA [95]

and TIPPtool [45]. MARCA is designed to facilitate the generation of large Markov

chain models, to determine mathematical properties of the chain, to compute its

stationary probability and to compute transient distributions. However, TIPPtool

provides performance evaluation where Markov chain models are specified by means

of a process algebra [45]. These tools do not allow logic specifications and instead

support steady-state and transient analysis.

Although the above tools offer exhaustive solutions, they suffer from the state-

explosion problem [8]. Moreover, the algorithms integrated in these tools for analysis

are based on iterative methods, simulation and statistical means which leads to inac-

curate results.
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1.2.4 Theorem Proving

Theorem proving based probabilistic analysis tends to overcome the limitations of the

above mentioned approaches. Over the past decade, many foundational mathemat-

ical theories have been formalized. Nedzusiak [74] and Bialas [16] were among the

first to formalize some measure and probability theories in higher-order-logic. Then,

Hurd [50] developed a probability theory and formalized the measure space as a pair

(Σ, μ) in the HOL theorem prover [35]. However in this formalization the space is

implicitly the universal set of appropriate data-type. The probability space was also

defined in HOL as a pair (ξ,P) where ξ is a σ-algebra closed under complements

and countable unions, and the domain of P is the set ξ which is the set of subsets

of finite Boolean Sequences P∞. Hasan [42] built upon Hurd’s work and formalized

statistical properties of both discrete and continuous random variables and their Cu-

mulative Distribution Function (CDF) in the HOL4 theorem prover [91]. However

Hasan’s work inherits the same limitations as of Hurd’s work. As a consequence,

when the space is not the universal set, the definition of the arbitrary space becomes

very complex. Later, Coble [23] defined probability space and random variables based

on an enhanced formalization of measure space which is the triple (X,Σ, μ). This

measure space overcomes the disadvantage of Hurd’s work since it contains an ar-

bitrary space. Coble’s probability theory is built upon finite-valued (standard real

numbers) measures and function. Specifically, the Borel Sigma spaces cannot be de-

fined on open intervals which constrains the verification of some applications. More

recently, Mhamdi [67] used the axiomatic definition of probability proposed by Kol-

mogorov [54] to provide a significant formalization of both measure and probability

theory for formally analyzing information theory in HOL4. His work overcomes the

limitations of the above mentioned works by allowing the definition of Sigma-finite

and other infinite measures as well as the signed measures. Hölzl [47] has also for-

malized three chapters of measure theory in Isabelle/HOL [75]. Affeldt [4] simplified

the formalization of probability theory in Coq [27].

Based on Mhamdi’s formalization, Liu [63] provided an alternative approach to
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verify Markovian models, which is capable of offering accurate, scalable and generic

results. To meet this objective, she constructed a foundational framework for con-

ducting Markov chain based analysis in HOL4. Mainly, she provided the formal-

ization of Discrete-Time Markov Chain (DTMC) and the verification of the most

important properties, in which the concepts of reversibility and stationary properties

accommodate the formal reasoning about Markov chain mixing time [59] and the

formalizations of stationary process. In addition to this, Liu developed the formal

definitions of classified states and classified DTMCs, as well as the verified properties

of the aperiodic and irreducible DTMCs [55]. She also investigated the formaliza-

tion of discrete-time HMMs and the verification of their associated properties, such

as joint probability and the probability of observation path [60]. Hölzl [48] formally

defined a time-homogeneous Markov chain based on the finite state space and the

transition matrix in Isabelle/HOL. The mainly goal of this work was to verify Prob-

abilistic Computation Tree Logic (PCTL) in probabilistic model checkers, hence, a

generalized formalization of DTMC theory has not been provided. Furthermore, this

work does not support time-inhomogeneous Markov chains.

From the above discussions of related work, computer-aided techniques such as

simulation, CAS and model checking, clearly provide a number of advantages over

traditional paper-and-pencil based proofs. However, their usage is limited due to

their inherent nature. For instance, due to the inaccurate nature of the underlying

algorithms, which are based on numerical methods, they may generate inaccurate

results. The theorem proving approach, on the other hand, tends to overcome these

limitations as the analysis carried out will be free from any approximation and preci-

sion issues. Similarly, the high expressibility of higher-order logic allows us to analyze

a wider range of systems without any modeling limitations. Particularly, the HOL4

theorem prover provides rich libraries and theories for the formal probabilistic analysis

of a variety of systems.

In this thesis, we are providing a framework that can be used to formalize CTMCs

in the HOL4 theorem prover. Our work uses and extends the work done by Liu
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[60]. The main reasons behind this choice include the availability of basic building

blocks of probability theory and real analysis related theories in HOL4. Moreover,

the availability of CTMCs in HOL4 theorem prover facilitates the formal reasoning

about queueing systems.

1.3 Proposed Framework

The objective of this thesis is mainly targeted towards the development of a Poisson

process and CTMC based system analysis framework using higher-order-logic theorem

proving, which can handle the analysis of real-world systems. In particular, we want

to develop a framework characterizing:

1. The ability to formally express transition probabilities in higher-order logic.

2. The ability to formally verify the properties of the Poisson process, Poisson

distribution and M/M/1 queue in higher-order logic theorem prover.

3. The ability to utilize the above mentioned capabilities to formally model and

reason about real-world queueing and Markovian systems.

A general overview of the proposed framework is illustrated in Figure 1.3. The frame-

work outlines the main idea behind the theorem proving based Markovian and queue-

ing system analysis. Like any system analysis tool, the input to this framework is the

description of the system that needs to be analyzed and a set of properties that are

required to be checked for the given system.

To conduct the queueing system analysis, the first step is to construct the formal

model as a function in higher-order logic based on the given system description. For

this purpose, the foremost requirement is the ability to provide the formal mathemati-

cal definitions of continuous-time Markov chain, Poisson process, Poisson distribution,

Birth-Death process and the M/M/1 queue. We used Liu’s work on the formalization

of conditional probability [60] to fulfill the requirements. The second step is to utilize

the formal model of Markovian and queueing systems, developed in the first step,
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Figure 1.3: Overview of the Proposed Framework

to express system properties as higher-order logic theorems. In order to conduct the

formal analysis of the system properties, we used a library containing some already

verified theorems, such as the probability independency theorem, binomial expansion

and coefficient, L’Hopital rule, etc.

The third and last step is the formal verification of system properties in higher-

order logic. For this verification, it would be quite handy to establish this library

for the purpose of facilitating the formal reasoning about Markovian and queueing

systems. To fulfil this requirement, this thesis presents the formal verification of

the classical properties of Poisson process, such as, independent and stationary in-

crements property, the exponential inter-arrival time and the memoryless property,
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using the HOL4 theorem prover. Building on such a library of theorems minimizes

the interactive verification efforts and thus speeds up the verification process. Fi-

nally, the output of the theorem prover in this framework are the formal proofs of the

system properties certifying that the given system properties are valid for the given

Markovian and queueing system.

1.4 Thesis Organization

The rest of the thesis is organized as follows: In Chapter 2, we provide a brief in-

troduction to the HOL theorem prover and an overview of the formalization of the

probability theory and the conditional probability to equip the reader with some no-

tation and concepts that are going to be used in the rest of this thesis. Chapter 3

describes the formalization of the Poisson process along with the formal verification

of its corresponding properties in HOL, e.g., exponential interarrival times and the

memoryless property. To illustrate the utilization of these mathematical formaliza-

tions, we use them for a formal probabilistic analysis of an optical communication

system. Chapter 4 presents a case study for the formalization of the M/M/1 queue

based on the time-homogenous CTMC and the birth-death process. Based on their

definitions, the major interesting properties of the M/M/1 queue are formally verified

as theorems. Then, a single runway model and a network of queues are formally val-

idated as an application. Finally, Chapter 5 concludes the thesis and outlines some

future research directions.
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Chapter 2

Preliminaries

In this chapter, we provide a brief introduction to the HOL theorem prover and

present an overview of Mhamdi’s [68] and Liu’s [61] formalization of Probability

Theory and Conditional probability, respectively. The intent is to introduce the basic

theories along with some notations that are going to be used in the rest of the thesis.

2.1 Theorem Proving

Theorem proving is one of the most developed research area in automated reasoning.

It is concerned with the construction of mathematical theorems using a computer

program. These mathematical theorems can be built on different types of logic, such

as, propositional logic [18], first-order logic [33] or higher-order logic [17], depending

upon the expressibility requirement. For example, the use of higher-order logic is

advantageous over first-order logic in terms of the availability of additional quanti-

fiers and highly expressive nature of higher-order logic. The main idea behind the

theorem proving based formal analysis is to mathematically model the given system

in an appropriate logic, later the properties of interest are verified using computer

based formal reasoning. Using higher-order logic theorem proving for modeling the

system behaviors makes the analysis very flexible as it allows the formal verification

of any system that can be expressed mathematically. The core of theorem provers
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usually consists of some well-known axioms and primitive inference rules. The theo-

rem proving based verification assures the soundness since every new theorem must

be created from these basic axioms and primitive inference rules or any other already

proved theorems.

There are two types of provers, i.e., automatic and interactive. In an interactive

theorem prover, significant user-computer interaction is required while automatic the-

orem provers can perform different proof tasks automatically. The degree of automa-

tion is dependent on the used logic, for example first-order logic can be significantly

automated whereas it is difficult to automate high-order logic theorem proving due

to its undecidable nature. Some commonly used automated provers include SAT-

URATE, LeanTAP, Gandalf, METEOR, SETHEO, Otter and MetiTarski [5]. The

family of interactive higher-order logic based theorem provers includes Isabelle, Coq,

HOL, HOL4, HOL Light and ProofPower [41].

This thesis uses the HOL4 theorem prover [91] to conduct all the analysis. The

main reasons behind this choice include the richness of Mhamdi’s probability and

measure theories [67], which are fundamental to our work, and the ability to use a part

of Liu’s formalization [60] to formalize the Poisson process, CTMC and the M/M/1

queue and to formally verify their properties. Moreover, some earlier work related to

the formal analysis of Markov chains, such as, Elleuch’s formal probabilistic analysis

of wireless sensor networks [31] and Liu’s formal analysis of discrete time Markov

chains [62], inspired this thesis to be done in the HOL4 theorem prover.

2.2 HOL Theorem Prover

HOL is an interactive theorem proving environment for the construction of mathe-

matical proofs in higher-order logic. The first version of HOL was developed by Mike

Gordon at Cambridge University, in the 1980′s. The core of HOL is interfaced to the

functional programming language ML-Meta Language [79]. HOL utilizes the simple

16



type theory of Church [21] along with Hindley-Milner polymorphism [71] to imple-

ment higher-order logic. The first version of HOL is called HOL88 and other versions

of HOL are HOL90, HOL98 and HOL4. HOL4, the most recent version of HOL fam-

ily, uses Moscow ML which is an implementation of Standard ML (SML) [72]. The

HOL core consists of only 5 basic axioms and 8 primitive inference rules, which are

implemented as ML functions. HOL has been widely used for the formal verifica-

tion of software and hardware systems along with the formalization of mathematical

theories.

2.2.1 Terms

HOL has four types of terms: constants, variables, function applications, and lambda-

terms. Variables are sequences of digits or letters beginning with a letter, e.g., y, b.

The syntax of the constants is similar to the variables, but they cannot be bounded

by quantifiers. The type of an identifier, i.e., variable or a constant, is determined by

a theory; e.g., F, T. Applications in HOL represent the evaluation of a function g at

an argument y, different terms can be used instead of g and y, e.g., f and x. In HOL,

we can use λ-terms, also called lambda abstractions for denoting functions. A λ-term

has the form λx.f(x) and represents a function which takes x and returns f(x).

2.2.2 Types

According to the lambda calculus implemented in HOL, every HOL term has a unique

type which is either one of the basic types or the result of applying a type constructor

to other types. In HOL, each variable and constant must be assigned a type and

variables with the same name but different types are considered as different. When

a term is entered into HOL, the type is inferred using the type checking algorithm

implemented in HOL, e.g., when (∼ y) is entered into HOL, the HOL type checker

deduces that the variable y must have type bool because negation (∼) has a type

bool → bool. If the type of a term cannot be deduced automatically then it is possible
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to explicitly mention the type of that term, e.g., (x : real) or (x : bool).

2.2.3 Inference Rules

Inference rules are procedures for deriving new theorems and they are represented as

ML functions. There are eight primitive inference rules in HOL and all other rules

are derived from these inference rules and axioms. The rules are Assumption intro-

duction, Reflexivity, Beta-conversion, Substitution, Abstraction, Type instantiation,

Discharging an assumption and Modus Ponens [29].

2.2.4 Theorems

A theorem is a formalized statement that may be an axiom or follows from theorems

by an inference rule. A theorem consists of a finite set of Boolean terms Ω called the

assumptions and a Boolean term S called the conclusion. For example, if (Ω, S) is a

theorem in HOL then it is written as Ω � S.

2.2.5 Theories

A HOL theory consists of a set of types, type operators, constants, definitions, axioms

and theorems. It contains a list of theorems that have already been proved from

the axioms and definitions. The user can load HOL theories to utilize the available

definitions and theorems. These theories allow the utilization and extension of existing

results without duplicating the efforts made in building them. HOL theories are

organized in a hierarchical fashion and theories can have other theories as parents

and all of the types, constants, definitions, axioms and theorems of a parent theory

can be used in the child theory. For example, one of the basic theory in HOL is

bool which is also parent theory of individuals ind. We utilized the HOL theories

of Booleans, positive integers, real numbers, sequences, limits and transcendental

functions in our work. In fact, one of the primary motivations of selecting the HOL

theorem prover for our work was to benefit from these built-in mathematical theories.
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2.2.6 Proofs in HOL

There are two types of interactive proof methods when using HOL: forward and

backward. In a forward proof, the user starts from the primitive inference rules and

tries to prove the goals using these rules and already proved theorems. The forward

proof method is not an easy approach as it requires all the low level details of the

proof in advance. A backward or a goal directed proof method is the reverse of the

forward proof method. It is based on the concept of a tactics ; which is an ML function

that breaks goals into simple subgoals. There are many automatic proof procedures

and proof assistants [38] available in HOL which helps the user in directing the proof

to the end. In interactive theorem proving, the user interacts with HOL proof editor

and guides the prover using the necessary tactics until the last step of the proof.

Some of the proof steps are solved automatically while others require signification

user interaction.

2.2.7 HOL Notations

Table 1 provides the mathematical interpretations of some frequent HOL symbols

and functions used in this thesis. The use of HOL4 has emerged over the past few

decades, for instance, the early formalization of main concepts in higher-order logic,

such as real numbers, topology, limits, sequences and series as well as differentiation

and integration, were done by Harrison [39]. Mhamdi [67] presented the higher-order

logic formalization of Probability theory in the HOL theorem prover, which is a

fundamental concept in many mathematical theories.

19



Table 1: HOL Symbols and Functions

HOL Symbol Meaning
/\ Logical and
\/ Logical or
∼ Logical negation

==> Logical implication
<==> Logical equality
!x.f for all x : f
?x.f for some x : f

(&n : num) type casting (&n:extended real)
x pow n xn

λx.f Function that maps x to f(x)
Univ Universal Set
a IN S a in S

A INTER B A intersection B
disjoint A B Sets A and B are disjoint
IMAGE f A Set with elements f(x) for all x ∈ A

PREIMAGE f B Set with elements x ∈ X for all f(x) ∈ B and f : X → Y
ø Empty Set

FINITE S S is a finite set
suc n Successor of natural number
ln x Natural logarithm function
exp x Exponential function

BIGUNION P Union of all sets in the set P
BIGINTER P Intersection of all sets in the set P
λn.f(n) ��� p lim

n→∞
f(n) = p

suminf(λn.f(n)) lim
k→∞

∑k
n=0 f(n)

SIGMA(λn.f(n))S
∑

n∈S f(n)
summable(λn.f(n)) ∃x. lim

k→∞
∑k

n=0 f(n) = x
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2.3 Probability Theory

The purpose of probability theory is to model random phenomena and experiments

so that we can describe and predict relative frequencies (averages) of these experi-

ments in terms of probabilities of events. The fundamental mathematical object is a

triple (Ω,Σ, μ) called the measure space, where Ω is a set, called the sample space,

Σ represents a σ-algebra of subsets of Ω, where the subsets are usually referred to

as measurable sets, and μ is a measure with domain Σ. Mhamdi [69] defined a prob-

ability space as a measure space (Ω,Σ, P r) where the measure of the sample space,

denoted by Pr and referred to as the probability, is equal to 1. A probability space

is needed for each experiment or collection of experiments that we wish to describe

mathematically. Therefore, using measure theory to formalize probability has the

advantage of providing a mathematically rigorous treatment of probabilities and a

unified framework for discrete and continuous probability measures. A probability

theory is developed based on three axioms [67]:

1. ∀A. 0 ≤ Pr(A)

2. Pr(Ω) = 1

3. For any countable collection A0, A1,... of mutually exclusive events,

Pr(
⋂

i∈Ω Ai) =
∑

i∈Ω Pr(Ai)

The above approach has been successfully used to formally verify most basic proba-

bility theorems, such as [67]:

0 ≤ Pr(A) ≤ 1∑
Ai∈Ω Pr(Ai) = 1

Two events are independent if the occurrence of one does not change the probability

of the other occurring. Thus, if events are independent, then the probability of them

both occurring is the product of the probabilities of each occurring.

Definition 2.1. Two events A and B are independent iff p(A ∩ B) = p(A)p(B).
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Here A∩B is the intersection of A and B, that is, it is the event that both events A

and B occur.

� independent p a b ⇔
a ∈ events p ∧ b ∈ events p ∧
prob p (a ∩ b) = prob p a * prob p b

A random variable is considered to be one of the core concepts in probabilistic anal-

ysis. It can be defined as a measurable function from a probability space (Ω,Σ, P r)

into a measurable space (S,Σ) also known as the state space, where S denotes a set

and Σ represents a nonempty collection of subsets of S.

Definition 2.2. X : Ω → R̄ is a random variable iff X is (F,B(R̄)) measurable

where F denotes the set of events. Here we focus on real-valued random variables but

the definition can be adapted for random variables having values on any topological

space thanks to the general definition of the Borel sigma algebra.

� random_variable X p s ⇔
prob_space p ∧ X ∈ measurable (p_space p,events p) s

Definition 2.3. Two random variables X and Y are independent iff ∀A,B ∈ B(R̄),
the events {X ∈ A} and {Y ∈ B} are independent.

The set {X ∈ A} denotes the set of outcomes ω for which X(ω) ∈ A. In other words

{X ∈ A} = X−1(A).

� independent_rv p X Y s t ⇔
∀ A B. A ∈ subsets s ∧ B ∈ subsets t ⇒
independent p (PREIMAGE X A ∩ p_space p) (PREIMAGE Y B ∩ p_space p)

Once random variables are formalized, as mentioned above, we can utilize the formal-

ized probability theory infrastructure to reason about their probabilistic properties.

For example, the probability that a random variable X is exactly equal to some value
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i is defined as the Probability Mass Function (PMF) and it is mathematically ex-

pressed as Pr(X = i). The event {X ∈ A} is used to define the PMF of a random

variable.

Definition 2.4. The Probability Mass Function px of a random variable X is defined

as the function assigning to A the probability of the event {X ∈ A}.

∀A ∈ B(R̄), pX(A) = p({X ∈ A}) = p(X−1(A))

� distribution p X = (λA. prob p (PREIMAGE X A ∩ p_space p))

Also utilizing the same infrastructure, we can denote a random process as a collection

of random variables Xt (t ∈ T ). If the indices (t) of random variables Xt are discrete,

then this random process is a discrete-time random process otherwise it is known as

a continuous-time random process.

� (∀ t. random variable (X t) p s)

Mhamdi [67] generalized the formalizations of the probability and information theory

by introducing the notion of extended real numbers, the Borel sigma algebra which

covers larger classes of functions in terms of integrability and convergence. Hölzl

[47] has also formalized a generic version of the measure, probability and information

theory in Isabelle/HOL. Affeldt [4] simplified the formalization of probability theory

in Coq. Among these works, the probability theory formalized by Mhamdi provides

the most generic formal reasoning support and thus can be used to analyze wider

range of applications.

2.4 Conditional Probability

One of the crucial concepts in the random process study is the conditional probability,

which is used to calculate the occurrence probability of an event when another event

is known to occur. Conditional probability basically reflects the dependency between

the events which happen at different times in a process. The formal definition of
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conditional probability in HOL can be found in [44], which is based on Hurd’s work

[50].

In order to make use of the most advanced probability theory of [67], Liu [60]

defined an improved version of the formalization of conditional probability by:

Definition 2.5. The conditional probability of the event A given the occurrence of

the event B is

Pr(A|B) = Pr(A ∩ B)/Pr(B)

� ∀ A B. cond_prob p A B = prob p (A ∩ B) / prob p B

where cond prob represents the conditional probability, and prob denotes the prob-

ability. Liu [60] has verified various classical properties of conditional probability in

order to facilitate the formalization of Markov chains . Some of the prominent ones

are listed below:

Pr(A ∩ B) = Pr(A|B)Pr(B)

Pr(A) =
∑
i∈Ω

Pr(Bi)Pr(A ∩ Bi)

Pr(A) =
∑
i∈Ω

Pr(A)Pr(Bi ∩ A)

∑
i∈Ω

Pr(Bi ∩ A) = 1

where A, B and C are events in the event space, and the finite events set (Bi)Ω con-

tains mutually exclusive and exhaustive events. The first theorem is obviously based

on the conditional probability definition. The second one is the Total Probability

Theorem [101] and the third one is a lemma of the Total Probability Theorem [78].

The last theorem is the Additivity Theorem [101].

Mathematically, the conditional independence [51] is an important concept, which

is the foundation of graphical models and mainly used in Bayesian Network. The

mathematical definition of conditional independence is:
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Definition 2.6. The events A and B are conditionally independent given the event

C if

Pr(A|B ∩ C) = Pr(A|C)

2.5 Summary

In this chapter, we started with a brief introduction of theorem proving and discussed

different state-of-the-art theorem provers. Then we provided an overview of the HOL

theorem prover that we have used for our formalization related to fMarkovian systems.

We later summarized Mhamdi’s work on the formalization of probability theory. We

also presented some formalization details related to conditional probability developed

by Liu. The next chapter presents the formalization of the Poisson process and some

of its important properties.
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Chapter 3

Formalization of the Poisson

Process

In this chapter, we describe the formalization of the Poisson process and the formal

verification of some of its most important properties using the probability theory in

HOL4. In order to illustrate the usefulness of this work, an optical communication

system is formally analyzed in HOL.

3.1 Higher-Order-Logic Formalization

Given a probability space, a stochastic process Xt : Ω → S represents a sequence of

random variables X, where t represents the time that can be discrete (represented

by non-negative integers) or continuous (represented by real numbers) [15]. The set

of values taken by each Xt, commonly called states, is referred to as the state space.

The sample space Ω of the process consists of all the possible state sequences based

on a given state space S. Now, based on these definitions, a Poisson process can

be defined as a stochastic process {Xt; t > 0} with a specific transition probability

function. A Poisson process denotes the number of events that occur after time 0 up

through and including time t > 0. For example, these events might be the number of

insurance claims filed by a particular driver, or the number of callers phoning in to a
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help line, or the number of people retiring from a particular employer [28].

Therefore, in the time interval (t, t + h), where h > 0, there may or may not be

some events that take place. If h is small, then the likelihood of an event is roughly

proportional to h, i.e., it is not very likely that two or more events will occur in a

small interval. Thus, the increment is simply the random number of events occurring

strictly after time t and up through and including time t+h. More formally we make

the following definition of the Poisson Process Transition Probability :

P(X(t+ h) = n+m|X(t) = n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λh+ o(h), if m = 1;

1− λh+ o(h), if m = 0;

o(h), if m > 1.

We speak of n and m as the number of events of the process by a certain time t. λ is

the rate at which events are, on average, occurring. The rate (or intensity) function λ

gives the rate as λ(t) at time t. Note that the rate can vary with time, at this case it

is possible to integrate the rate function over the interval. In our case we are dealing

with a homogenous Poisson process where the rate is constant. Little-o notation

[76] means that the function f(h) approaches 0 faster than h itself approaches 0,

lim
h→∞

f(h)/h = 0. Now, the Poisson process transition probability function can be

formalized as follows:

Definition 3.1. (Poisson Process Transition Probability Function)

� ∀ X p t h n m λ. Poisson_Trans_Fun X p t h n m λ ⇔ ∃ o1 o2 o3.

if n ∈ space s ∧ m ∈ space s then

cond_prob p (PREIMAGE (λ t. X (t + h)) {&n + &m} INTER p_space p)

(PREIMAGE (λ t. X t) &n INTER p_space p) =

if (m = 0) then 1- λ * h + o1 h

else if (m = 1) then λ * o2 h

else o3

else 0
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This definition states that the probability of an event occurring after time t and up

through and including time t + h can be expressed in terms of the probability of

events which occurred up to time t. It is easy to understand that the probability

of an event is zero, when this event is not in the event space. For instance, n is

not in the state space implies that the event {t | Xt = n} = ∅. In this case, the

conditional probability related to an empty set is zero. Therefore a Poisson process

can be formalized as follows:

Definition 3.2. (Poisson Process)

� ∀ X p t h n m λ. is_poisson_process X p t h n m λ ⇔
real_random_variable X p ∧ Poisson_Trans_Fun X p t h n m λ

The first conjunct indicates that the Poisson process is based on a random process

Xt : Ω → S. The quantified variable X represents a function of the random variables

associated with time t which has the type real. This ensures the process is a continous

time random process. The random variables in this process are the functions built

on the probability space p and a measurable space s.

Each realization of the process is a non-negative, non-decreasing and integer-

valued step function. It is described with the Poisson distribution, which is a discrete

probability distribution for a countably infinite sample space that expresses the prob-

ability of a number of events occurring during a fixed period of time, where these

events occur with a known average rate and independently of the time since the last

event. Thus, a discrete random variable X is said to have a Poisson distribution with

parameter λ > 0, if the probability mass function of X is given by:

P(X(t) = n) =
λtne−λt

n!

In HOL, our definition will be as follows
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Definition 3.3. (Poisson distribution)

� ∀ X p t n λ. Poisson_distr_rv X p t n λ ⇔
real_random_variable X p ∧ &n ∈ IMAGE X (p_space p) ∧
distribution p X {&n} = (λ * t) pow n * exp (-λ * t) / &FACT n

IMAGE f s = f x | x IN s

Here the first two variables are inherited from the random variable definition, while t

and n refer to the time and the number of events, respectively. IMAGE fs returns the

image of a given set s by a function f , where f is the random variable X and s is the

state space of the Ω of the probability space p. Thus, the second condition ensures

that n is in the image sample space of the random variable function in the considered

probability space.

It is important to note that t in our case has the type real which describes the

continuous feature of the process. Moreover, the rate λ is once again a constant with

a real type.

3.2 Formal Verification of the Poisson Process Prop-

erties

Using the formal definition of the Poisson process and its distribution, we proved

some of the most important properties of the Poisson process, which are frequently

used in the analysis of many systems modeled as CTMCs.

3.2.1 Independent and Stationary Increments Property

Given a Poisson probability distribution, this property states that in any small interval

the probability of occurrence of one event is linearly proportional to the rate and

interval length and the probability of occurrence of more than one event in a small

interval is negligible.
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Theorem 3.1.

� ∀ X p t h n m λ. Poisson_Process X p t h n m λ ⇔
(∃ i. {&n + &i} ∈ subsets s) ∧
(∃ n m. indep_rv p (λt. X (t + h)) (λt. X t) s s {&m} {&n}) ∧
(λ > 0) ∧ (t > 0) ∧ (h > 0) ∧

(∃ k n. Poisson_distr_rv (λt. X (t + k)) p (t + k) λ (n)) ⇒
is_poisson_proces X p t h n m λ

The proof of Theorem 3.1 is based on probability theoretic reasoning along with tran-

scendental functions properties. Following, we describe the concept of the binomial

expansion and the Taylor series expansion for the exponential function, both are used

in order to find the expression of the function o(h).

The Binomial Expansion

The binomial expansion [7] is one of the most well-known mathematical objects, it is

the algebraic expansion of powers of a binomial. Thus, the binomial theorem allows

to find the expansion binomials rased to varying degrees based on the theorem

(a+ b)n =
n∑

k=0

(
n

k

)
an−kbk

where
(
n
k

)
is called the binomial coefficient. Combinatorially, the binomial coefficient

counts the number of subsets of size k from a size n set. Elleuch [31] formalized

the binomial coefficient based on the Pascal Relationship and a lot of mathematical

reasoning related to the real summation. Based on Elleuch’s formalization and vari-

ous summation properties that we proved, we were able to decompose the binomial

expansion as follow:

(a+ b)n = an +
n∑

k=1

(
n

k

)
an−kbk

(a+ b)n = an +

(
n

1

)
an−1b+

n∑
k=1

(
n

k

)
xn−kyk
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Lemma 1.

� ∀ a b n. (a + b) pow n =

a pow n + sum (1,n) (λn. &binomial n x * a pow (n - x) * b pow x)

Lemma 2.

� ∀ a b n. (a + b) pow n = a pow n + &binomial n 1 * a pow (n - 1) * b

sum (2,n-1) (λn. &binomial n x * a pow (n - x) * b pow x)

The Taylor Series Expansion for the Exponential Function

A Taylor series [82] is commonly used in engineering analysis to approximate functions

that do not have closed form solution. It is an expansion that can be helpful in

approximating many commonly used functions such as exponential functions. The

exponential function is defined as follows:

ex =
∞∑
k=0

xk

k!

Based on this definition, we were able to prove that

ex = 1 +
∞∑
k=1

xk

k!

ex = 1 + x+
∞∑
k=2

xk

k!

Lemma 3.

� ∀ x. exp x = 1 + lim (λn. sum (1,n) (λn. inv (&FACT n) * x pow n))

Lemma 4.

� ∀ x. exp x = 1 + x + lim (λn. sum (2,n) (λn. inv (&FACT n) * x pow n))

This was verified based on proving some properties of the infinite summation using

Siddique’s [90] formalization regarding the limitation properties of a sequence.
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Lemma 5.

� ∀ f n m. (λn. f n) ��� p ⇔ (λn. f (n + m)) ��� p

Lemma 6.

� ∀ f. lim (λn. sum (0,n) f) = lim (λn. sum (0,n+1) f)

Lemma 7.

� ∀ f. lim (λn. sum (0,n) f) = lim (λn. sum (0,n+2) f)

L’Hopital’s Rule

In order to verify that lim
h→∞

f(h)/h = 0, we used the L’Hopitale [22] Rule, which was

already verified in HOL4 [43].

3.2.2 The Exponential Interarrival Times

The interarrival time refers to the time between successive events. Taking into con-

sideration that the Poisson process is itself a form of CTMC, the interarrival time is

actually the sojourn time in one state. These interarrival times are typically expo-

nentially distributed with mean 1
λ
.

Let Tk be the time of the kth event in a Poisson process. The number of events

occurring before some fixed time t is less than k if and only if the waiting time until

the kth event is more than t. Formally, this means that the probability of the event

(X(t) < k) occurring is equal to the probability of the event (Tk > t) taking place:

P(Tk > t) = P(X(t) < k)

As a consequence, if we consider T1 the time of the first arrival, then clearly the

waiting until T1 is greater than t if and only if the number of events occurring before

time t is 0. Applying this property to the probability distribution of homogeneous

Poisson process gives us the following expression:

P(T1 > t) = P(X(t) = 0) = e−λt
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We managed to verify this property, theorem 3.3, in HOL based on the definition of

the increasing sequence [60] and the counting process definitions.

Definition 3.4. (Counting Process)

� ∀ X. counting_process X ⇔ (X 0 = 0) ∧ increasing_seq X

Theorem 3.2.

� ∀ X p t T1. (X(T1) = 1) ∧
counting_process X ∧ (t < T1) ⇒

(prob p (PREIMAGE X {&X t} ∩ p_space p) = distribution p X {0})

In this theorem, T1 refers to the time of the first arrival. Thus, the probability of

an event occurring (a customer’s arrival) at any time t less than T1 is equal to the

probability of having 0 customers in the system.

Theorem 3.3.

� ∀ X p t T1 λ. (X(T1) = 1) ∧
counting_process X ∧ (t < T1) ∧ Poisson_distr_rv X p t λ {n}
⇒ (prob p (PREIMAGE X {&X t} ∩ p_space p) = exp(-λt) )

The probability distribution of a random variable X can be uniquely described by its

cumulative distribution function (CDF), which is defined as

(FX(x)) = P(Xx)

We then utilize this definition with Theorem 3.3 along with the additivity property of

probabilities to prove that the probability of the event (T1 ≤ t) is equal to the CDF

of the exponential distribution.

P(T1 ≤ t) = 1− P(T1 > t) = 1− e−λt
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3.2.3 The Memoryless Property

The memoryless property of the exponential distribution gives the Poisson process its

uniqueness among random processes. The memoryless property is meant to describe

the conditional behavior of exponential random variables, which is one of the key

results to derive the solution of queueing systems. If we consider that we have already

waited for a time t and no decay has been observed, then the event (T1 > t) has

occurred. Our main concern is the probability that the event (T1 > t+ s) will occur.

In fact, this type of problem shows up frequently in queueing systems where the time

between events provides very useful information about arrival or service times.

To address this situation, we use the definition of conditional probability as follows:

P(T1 > t+ s|T1 > t) =
P(T1 > t+ s ∩ T1 > t)

P(T1 > t)

If we already know that P(T1 > t + s), then (T1 > t) is redundant, therefore we can

simplify the numerator.

P(T1 > t+ s|T1 > t) =
P(T1 > t+ s)

P(T1 > t)

Based on the fact that (T1 > t) is redundant in our case, we verified the above theorem

in HOL using probabilistic and set theoretic reasoning

Theorem 3.4.

� ∀A B X p. (PREIMAGE X A ∩ p_space p) SUBSET

(PREIMAGE X B ∩ p_space p) ⇒
(prob p ((PREIMAGE X A ∩ p_space p) ∩(PREIMAGE X B ∩ p_space p))

= prob p (PREIMAGE X A INTER p_space p) )

Now applying the CDF of the exponential distribution, we get:

P(T1 > t+ s|T1 > t) =
e−λ(t+s)

e−λt
= e−λs

This shows that the conditional probability does not depend on t. It means that

if you have waited for time t, the probability of waiting for an additional time s is
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the same as the probability that you will wait for time s. In fact, the exponential

distribution is the only memoryless continuous distribution, because the past has no

bearing on its future behavior. Every moment is considered to be the beginning of

a new random period, which has the same distribution regardless of how much time

has already elapsed. Thus, we proved this property as follows

Theorem 3.5.

� ∀X p t T1 λ s. (X (T1) = 1) ∧
counting_process X ∧ (t < T1) ∧
(PREIMAGE X A ∩ p_space p) SUBSET (PREIMAGE X B ∩ p_space p) ∧
(λn. Poisson_distr_rv X p t λ {n})
⇒ (cond_prob p (PREIMAGE (λt. X (t + s)) {&X (t + s)} ∩ p_space p)

(PREIMAGE (λt. X t) {&X t} ∩ p_space p) =

exp(-λ s))

We verify this property by directly applying Theorem 3.4 and the definitions of the

Poisson distribution (Definition 3.3) and the counting process (Definition 3.4). The

rest of the proof is primarily based on the conditional probability (Definition 2.5)

along with some arithmetic reasoning.

This concludes our formalization of the Poisson process along with the verification

of its important properties such as memoryless property and exponential interarrival

time. The formal verification of these properties reassures the correctness of our for-

mal definitions related to Poisson process. Another interesting feature of our work

is the availability of the verified properties for arbitrary parameters (e.g., λ, mean

arrival time). This reduces the efforts to analyze practical applications by instan-

tiating particular values to these parameters which correspond to the give system

specification. The main challenges of our formalization were to choose one general

definition of the Poisson process which is applicable in different practical scenarios.

This is because of the fact that different researchers and textbooks present different

notions of Poisson process. Moreover, our HOL formalization intensively involves the
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real analysis (e.g., limits, derivatives and transcendental functions) and probability

theory (e.g., random variables and conditional probability). Note that our formaliza-

tion and proof outlines can be used to formalize similar concepts from probabilistic

and queueing systems analysis.

3.3 Application: Formal Probabilistic Analysis of

Optical Communication Systems

Fiber optic communication systems are widely used in the domain of telecommuni-

cations, data networking and biomedicine. Its applications are widespread, ranging

from basic data transmission to communication and control in very high-risk environ-

ments (chemical, nuclear, etc.). A simple fiber optic system consists of a transmitting

device (laser or a light emitting diode LED) coupled to an optical fiber. The string

of data to be transmitted along the fiber is in fact a series of pulses where a binary

1 is transmitted by turning on the light source for T seconds, while the transmission

of binary 0 is represented by turning the source off for the same time period. At

the receiver side, a photodetector is used to convert the optical signal back into a

string of binary numbers. Figure 3.1 shows a simplified block diagram of this system

[70]. When the received light strikes a photoemissive surface, electrons are ejected

Figure 3.1: Block Diagram of an Optical Communication System [70]

randomly escaping into the space around the surface. The more intense the light that

strikes the photoemissive surface, the more photoelectrons are ejected per T second

interval. Therefore, we represent the number of electrons counted during a T second
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interval using a Poisson random variable X changes its PMF according to the inten-

sity of the light. Figure 3.2 depicts the random emission of electrons. When a binary

Figure 3.2: Random Emission of Electrons

0 is sent, a relatively low number of electrons is typically observed; whereas, when

a 1 is sent, a higher number of electrons is typically counted. In particular, suppose

the two probability mass functions are given by [70]:

P(T = k|0 sent) =
λk
a

k!
e−λa k = 0, 1, 2, ...,

P(T = k|1 sent) =
λk
b

k!
e−λb k = 0, 1, 2, ...,

These are formalized in HOL as follows:

Definition 3.5. (Probability When Zero Is Sent)

� ∀ X p A n λa. prob_zero_sent X p A n λa ⇔
cond_prob p X A = Poisson_distr 1 λa n

Definition 3.6. (Probability When One Is Sent)

� ∀ X p B n λb. prob_zero_sent X p B n λb ⇔
cond_prob p X B = Poisson_distr 1 λb n

where X is a Poisson random variable and p is the probability space, the parameters

A and B refer to the event of sending a binary 1 and the event of sending a binary

0, respectively, while n is the number of electrons emitted during a unit of time. The
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parameters λa and λb represent the average number of electrons observed when a 1

is sent and when a 0 is sent, respectively.

To decide whether a 0 or 1 was sent, we use the a maximum a posteriori probability

(MAP) decision rule. Thus we calculate the a posteriori probabilities of each bit being

sent given the observation of the number of electrons emitted and choose the data

bit that maximizes the a posteriori probability. We decide that a binary 1 was sent

if P(1 sent|X = k) > P(0 sent|X = k) otherwise we decide a 0 was sent.

Definition 3.7. (Decision Rule)

� ∀ A B D. Decison A B D ⇔ (D ZERO = B) ∧ (D ONE = A)

Definition 3.8. (MAP Rule)

� ∀ A B D. MAP p X A B ⇔ cond_prob p A X > cond_prob p B X

From the MAP decision rule we are supposed to find the exact threshold λa−λb

lnλa
λb

[70].

The receiver for our optical communication system counts the number of electrons

emitted and compares that number with the threshold. If the number of electrons

emitted is above the threshold, we decide that a 1 was sent; otherwise, we decide that

a 0 was sent. The MAP decision rule can be verified in HOL as follows:

Theorem 3.6.

� ∀ p X A B n λa λb. prob_space p ∧ A ∈ events p ∧
B ∈ events p ∧ (prob p A = 1 / 2) ∧ (prob p B = 1 / 2) ∧ 0 < λb ∧
prob_zero_sent p (PREIMAGE X {&n} INTER p_space p) A n λa ∧
DISJOINT ZERO ONE ∧ (λa - λb) / ln (λa / λb) < n ∧

prob_one_sent p (PREIMAGE X {&n} INTER p_space p) B n λb ∧ λb < λa

⇒ MAP p (PREIMAGE X {&n} INTER p_space p) A B

It is assumed that λb < λa, so when a 0 is sent, we tend to observe fewer electrons than

when a 1 is sent and the a priori probabilities P(0 sent) and P(1 sent) are considered
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to be equal to 1/2. The proof of this theorem is mainly done by applying some real

arithmetic reasoning and by using the Bayes theorem [78] and the total probability

theorem theorem which are formalized in HOL as follows:

Theorem 3.7.

� ∀ A B p. prob_space p ∧ A ∈ events p ∧ B ∈ events p

⇒ (cond_prob p B A = cond_prob p A B * prob p B / prob p A)

The Bayes law relates the conditional and marginal probabilities of two random events

A and B. Mathematically, it is expressed as P(A | B) = P(B|A)∗P(A)
P(B)

Theorem 3.8.

� ∀ p. prob_space p ∧ PREIMAGE X {&n} ∩ p_space p ∈ events p ∧
(∀x. x ∈ {ZERO;ONE} ⇒ D x ∈ events p) ∧ FINITE {ZERO;ONE} ∧
(∀a b. a ∈ {ZERO;ONE} ∧ b ∈ {ZERO;ONE} ∧ a �= b

⇒ DISJOINT (D a) (D b)) ∧ (BIGUNION (IMAGE D {ZERO;ONE}) = p_space p)

⇒ (prob p (PREIMAGE X {&n} ∩ p_space p) = SIGMA (λi. (prob p (D i)) *

(cond_prob p (PREIMAGE X {&n} ∩ p_space p) (D i))) {ZERO;ONE})

In the above theorem, (PREIMAGE X {&n} ∩ p space p) represents an event,

whereasD represents a sequence of sets. The second and the third assumptions ensure

that all events are in the event space. With the fourth assumption, we guarantee that

the two sets are disjoint, i.e., their intersection is an empty set. The last assumption

ensures that the union of the elements of the sequence D gives the sample space

p space p. In this case, the law of total probability helps us to find the probability of

a particular event based on the conditional probability of that same event given that

some events form a partition of the sample space.

Similarly, we can find the probability of error invoking the total probability theo-

rem and the concepts of conditional probability:

39



Definition 3.9. (Probability Error When One Is Sent)

� ∀p X A n λa ERROR n0.

prob_error_one_sent p X A n λa ERROR n0

⇔ (cond_prob p ERROR A =

SIGMA (λ i. λa pow i * exp (-λa) / &FACT i) (count_mn 0 n0))

Definition 3.10. (Probability Error When Zero Is Sent)

� ∀p X B n λb ERROR n0.

prob_error_zero_sent p X B n λb ERROR n0

⇔ (cond_prob p ERROR B =

SIGMA (λ i. λb pow i * exp (-λb) / &FACT i) (count_mn 0 n0))

We note that errors can occur in two ways. First a 0 could be sent and the number

of electrons observed could fall above the threshold, causing us to decide that a 1 was

sent. Likewise, if a 1 is actually sent and the number of electrons observed is low, we

would mistakenly decide that a 0 was sent.

Recalling the concepts of conditional probability, we know that

P(error) = P(error|0sent) ∗ P(0sent) + P(error|1sent) ∗ P(1sent)

Hence, if we consider n0 to be the threshold with which we compare X to decide

which data bit was sent, then with some mathematical reasoning, we can calculate

the probability of error for our optical communication system

P(error) =
1

2
− 1

2
∗

n0∑
k=0

λk
a ∗ e−λa − λk

b ∗ e−λb

k!

This expression can be verified using HOL as the following theorem:
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Theorem 3.9.

� ∀ p X A B ERROR n λa λb. prob_space p ∧ A ∈ events p

∧ ERROR ∈ events p ∧ Decison A B D ∧
(
⋃
(IMAGE D {ZERO;ONE}) = p_space p) ∧

B ∈ events p ∧ (prob p A = 1 / 2) ∧ (prob p B = 1 / 2) ∧ 0 < λb

∧ prob_error_zero_sent p X A n λa ERROR ∧ DISJOINT ZERO ONE ∧
prob_error_one_sent p X B n λb ERROR n0 ∧ λb < λa

⇒ prob p ERROR = 1 / 2 - 1 / 2 *

SIGMA(λx. λa pow x * exp (-λa) -

λb pow x * exp(-λb)/&FACT x) (count_mn 0 n0)

We proceed with the verification of this theorem by first rewriting the goal using

Definitions 3.9 and 3.10 then we used some real analysis and properties of transcen-

dental functions. Later, we used the constraints of our goal, the definitions and the

probability theorems previously proved in order to reach the final result.

This application illustrates how our formalization of Poisson process and Poisson

distribution can be used to reason about real world applications. Conducting the

analysis within the sound core of a theorem prover helped to add more trust to the

proved results. This is because of the logical foundations of higher-order logic theorem

proving systems. Indeed all the steps performed in the proof of the application can

be traced back to the logical axioms and inference rules of HOL4. On the other

hand, simulation and paper-and-pencil based proof are not capable of providing such

soundness. For example, simulation based results are only valid for the particular

values of inputs and it is very difficult of certify the correctness of paper-and-pencil

based proofs due the human-error proneness.

This is obviously not a large application but it serves as an example to illustrate the

usefulness of the framework presented in this thesis. We were able to verify the desired

probabilistic characteristics as generic theorems that are universally quantified for all

values of variables (e.g. n, λa, λb). These variables can also be specialized to specific
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values to obtain corresponding precise conditional probabilistic and probability errors

values. In fact knowing the exact probability error for a given scenario makes it

possible to change the rates by adjusting the intensity of the laser or LED. These

proofs required approximately 300 lines of HOL code. The upside is that these results

can be reused in several other engineering applications.

3.4 Summary

In this chapter, we presented a higher-order-logic formalization of the Poisson Process

with an infinite state space. Both homogeneous and inhomogeneous Poisson processes

can be modeled based on this formalization. We also presented a higher-order-logic

formalization of the Poisson distribution which can be regarded as the first step

towards a successful theorem-proving based analysis of discrete distributions. This

formalization is flexible and more realistic since it is time dependent.

Some of the most interesting properties such as the Markov property and the

exponential interarrival time were formally verified in HOL. Then, we used our for-

malization to analyse an optical communication system. This channel is formalized

as a Poisson process model using higher-order logic. Then, two interesting properties

of this channel were proved based on this model. This example mainly illustrates a

flow of a verification process of a Poisson process model using theorem proving and

it shows the usefulness of our formalization of the Poisson distribution.
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Chapter 4

Case Study: Formalization of the

the M/M/1 queue based on CTMC

In this chapter, we make use of the formalizations of the Poisson process in HOL,

CTMC and birth-death process to provide a higher-order-logic formalization of M/M/1

queueing system.

4.1 Queueing Theory

Nowadays, concrete numbers provided by quantitative analysis play an important

role in the development of a wide range of applications in many spheres of life such

as computer networks, telecommunications, manufacturing systems, transportation,

logistics, etc. Queueing theory is quite common in all of these fields, consequently,

numerous properties such as performance metrics, e.g., throughput, service times

and waiting times require accurate and reliable modeling of these systems. In fact,

Erlang [32] was the first to ever raise the congestion problems of queueing theory

in telephone exchanges. Later researchers were inspired by his work and started

working on queueing problems using probabilistic methods. Queueing networks and

Markov chains have now become a field of applied probability and statistical methods

and both of them provide effective and practical models to analyze a wide range of
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applications.

Queueing systems consist of service centres that provide any kind of service to

arriving customers. It is quite evident from the above mentioned systems that arrivals

may demand a service from a finite-capacity resource. The general assumption is that

one station cannot at the same time serve two or more arrival entities. In this case,

conflicts for the use of the resource will arise and arrivals are more likely to wait on

queues in front of the servers, hence the name queuing systems. When one of the

resources is free, a waiting customer is taken over from the queue according to the

pre-defined discipline and it gets served. In the case of a finite queue, an arrival can

be rejected. It is necessary to take into consideration that the term customer does

not necessarily imply a human customer; any entity which needs a service of some

sort is considered a customer.

Kendall [26] was the first to introduce the A/B/C queueing notation in 1953.

The first letter specifies the interarrival time distribution or the arrival pattern and

the second one the service time distribution. A and B are described by symbols

that represent probability distributions. For example, M stands for markovian or

memoryless distribution, D for deterministic, and GD for general distribution. In the

case of general distribution, results can be applicable to all probability distributions.

Finally, the third letter specifies the number of servers. The notation can be extended

with two extra letters Y and Z to put a restriction on the system capacity and the

queue discipline, respectively. If the queue discipline is first come, first served (FCFS)

then the standard is to omit the symbol. Hence M/M/1 denotes a system with Poisson

arrivals with parameter λ, exponentially distributed service times with parameter μ

which are assumed to be independent and identically distributed, and a single server

that serves the entity which is the first to reach it (FIFO principle).

M/M/1 queue is the simplest model in the queueing theory. It has an infinite

number of states since the buffer may contain any number of customers and allow

transitions in continuous time. CTMC is one of the most efficient and powerful

technique for the investigation of the M/M/1 queue or any other queueing system
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[92].

Birth-death process plays a very important role in modeling elementary queueing

systems such as the M/M/1 queue where the only difference between the two models

is a variant and a constant rate, respectively. In addition to this, a birth-death

process is indeed a special case of CTMC where the states represent the current size

of a population and where the transitions, across an infinitesimal time interval h are

limited to births and deaths.

Figure 4.1: M/M/1 Queueing System

Based on Figure 4.1, each system state has adjoined a certain number denoting the

number of units in the system. The arrows point to the direction of possible transitions

from the state system with transition rates λ and μ. When an entity joins the system,

then the graph state changes from (nton + 1) or when the entity is served then the

state changes from (nton−1). Thus, the state space is typically the set of all integers

or a subset of the integers.

4.2 Formalization in Higher-Order-Logic

4.2.1 Formalization of Continuous-time Markov Chain

Given a probability space, a stochastic process Xt : Ω → S represents a sequence of

random variables X, where t is a real number. The set of values taken by each X1(t)
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is a discrete state space (finite or countably infinite). This allows the process to

make its transitions at any moment along the positive real axis and not necessarily

at predefined epochs. Based on these definitions, a Markov process can be defined as

a stochastic process with the Markov property. A Markov process is a CTMC if [88]:

P(X(t+ h) = j | X(t) = i, X(u) : 0 ≤ u < t) = P(X(t+ h) = j | X(t) = i)

The main objective is to place conditions on the holding times to ensure that the

continuous time process satisfies the Markov property where the future, given the

present state, X(t) is independent of the past, X(u) : 0 = u < h. The formal defini-

tion is given by:

Definition 4.1. (Markov Property)

� ∀ X p i j. Marcov_Property X p i j ⇔
(real_random_variable X p) ∧
(BIGINTER (IMAGE (PREIMAGE (λ k. X u) {&k} INTER p_space p)

(count i)) <> 0)

cond_prob p (PREIMAGE (λ t. X (t + h)) {&j} INTER p_space p)

((PREIMAGE (λ t. X t) {&i} ∧ INTER p_space p) INTER

BIGINTER (IMAGE (PREIMAGE (λ k. X u) {&k} INTER p_space p)(count i)))

= cond_prob p (PREIMAGE (λ t. X (t + h)) {&j} INTER p_space p)

(PREIMAGE (λ t. X t) {&i} INTER p_space p)

for all states i and j and for all times h > 0 and t > 0, we are conditioning on the values

of X(u) for all times u in a subset of past times in addition to the value at the current

time t. In this case, we assume that any arbitrary subset of [0, t) ≡ u : 0 ≤ u < t is a

finite subset.

In the case of a CTMC, the Markov property can be defined in the same way as

for a DTMC; assuming that the distribution of the future, given the present state

X(t), does not depend on the present time t or the amount of time h that has elapsed

since time t, but only depends on the present state X(t) = i. This definition makes
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the analysis of CTMC more difficult technically because there is no longer a fixed

and small epoch of time until the next transition, in fact there is a continuum of such

possible times t. Thus the reasoning is related to the holding or sojourn time where

the remaining holding time must only depend (in distribution) on the current state i

and be independent of its time age.

To define a CTMC we have to specify both the initial distribution which gives

the probability of initial occurrence for every state; and the transition probability

function which is a continuous function of t that gives the probability of going from

state i to state j. In general, it is hard to determine the transition probability function

in a efficient closed form [19]. In simple cases we can define it as:

P(X(t+ h) = j|X(t) = i) =

⎧⎨
⎩

λi,j h+ o1(h), if i �= j;

1− λi h+ o2(h), if j = i;

where λi,j is the local rate interpreted as the transition rate out of state i to a state

j given that X(t) = i and λi =
∑

i �=j λi,j. The function o(h) is understood to be a

quantity which is asymptotically negligible as h → 0 after dividing by h, formally

f(h) = o(h) as h → 0 if f(h)
h

→ 0 as h → 0. The exponential holding time will end,

independent of the past, in the next h units of time with probability λi,j. In this case,

the chain cannot go anywhere in zero time and the probability of an event is zero,

when this event is not in the event space.

Definition 4.2. (CTMC Transition Probability Function)

� ∀ X p t h i j λi,j λi. CTMC_Trans_Fun X p t h i j λi,j λi

⇔ ∃ o1 o2.

if i ∈ space s ∧ j ∈ space s then

cond_prob p (PREIMAGE (λ t. X (t + h)) &j INTER p_space p)

(PREIMAGE (λ t. X t) &i INTER p_space p)=

if (&i �= &j) then λi,j * h + o1 h

else 1 - λi * h + o2 h

47



From this definition, we easily extract the transition probability of the Poisson pro-

cess. In fact, the Poisson process is a CTMC with one-step transition probabilities

and exponential sojourn rates λi,j = λ which are regular on the state space of nonneg-

ative integers. This is an easy consequence of the independent-increments property

of the Poisson process that we already proved.

The main difference between the poisson process and CTMC is that when a jump

occurs in the case of the latter, the location where the chain jumps is not deterministic.

However in the case of the Poisson process, the jump occurs exclusively from state i

to state i+ 1.

Now, the continuous-time Markov chain (CTMC) can be formalized as follows:

Definition 4.3. (Continuous-Time Markov Chain)

� ∀ X p I F i j. CTMC X p I F i j λi,j λi ⇔
Markov_Property X p i j ∧
(∃ x. x ∈ space s ⇒ {x} ∈ subsets s) ∧
( L x = distribution p (�. X 0) i) ∧
(F t h i j = CTMC_Trans_Fun X p t h i j λi,j λi)

The first condition in this definition makes use of the Markov property while the

second one ensures that any observable events in the state space s are discrete in

the event space subsets of s. The third and forth conditions designate the initial

distributions and the transition probabilities of the chain, respectively .

A CTMC does not need to be time homogeneous but homogeneous CTMCs play

an important role in different application areas. By time homogeneity we mean that,

whenever the process enters a state i, its probability distribution from that point is

the same as if the chain started in state i at time 0. Thus the holding time distribution

is the same every time the chain enters state i. We will consider the special case of

homogeneous transition probabilities (sometimes referred to as stationary transition

probabilities) while defining time homogeneous CTMC [97].

P(X(t+ h) = j | X(t) = i) = P(X(h) = j | X(0) = i)
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We formalized the time homogeneous CTMC as follows:

Definition 4.4. (Time-Homogeneous Continuous-Time Markov Chain)

� ∀ X p I F i j λi,j λi . TH_CTMC X p I F i j λi,j λi ⇔
CTMC X p I F i j ∧
(CTMC_Trans_Fun X p t h i j λi,j λi = ctmc_fun X p 0 h i j λi,j λi)

This definition holds for all states i and j and for all times t > 0 and h > 0. The

independence of h characterizes the homogeneity.

4.2.2 Formalization of the Birth-Death Process

The Birth-Death process is a special case of CTMC, where the states represent a

current number of customers in the system and the transitions are limited to births

and deaths. The process goes from state i to state i+1 when a birth occurs. Similarly,

it goes from state i to state i−1 when a death occurs. It is assumed that the birth and

death events are independent of each other. The birth-death process is characterized

by the birth rate λi,i+1 and death rate λi,i−1, which vary according to the state i of

the system.

In order to define the transition probability function, we will follow the same ap-

proach already used to define the transition probability function of both the Poisson

process and CTMC. Let h > 0 be a small interval of time, during which there exist

observable changes in a chain. Our main goal is to calculate the conditional probabil-

ity of changes occurring at time t + h compared to t. While formalizing the poisson

process and CTMC we mentioned that it is impossible to observe more than one event

over such a short interval of time h [96]. The transition probability function of the

Birth-Death process is defined as follows :

P(X(t+ h) = j|X(t) = i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λi,i+1h+ o1(h), if j = i + 1;

λi,i−1h+ o2(h), if j = i - 1;

1− λih+ o3(h), if j = i.

49



Over the time interval h and given that there are currently i costumers in the system,

the probability that there will be i+1 costumers is represented by the probability of

one birth and no death which is the main probabilitic component plus other combi-

nations with very small occurring chances represented by o(h). In this case, the o(h)

term represents the fact that there are two births and one death, three births and two

deaths, etc. The same explanation applies to decreasing the number of customers to

i− 1.

Now, The transition probability function of the Birth-Death process and the Birth-

Death process itself can be formalized as follows:

Definition 4.5. (Birth-Death Transition Probability Function)

� ∀ X p t h i j λi,j λi. BD_Trans_Fun X p t h i j λi,j λi ⇔
if (j = i + 1) then CTMC_Trans_Fun X p t h (i + 1) i λi,i+1 λi

else if (j = i - 1) then CTMC_Trans_Fun X p t h (i - 1) i λi,i−1 λi

else CTMC_Trans_Fun X p t h (i - 1) i λi,i λi

In this definition we are using the CTMC transition probability function given in

Definition 4.2. λi,j is the transition rate out of state i to the state j given that

X(t) = i and λi =
∑

i �=j λi,j where in this case it will be equal to λi,i+1 + λi,i−1.

Definition 4.6. (Birth-Death Process)

� ∀ X p I F i j λi,j λi . BD_CTMC X p t h I F i j λi,j λi ⇔
TH_CTMC X p I F i j λi,j λi ∧ BD_Trans_Fun X p t h i j λi,j λi

It is clear that the probabilities of customers increasing or decreasing by 1 are pro-

portional to the length of the interval. These definitions support the notion that the

events are rare and almost exclude the possibility of simultaneous occurrence of two

or more events. Basically, only one event can occur in a very small interval of time h.

And even though the probability for more than one event is non-zero, it is negligible

[84]. We now turn to the M/M/1 queue, which combines CTMC with the Poisson
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process and the Birth-Death process. Most properties of the M/M/1 queue follow

directly from results about the latter formalizations.

In an M/M/1 queueing system, the requests arrive according to a Poisson pro-

cess with rate λ, justifying that the interarrival times are independent and represent

exponentially distributed random variables. The service times are also assumed to

be independent and exponentially distributed with parameter μ. Thus, all involved

random variables are supposed to be independent of each other. While investigating

the transition probabilities during a very short period of time h, we can see that by

using the independence assumption, the probability of having i+ 1 customers in the

system at time t + h considering that the number was i at a time t, will be equal

to λh + o(h). The first term is equivalent to the probability that during the time h

one customer has arrived and no service has been finished. While the second term is

equivalent to all other possible scenarios. Basically we got this second term due to

the property of the Poisson process. Similarly, the transition probability from state i

into state i− 1 during h can be expressed by μh+ o(h). Therefore, we have:

P(X(t+ h) = j|X(t) = i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λh+ o(h), if j = i + 1;

μh+ o(h), if j = i - 1;

1− (λ+ μ) + o(h), if j = i;

The M/M/1 queue is indeed a simple birth-death process with constant rates λi,j = λ.

Definition 4.7. (M/M/1 Queue Transition Probability Function)

� ∀ X p t h i j λ μ. MM1_Trans_Fun X p t h i j λ μ ⇔
if (j = i + 1) then Poisson_Trans_Fun X p t h (i + 1) i λ

else if (j = i - 1) then BD_Trans_Fun X p t h 1 i μ λ

else BD_Trans_Fun X p t h j i λ μ

In this definition we make use of all the transition probability functions formalized

before, i.e., the transition probability function of the Poisson process and the Birth-

Death process, to highlight the different probabilities in the M/M/1 queue case. Thus

the M/M/1 queue can now be defined as follows:
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Definition 4.8. (M/M/1 Queue)

� ∀ X p I F i j λi,j λi . MM1_Queue X p t h I F i j λ μ ⇔
BD_CTMC X p I F i j λ μ ∧ MM1_Trans_Fun X p t h i j λ μ

Thus, the M/M/1 queue will inherit all the specifications of the CTMC and Poisson

process. The queue is assumed to have infinite capacity which means that requests

for service will never be discarded or affect the likelihood of other requests joining the

queue. In addition to this, the Poisson process is able to generate an infinite number

of requests which means that the arrival of a request to the system does not influence

upcoming arrivals.

4.3 Formal Verification of the M/M/1 Queue Prop-

erties

Using the formal definition of the M/M/1 queue, we proved its most important prop-

erties which are frequently used in the analysis of many systems modeled as an M/M/1

queue. These properties include the mean number of costumers, the mean response

time and the mean waiting time in the queue.

4.3.1 The Mean Number of Costumers

We first start by defining ρ which is the traffic intensity. It is defined as the average

arrival rate λ divided by the average service rate μ. The average arrival rate should

always be less than the average service rate in order to maintain a stable system,

which means ρ should always be less than one. Hence, we can introduce Little’s

Formulae (or Little’s Law) [6] which states that over a period of time T , the mean

number of arrivals in the system is λmultiplied by the average time a customer spends

in the system. This formulae holds true only in the case of a steady state queuing

system. Thus we formally defined the steady-state limiting probability of the system

being in state n for the M/M/1 queue:
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Definition 4.9. (Steady State Probability for the M/M/1 Queue)

P n = (1− λ

μ
) ∗ (λ

μ
)n

� ∀ X n p λ μ. Steady_state_eq X n p λ μ ⇔
real_random_variable X p ∧
(prob p (PREIMAGE (λt. X t) {&n} INTER p_space p) =

(1 - λ/μ) * (λ/μ) pow n)

Consequently, we formally verified that the mean number of customers in a steady-

state system is equal to ρ
1−ρ

.

E(N) =
ρ

1− ρ

Theorem 4.1.

� ∀ p X A B. prob_space p ∧ MM1_Queue X p t h I F i j λ μ ∧
0 < λ ∧ 1 > ρ ∧ Steady_state_eq X n p ⇒
SIGMA (λn. n * Normal (distribution p X {&n})) (IMAGE X (p_space p)) =

NORMAL (ρ / (1 - ρ))

In order to prove this theorem we used some summation and derivative properties.

The variable ρ represents the fraction of time that the server is in use and is therefore a

measure of efficiency. It is important to note that it is also the steady state probability

that the transmission line is in use. For a lossless system (one that does not drop

arriving jobs) this probability is given by 1− P(0).

4.3.2 Mean Response Time

The mean response time or sojourn time is the total time a customer spends in the

system. We can deduce the mean response time in the queue using Little’s Formulae

which relates the average number of customers in the system to the average time

spent in the system through that arrival rate λ
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E(T ) =
1

μ− λ

Theorem 4.2.

� ∀ p X A B n. prob_space p ∧ MM1_Queue X p t h I F i j λ μ ∧
1 > ρ ∧ T = N / λ ∧ 0 < λ ⇒ T = NORMAL (1 / (μ - λ))

Note that the mean response time is a very important factor in heavy traffic queues.

In our formalization, all parameters do not depend on a scheduling discipline since

we modelled this as a first come first serve (FCFS) system. However, whenever a

customer arrives at an FCFS queue, it will find an other customer already being

served. This latter customer has already completed some service time before and

has a pending residual service time left to complete. In our formalization, we did

not model the residual service time and we blindly considered it to be a part of the

response time. This is only valid for an exponentially distributed service time but

not otherwise.

4.3.3 Mean Waiting Time in the queue

The mean waiting time in the M/M/1 queue consists of the residual service time

of the customer currently under service and the time needed to serve the customer

waiting. In other words we can express it based on the average time spent in the

system and the average time a customer is being served.

E(w) = E(T )− 1

μ

Theorem 4.3.

� ∀ p X A B n. prob_space p ∧ MM1_Queue X p t h I F i j λ μ ∧
1 > ρ ∧ W = T - 1 / μ ∧ 0 < λ ⇒ w = NORMAL (ρ / (μ - λ))

In addition to the above three properties, it is possible to compute the average number

in the queue and the average time spent queueing (without being served). Littles
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formula is very important as it gives the relationship between the steady-state average

number of customers in the system, the steady-state arrival rate, and the steady-state

customer delay.

4.4 Applications

In this section, we present the formal analysis of two real-world applications, i.e., the

modeling and analysis of a single airport runway and a network of queues.

4.4.1 Airport Runway Modeling and Analysis

Generally, modeling and analysis of runways are considered as a critical element in the

design life cycle of airports and corresponding control softwares which are deployed

in control towers. In fact, it is very important to evaluate the performance of a single

runway due to different factors associated with safety and cost. One of the most

traditional ways is to model a single runway (as shown in Figure 4.2) as a single

server queue, i.e., M/M/1. Consequently, it is possible to determine some important

runway performance metrics such as runway utilization, expected number of airplanes

waiting to land and expected waiting time [14].

Figure 4.2: A Schematic Model of Single Airport Runway

In the following, we present the formal modeling and verification of these properties

in HOL4 using our formalization.
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Definition 4.10. (Single Runway Model)

� ∀ X p I F i j λ μ.

runway_model X p I F i j λ μ = MM1_Queue X p I F i j λ μ

based on our definitions, an airport runway can be defined as an M/M/1 queue. This

means that this model will inherit all the properties of an M/M/1 queue. Thus it is

assumed that the arrival is a Poisson process and the distribution for landing times

is exponential. In our application, airplanes are supposed to arrive at the rate of 15

per hour and it is estimated that each landing takes 3 minutes which means that the

service rate is 20 per hour. The mean number of customers in the system can be

found as follows

E(N) =
ρ

1− ρ
= 3

Theorem 4.4.

� ∀ p X. prob_space p ∧ MM1_Queue X p t h I F i j 15 20 ∧
Steady_state_eq X n p ⇒
SIGMA (λn. n * Normal (distribution p X {&n})) (IMAGE X (p_space p)) =

NORMAL (3)

Similarly we can find the expected waiting time

E(w) =
ρ

μ− λ
= 9 minutes

Theorem 4.5.

� ∀ p X. prob_space p ∧
MM1_Queue X p t h I F i j 15 20 ⇒ w = NORMAL (9)

We verified above mentioned properties using Theorems 4.1 and 4.3, respectively.

The above theorems are very important performance metrics for any single runway

model. Moreover, their verification in the HOL theorm prover increases the trust as

well as provide a complete certification proof. Finally, these properties can be used

for different values of λ and μ, which shows the reusability of our formalization.
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4.4.2 Network of Queues

Generally, queues can interact in the sense that a traffic stream departing from one

queue enters one or more other queues. The network of queues model [13] focuses

on nodes with finite capacities and studies buffering and waiting behaviors from a

stochastic perspective. It is based on relatively simple topologies and lacks the multi-

hop flow routing dimension. The nature of this network has the unfortunate effect of

complicating the arrival processes at downstream queues. The difficulty is that the

customers interarrival times become strongly correlated with the service time once

customers have traveled beyond their entry queue. As a result it is very hard to

carry out a precise and effective analysis using numerous analysis techniques. Thus

we chose to model this network based on our formalization of the M/M/1 queue.

A Network of Queues can be seen as a set of two nodes tandem networks as shown

in Figure 4.3. The figure shows a two-stage tandem network composed of two nodes

Figure 4.3: Two nodes Tandem Network [13]

with service rates μ0 and μ1, respectively. The external arrival rate for node 0 is λ

and the arrival process is Poisson. Both nodes are M/M/1 queues.

As an indication of the difficulty of analyzing queueing network problems involving

dependent interarrival and service times, no analytical solution is known for even

the simple tandem queueing problem of Figure 4.3 involving Poisson arrivals and

exponentially distributed service times. In real situations where service times or

number of customers in different queues are correlated, the average delay per customer

can be smaller than in the idealized situation where there is no such correlation. The

reverse is true under light traffic conditions. In this case, we consider a network of

queues with independent service times and light traffic. As a result of this assumption,

the occupancy distribution in the two queues is the same as if they were independent
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M/M/1 queues in isolation.

Consequently, a node in the tandem network can be modeled as follows

Definition 4.11. (Network Node)

� ∀ X p i j I F λi μi Ni.

node_model X p i j I F λi μi Ni = MM1_Queue X p i j I F λi μi

In this example, we assume that the arrival process at node 1 is also a Poisson process

with rate λ. Our M/M/1 results can be applied to a group of random variables as

well, which gives rise to joint probability distributions of the numbers in both nodes.

P(N0, N1) = (1− ρ0)ρ
N0
0 (1− ρ1)ρ

N1
1

Theorem 4.6.

� ∀ p X. prob_space p ∧ node_model X p i j I F λ0 μ0 N0 ∧
node_model X p i j I F λ1 μ1 N1 ∧ Steady_state_eq X n p ∧ ρi = λi/μi ∧
ρi < 1 ∧ (events p = POW (p space p)) ⇒
joint_distribution p X X {N0} {N1} =

(1 - ρ0) * ρ0^N0 * (1 - ρ1) * ρ1^N1

Let ρi =
λi

μi
be the corresponding utilization factor to a node i. We assume that ρi < 1

for stability reasons. The most important assumptions in the theorem above is the

fact that we assume N to be the average number of customers in one queue. This

means that we are assuming that the arriving process takes a random look, which is

true only for the Poisson process that has memoryless arrivals applied for the Markov

Chain solution.

It is possible to find the average delay per customer when we know the average

number of customers in each queue. Assuming that γ is the total arrival rate in the

system, then we can formalize this property as follows

D =
1

γ

∑
i

ρ

1− ρ
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Theorem 4.7.

� ∀ p X. prob_space p ∧ node_model X p i j I F λi μi Ni ∧
ρi = λi/μi Steady_state_eq X n p ∧
γ = SIGMA (λi. NORMAL (λi)) (count i) ∧
N = SIGMA (λi. NORMAL (ρ / (1 - ρ))) (IMAGE X (p_space p)) ⇒
D = 1/γ * SIGMA (λi. NORMAL (ρ / (1 - ρ)) (IMAGE X (p_space p))

In this theorem we are assuming that the transition times of all customers from

one node to another are exponentially distributed. Also the transition times of all

customers are independent including the transition times of the same customer at

two different links from one node to another. The proof of this theorem is mainly

based on the M/M/1 queue definition along with some arithmetic and probabilistic

reasoning.

The single server queuing analysis can be used to estimate the average waiting

time, the number of customers and even the joint distribution in a network of queues.

Queueing theory is also the primary methodological framework for analyzing net-

work delay. Its use often requires simplifying assumptions since, unfortunately, more

realistic assumptions make meaningful analysis extremely difficult. For this reason,

it is sometimes impossible to obtain accurate quantitative delay predictions on the

basis of queueing models while using simulation techniques. Nevertheless, using our

approach, these models often provide a basis for adequate delay approximations, as

well as valuable qualitative results and worthwhile insights. The ability to express

and verify generic properties, quantified for all values of the variables, is the main

strength of theorem proving as can be seen from the above definitions and theorems.

All properties, once verified, can hold for any number of nodes and customers and

can be further specialized to obtain expressions and values for particular scenarios.

Moreover, some important underlying assumptions, e.g., the fact that a queue should

always be stable, are always found thanks to the fact that every single step of the

proof needs to be derived from axioms or previous theorems using inference rules. To

59



the best of our knowledge, this is the first time the properties of an M/M/1 queue or

any kind of queue, have been analyzed using theorem proving.

4.5 Summary

In this chapter, we used the formalization of Poisson process and its transition prob-

ability function to provide a higher-order-logic formalization of the main concepts

of M/M/1 queue. We also formalized the definitions of CTMC, time-homogenous

CTMC and birth death process. Based on the latter formalization, we introduced

the most commonly used definition of a one server queue as well as its transition

probability function. To facilitate the probabilistic analysis of queueing model, we

verified the most important properties of an M/M/1 queue, which can be found in

most textbooks and are frequently used in real-world applications. These properties

represent the foundation of many queueing systems, they can also be used to derive

more interesting properties such as the average time spent queueing or being served.

The airport runway modeling and the network of queues are a typical M/M/1 queue

models and many more complicated systems can be based on such a simple structure.

For this reason, we analyzed some properties of these two basic applications. In a first

step, they were both formalized as an M/M/1 queue model using higher-order logic.

Then, their most interesting properties were proved based on this model. These two

examples mainly illustrate a flow of the complete verification process of an M/M/1

queue using theorem proving and it shows the usefulness of our formalization.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Numerous important properties of engineering systems such as reliability, availability,

and performance metrics mandate the need for accurate modeling and analysis. Con-

tinuous time Markov chains offer an effective and practical modeling solutions for a

variety of safety-critical domains, such as medicine, transportation and communica-

tion systems, etc. However, existing computer-based techniques for conducting these

analysis, i.e., simulation, Computer Algebra Systems (CAS) and model checking, can

hardly guarantee accurate results. Their results often include approximations due to

the utilization of numerical methods or suffer from the state-explosion problem as

in the case of model checking. To overcome the limitations of the above mentioned

techniques, we propose to use higher-order-logic theorem proving to facilitate the for-

mal analysis of systems modeled as CTMCs and to deliver more accurate and trusted

results.

In this thesis, we have presented an application of formal methods in the area

of analyzing Markovian systems. In particular, we have developed a framework for

accurate and reliable analysis of systems which can be modeled using CTMC. This

formalizations also offers the capability of formally evaluating the performance of di-

verse systems which are described as queues. The higher-order logic theorem proving
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approach guarantees generic, accurate and reliable results compared to traditional

paper-and-pencil analysis, simulation techniques or computer algebra systems. We

believe that a formal analysis based on our development will be free of approximation

and precision problems due to the soundness nature of the higher-order logic envi-

ronment. Thus, our proposed approach can be used in formal performance analysis

of safety critical engineering and scientific applications.

The main purpose of this thesis was to develop an infrastructure that can be

used to perform formal analysis of queueing systems based on CTMCs. Towards

this goal, we built upon the available probability theory of HOL4 to formalize the

Poisson process along with the verification of some of its important properties. We

have been able to use the formalization of Poisson process to formally verify the

error probabilities of optical communication systems as an illustrative case study as

well. Furthermore, we formally defined the continuous-time Markov chains which

further allowed us to represent birth-death process in higher-order logic. Finally, we

used these foundations to formalize a generic model of an M/M/1 queue. Based on

this formalization, we have been able to formally verify and model a single airport

runway as well as a network of queues, which are expressed as M/M/1 queues. These

applications highlight the benefits of the formalization of M/M/1 queues and the

formal verification of their properties using a higher-order-logic theorem prover.

This work was conducted using the HOL4 kananaskis 9 version of the theo-

rem prover and the main reason behind this choice was to be able to utilize avail-

able higher-order-logic formalizations of the measure and probability theories along

with the conditional probability which we ported from HOL4 kananaskis 7 to HOL4

kananaskis 9.

The main challenge of our work was to describe the poisson process, CTMC and

the M/M/1 in proper and flexible way in the higher-order logic. The proof script of the

formalization and verification of the notions presented in this thesis require around

3000 lines of HOL4 code available at http://hvg.ece.concordia.ca/projects/

prob-it/CTMC.html.
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To the best of our knowledge, no queueing system has been formalized in any of

the existing theorem prover. Due to the formal nature of our models, the analysis

conducted by this framework will be accurate and reliable even in short intervals.

This approach can thus be of great benefit for the analysis of Queueing systems used

in safety-critical domains, such as medicine and transportation.

5.2 Future Work

Some of the worth mentioning extensions of our formalization are outlined as follows:

• The formalization of Poisson process along with the formalization of some con-

tinuous random variables (such as Normal random variable) can be used to

extend the reliability analysis framework available in HOL4 theorem prover [3].

• The extensions of the formalization of Continuous-Time Markov Chains and the

M/M/1 queue can be used to formalize a variety of queueing models such as

M/M/c (or also called ErlangC model) [34]. The M/M/c queue is a multi-server

queueing model thus it is a generalisation of the M/M/1 queue which considers

only a single server. Further other queues with infinite number of servers can

be also formalized.

• Another interesting direction is to formalize the Semi-Markov Decision Process

(SMDP) [49], which is widely used for the performance analysis of software

and distributed systems. It is also used in modeling stochastic control prob-

lems in Markovian dynamic systems where the sojourn time in exponentially

distributed. Our formalization of Continuous-Time Markov Chains can also

be further extended to formalize continuous-time Markov Decision Processes

(MDP) [36], which can be applied in the analysis of Queueing systems and

epidemic processes.
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