
Continuous Probability Distributions in
Model-Based Specification Languages

Thesis by

Zoe Helen Andrews

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy at Newcastle University.

School of Computing Science,

Newcastle University,

Newcastle upon Tyne,

NE1 7RU,

UK.

August 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Newcastle University eTheses

https://core.ac.uk/display/153777435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Abstract

Model-based specification languages provide a means for obtaining assurance of depend-
ability of complex computer-based systems, but provide little support for modelling and
analysing fault behaviour, which is inherently probabilistic in nature. In particular,
the need for a detailed account of the role of continuous probability has been largely
overlooked.

This thesis addresses the role of continuous probability in model-based specifica-
tion languages. A model-based specification language (sGCL) that supports continuous
probability distributions is defined. The use of sGCL and how it interacts with en-
gineering practices is also explored. In addition, a refinement ordering for continuous
probability distributions is given, and the challenge of combining non-determinism and
continuous probability is discussed in depth.

The thesis is presented in three parts. The first uses two case studies to explore the
use of probability in formal methods. The first case study, on flash memory, is used
to present the capabilities of probabilistic formal methods and to determine the kinds
of questions that require continuous probability distributions to answer. The second,
on an emergency brake system, illustrates the strengths and weaknesses of existing lan-
guages and provides a basis for exploring a prototype language that includes continuous
probability.

The second part of the thesis gives the formal definition of sGCL’s syntax and seman-
tics. The semantics is made up of two parts, the proof theory (transformer semantics)
and the underpinning mathematics (relational semantics). The additional language
constructs and semantical features required to include non-determinism as well as con-
tinuous probability are also discussed. The most challenging aspect lies in proving the
consistency of the semantics when non-determinism is also included.

The third part uses a final case study, on an aeroplane pitch monitor, to demonstrate
the use of sGCL. The new analysis techniques provided by sGCL, and how they fit in
with engineering practices, are explored.

ii

Declaration

I certify that no part of the material offered has been previously submitted by me for a
degree or other qualification in this or any other University.

Published Work

Part of the work presented in this thesis has been published as follows.

1. A first version of the flash filestore case study presented in Chapter 3 appeared in:

Z.H. Andrews, A. McIver, L. Meinicke, and C. Morgan. Probabilistic
aspects of flash filestores. In R. Joshi, T. Margaria, P. Müller, D. Nau-
mann, and H. Yang, editors, Int. Conf. on Verified Software: Theories,
Tools and Experiments 2010, Workshop Proceedings, 2010

This research was carried out by Andrews with guidance from the remaining co-
authors. In addition, jointly written background material from this paper is pre-
sented in Section 2.3.2.

2. A first version of the stochastic Event-B material presented in Chapter 4 appeared
in:

Z.H. Andrews. Towards a stochastic Event-B. In Supp. Volume of 2009
Workshop on Quantitative Formal Methods: Theory and Applications,
2009

iii

Acknowledgements

I would like to thank all the people who have provided me with valuable advice and sup-
port throughout my doctoral studies. In particular, I would like to thank my supervisor
John Fitzgerald for his endless support, guidance and feedback on my research. I would
also like to thank my thesis committee members Aad van Moorsel and Jason Steggles
for their valued knowledge and advice.

During my studies I was grateful to have the opportunity to travel to Australia
and work closely with Annabelle McIver, Carroll Morgan and Larissa Meinicke on the
probabilistic aspects of flash filestores (see Chapter 3). I would like to thank them (and
the Australian Research Council, and the School of Computer Science and Engineering
at the University of New South Wales) for making this possible. I also appreciate the
continued advice, particularly on the semantics of probabilistic formal methods, and
support received from them.

I am grateful for the support received from my colleagues in the School of Computing
Science at Newcastle University. Particular thanks go to Cliff Jones, Jeremy Bryans,
Carl Gamble, Richard Payne, Ken Pierce and Claire Ingram, who have all at some point
given me useful advice or feedback.

The research presented in this thesis would not have been possible without financial
assistance. I am grateful to the EPSRC for providing a stipend and to the School
of Computing Science at Newcastle University for choosing to support me financially.
Many useful collaborations would not have been possible without the DEPLOY project.

Finally, I am grateful to my family for their endless support and encouragement. I
am especially indebted to Will McElderry, who gave me the strength to persevere.

Contents

Abstract i

Declaration ii

Acknowledgements iii

Table of Contents iv

List of Figures ix

1 Introduction 1

1.1 Motivation and Problem Definition . 1
1.1.1 Approach . 2

1.2 Aims, Contribution and Methods . 3
1.2.1 Aims . 3
1.2.2 Contribution . 4
1.2.3 Methods . 5

1.3 Thesis Organisation . 5

I Exploring Probability in Formal Methods 8

2 Background and Related Work 9

2.1 Probability Theory . 9
2.1.1 Introducing probability . 9
2.1.2 Probability distributions . 10
2.1.3 Expectation and variance . 12
2.1.4 Markov chains . 13

2.2 Formal Methods . 15
2.2.1 Model-based specification languages 16
2.2.2 Introducing GCL . 17

2.3 Probability in Formal Methods . 19
2.3.1 Probabilistic formal methods . 20

iv

CONTENTS v

2.3.2 Introducing pGCL . 20
2.3.3 Stochastic formal methods . 22
2.3.4 Probabilistic PDL . 23

3 Probability in Formal Methods in Practice 25

3.1 Flash Filestore Systems . 25
3.1.1 Wear-levelling . 26

3.2 Specification of a Flash Filestore . 27
3.2.1 Modelling a probabilistic wear-levelling algorithm in pGCL . . . 28
3.2.2 Analysis . 28

3.3 Continuous Probability in Flash Filestores 31
3.3.1 When does a flash filestore fail? 31
3.3.2 Considering trade-offs . 33

3.4 Applications of Continuous Probability in Computing 34
3.5 Concluding Remarks . 35

4 Towards a Stochastic Model-Based Specification Language 36

4.1 The Emergency Brake . 37
4.2 Modelling the Emergency Brake in PRISM 38

4.2.1 PRISM overview . 39
4.2.2 PRISM models and analysis . 39
4.2.3 Experiences with PRISM . 41

4.3 Modelling the Emergency Brake in pB 42
4.3.1 pB overview . 42
4.3.2 Discrete approximations of the emergency brake system 44
4.3.3 pB models and analysis . 45
4.3.4 Experiences with pB . 48

4.4 Modelling the Emergency Brake in Stochastic Event-B 49
4.4.1 Event-B overview . 49
4.4.2 Stochastic extensions . 50
4.4.3 Event-B models and analysis . 51
4.4.4 Experiences with Stochastic Event-B 54

4.5 Next Steps and Challenges . 56
4.6 Concluding Remarks . 57

II Defining sGCL 58

5 Foundations of sGCL 59

5.1 Measure Theory . 59
5.1.1 Basic definitions . 59
5.1.2 Integration over measures . 60

CONTENTS vi

5.2 A Stochastic Powerdomain . 62
5.3 A Metric Space for Measures . 64

5.3.1 Joint probability distributions . 64
5.3.2 The Kantorovich metric . 65

5.4 Semantics of pGCL . 66
5.4.1 Syntax review . 67
5.4.2 Transformer semantics . 68
5.4.3 Relational semantics . 69
5.4.4 Relating the transformer and relational semantics 74

5.5 Concluding remarks . 75

6 A Deterministic sGCL 76

6.1 Preliminaries . 76
6.2 Syntax . 77
6.3 Transformer Semantics . 79

6.3.1 Healthiness of the transformer semantics 81
6.4 Relational Semantics . 89

6.4.1 Linking the transformer and relational semantics 90
6.5 Refinement Notions . 94

6.5.1 Reducing non-termination . 94
6.5.2 Data refinement . 95

6.6 Discussion . 96

7 Towards a Non-Deterministic sGCL 98

7.1 Syntax and Transformer Semantics . 98
7.1.1 Healthiness conditions . 99

7.2 Relational Semantics . 100
7.2.1 Deterministic relational semantics 100
7.2.2 Non-deterministic relational semantics 103

7.3 Relating the Transformer and Relational Semantics 106
7.3.1 Proving the consistency of the two semantics 107

7.4 Refinement Notions . 108
7.4.1 Reducing non-determinism . 108

7.5 Discussion . 110

III Applying and Evaluating sGCL 112

8 Applying sGCL: Patterns and Pitch 113

8.1 Design Patterns . 113
8.2 The Monitoring Voter in sGCL . 117
8.3 The Aeroplane Pitch Monitor . 123

CONTENTS vii

8.3.1 Overview of the pitch monitor 123
8.3.2 Modelling and analysing the pitch monitor in sGCL 125

8.4 Further Exploration . 129
8.4.1 Adding a third sensor . 129
8.4.2 Sensor refinement . 133

8.5 Evaluation . 136

9 Conclusions 138

9.1 Summary . 138
9.2 Evaluation . 140

9.2.1 General aims . 140
9.2.2 Language aims . 143
9.2.3 Discussion of the fault classes sGCL may apply to 145

9.3 Further Work . 146
9.3.1 Language extensions . 146
9.3.2 Methodological extensions . 148
9.3.3 Tool support . 149

9.4 Closing statements . 150

Appendix A Proving the Flash Memory Loop Invariant 151

Appendix B Emergency Brake Models and Proofs 157

B.1 PRISM Models . 157
B.1.1 Version 1 . 157
B.1.2 Version 2 . 158

B.2 pB Models . 160
B.2.1 Option 1 . 160
B.2.2 Option 2 . 161

B.3 pB Expectation Analysis . 162
B.3.1 Option 1 . 162
B.3.2 Option 2 . 165

B.4 Event-B Models . 170
B.4.1 Standard Event-B . 170
B.4.2 Stochastic Event-B option 1 . 171
B.4.3 Stochastic Event-B option 2 . 173

B.5 Stochastic Event-B Expectation Analysis 174
B.5.1 Option 1 . 174
B.5.2 Option 2 . 175

Appendix C Proving the Healthiness Conditions in Deterministic sGCL180

C.1 Continuity . 180

CONTENTS viii

C.2 Linearity . 183

Appendix D The Challenge of Proving Consistency in a Non-Deterministic

sGCL 188

D.1 Consistency Proofs . 188
D.1.1 A discrete approximation for measures 189
D.1.2 The challenge of showing that wp is an injection 193
D.1.3 The challenge of showing that rp is an injection 200

D.2 A Note on the Use of the Kantorovich Metric with Sub-Probability Measures203

Appendix E Supplementary Lemmas 205

Appendix F DESTECS Patterns 207

F.1 Voter Pattern . 207
F.2 Monitor . 208

Bibliography 210

List of Figures

2.1 Probability mass functions of various discrete probability distributions . 11
2.2 Probability density functions of various continuous probability distributions 13
2.3 Example Markov chain with three states 14
2.4 Notation and weakest pre-condition semantics of GCL 19
2.5 Notation and weakest pre-condition semantics of pGCL [6] 21
2.6 Notation and expectation transformer semantics of probabilistic PDL . 24

3.1 Abstract representation of a flash filestore garbage collector 27
3.2 Specification of the probabilistic wear-levelling algorithm 28
3.3 Expected lifetime (E[e]) for the probabilistic wear-levelling algorithm . . 31

4.1 States and transitions for the EB system 38
4.2 PRISM syntax for CTMC models . 40
4.3 First PRISM model - unsafe failure event 41
4.4 Second PRISM model - synchronised request event 41
4.5 Sample results of the emergency brake analysis in PRISM 42
4.6 Notation and expectation transformer semantics of pGSL 43
4.7 pB main and EB Request operations for option 1 46
4.8 pB main and EB Request operations for option 2 47
4.9 Stochastic Event-B EB Request event for option 1 52
4.10 Stochastic Event-B EB Request event for option 2 52

5.1 Monad coherence conditions represented as commutative diagrams [66] . 63
5.2 Review of notation and weakest-precondition semantics of pGCL [6] . . 67
5.3 Healthiness conditions for pGCL transformers. 69

6.1 Syntax and weakest pre-condition semantics of deterministic sGCL . . . 80
6.2 Examples of measure ordering: mu 1 (solid line); mu 2 (dashed line) . . 91

7.1 Syntax and weakest pre-condition semantics of non-deterministic sGCL 99

8.1 Class (left) and object (right) diagrams for the monitoring voter pattern 116
8.2 A monitoring voter with two replicated sensors 118

ix

LIST OF FIGURES x

8.3 A monitoring voter with two diverse sensors 120
8.4 The probability of triggering a reset action for a variety of sensor pairs . 123
8.5 Probability of a reset action against tolerance for various sensors 124
8.6 Aeroplane attitudes and axes (left) and pitch monitor state chart (right) 125
8.7 Specification of the pitch monitor . 126
8.8 A monitoring voter with three replicated sensors 130
8.9 Probability of a reset action for three (solid) and two (dashed) sensors . 133
8.10 The cross-section of the volume for the different three sensor strategies . 134
8.11 The probability density functions of mu (solid) and mu’ (dashed) 135

D.1 The ε-approximation (solid) of a truncated exponential distribution (dashed)190

F.1 Voter pattern (class and object diagram) 208
F.2 Monitor pattern (class and object diagram) 209

Chapter 1

Introduction

This chapter motivates the work presented in this thesis and describes the problem
that it aims to solve. The contribution of the thesis is presented before detailing the
methods used to carry out the research. Finally the structure of the rest of the document
is summarised.

1.1 Motivation and Problem Definition

The range and complexity of systems in which computers play a major part is ever
increasing. As complexity increases it becomes harder to design computer-based systems
that function predictably. At the same time, greater reliance is being placed on their
correct functioning, in particular in those systems that are responsible for preserving
lives or livelihood. Providing the required increases in dependability is only possible if
the techniques for obtaining and assuring such dependability are continually improved
and updated.

One approach to providing assurance about system properties is through the use
of “model-based specification languages”. Specification languages are equipped with
abstractions for expressing system properties with minimal bias towards the eventual
system design or implementation. Formal specification languages have mathematically
defined semantics, which provide the required assurance of system properties through
formal validation and verification techniques. Model-based (formal) specification lan-
guages use an abstract system model to communicate the desired behaviour (as opposed
to listing properties as axioms). Such languages are intended to be more accessible to
engineers than their underlying mathematics, thus enabling more widespread use of
rigorous analysis of system properties.

To model and analyse the dependability of a system, its fault behaviour, as well as
normal operation, needs to be considered. Faults often have a random nature that can
only be captured by probability. There is currently limited support for probability in
model-based specification languages. In particular, the support for continuous prob-

1

1.1 Motivation and Problem Definition 2

ability is largely unexplored in these languages. A continuous probability distribution
describes the probability of a range of values, as opposed to a set of values. Such distri-
butions are used throughout engineering, for example, in modelling the expected time
between faults.

The problem explored in this thesis is how to incorporate continuous probability into
model-based (formal) specification languages, in particular for the analysis of the fault
behaviour of computer-based systems.

1.1.1 Approach

The approach taken in this thesis draws from two key research areas in computing: “De-
pendability” and “Formal Methods”. These are two fairly distinct research communities
with a common goal – to empower more reliable computer-based systems.

Dependability is defined by Avizienis et al. [9] as “the ability to deliver service that
can justifiably be trusted”. The same authors identify four means to attain dependabil-
ity: fault prevention; fault tolerance; fault removal; and fault forecasting. In practice,
dependability research tends to focus on tolerating and forecasting faults. The features
of dependability research that this thesis makes use of are fault tolerant architectures
and the quantitative evaluation of dependability attributes. Fault tolerant architectures
make use of redundancy to reduce the impact of faults occurring on the overall system
[59]. The main dependability attribute that will be analysed is “reliability” (the conti-
nuity of correct service [9]), although “safety” (the absence of catastrophic consequences
on the user(s) and the environment) is also considered.

Formal methods use “mathematically-based languages, techniques and tools for spec-
ifying and verifying computer-based systems” [16]. Note that some would consider for-
mal methods a research area within dependability, falling under the fault prevention
category. In practice, the two research communities have little overlap. The main ap-
proach drawn from formal methods in this thesis is the development of a model-based
specification language and its semantics. In addition, the thesis is concerned with the
verification approach of “theorem proving” and a development approach known as “re-
finement”. Theorem proving is the verification approach that the language developed
in this thesis is intended to support. It is defined as the process of finding a proof
of a property from the axioms of the system [16]. Refinement, also supported by the
language described in this thesis, plays an important role in the use of formal methods
as a stepwise development process. The refinement process allows an abstract model
to be produced and key properties of it verified, before more details are added in a
series of refinement steps. Proofs are used to show that the refined models respect the
abstraction and thus that the key properties are preserved [44].

Formal techniques are a promising approach to developing dependable systems be-
cause they allow the interaction between desired behaviour and dependability to be
evaluated rigorously. However, without support for continuous probability distribu-

1.2 Aims, Contribution and Methods 3

tions, the frequency and impact of randomly occurring faults are difficult to express
and analyse. The approach taken in this thesis is to extend a formal method with the
ability to express continuous probability. This allows dependability properties (such as
reliability) to be treated as rigorously as standard (functional) properties. This means
that:

• the claimed benefits of fault tolerant architectures can be verified formally;

• the dependability of differing designs can be compared accurately;

• the relationship between program parameters affecting overall dependability can
be explored.

Case studies are used to develop the new language and evaluate its success at achiev-
ing the above features.

1.2 Aims, Contribution and Methods

1.2.1 Aims

The overall vision of this research is to equip developers with the ability to reason about
systems with (continuous) probabilistic elements, in the context of model-based formal
methods for developing dependable systems. In order to do that, it is required to satisfy
the following general aims:

• to explore the role of probability in model-based specification languages, in par-
ticular continuous probability;

• to develop a model-based specification language that supports reasoning about
continuous probability;

• to demonstrate reasoning about dependability properties using the new language;

• to examine how the new language fits into software engineering practice, such as
the use of design patterns.

The language that will be developed is a key feature of the thesis, therefore this is
examined more closely. The new language should:

• include explicit support for continuous probability distributions, so that variables
may be assigned values according to a continuous probability distribution;

• allow formal analysis and proof of (probabilistic) properties over systems contain-
ing continuous probability distributions, for example dependability attributes such
as reliability and safety;

1.2 Aims, Contribution and Methods 4

• provide means for abstraction and refinement of computer-based systems contain-
ing continuous probability distributions;

• be underpinned by a consistent mathematical foundation.

These are all important properties of model-based formal specification languages. In
addition, it is desirable for the new language to:

• support non-determinism, where the program can branch according to some ex-
ternal decisions beyond the control of the program.

This provides enhanced abstraction capabilities that are particularly useful in the early
stages of design.

1.2.2 Contribution

The contribution provided by this thesis is the exploration of the role of continuous
probability distributions in model-based specification languages. This can be decom-
posed into three main aspects: the initial exploration of uses of continuous probability
in formal methods; the development of a model-based specification language that sup-
ports continuous probability distributions; and the application of the new language from
an engineering perspective.

The initial exploration demonstrates the use of probability in formal methods and
determines the questions that are more suited to continuous probability. A new language
is also prototyped based on the strengths and limitations found in the existing use of
probability in formal methods. The complexities of formally describing this language in
full are discussed.

The major part of the contribution is the development of the syntax and formal
semantics of a model-based specification language, sGCL. The chosen base language is
simpler than that of the prototype, to allow a formal description of the syntax, proof-
theory and relational semantics. One key simplification made is that non-determinism
is removed from the fully proven language, although the complexity of including both
continuous probability and demonic non-determinism is discussed at length and sugges-
tions are made for further work in this area. Nonetheless, the deterministic version of
sGCL presented is designed to satisfy the essential properties for model-based specifi-
cation languages as described above. Important healthiness conditions (properties that
must hold to ensure that programs have meanings) for probabilistic programs are also
shown to hold in sGCL. One particularly novel aspect of the language is the definition
of a refinement relation between continuous probability distributions.

The final aspect of the contribution is methodological. The deterministic sGCL is
shown to have the capability to analyse interesting dependability properties and fit in
well with the engineering practice of design patterns.

1.3 Thesis Organisation 5

1.2.3 Methods

In order to satisfy the aims of the thesis: a suitable base language, to which continuous
probability can be added, must be identified; the extensions to the base language need to
be defined and the semantics of the extended language specified; and the new language
needs to be applied and evaluated.

This led to three main phases of research: first to examine the use of probability
in formal methods and identify a suitable language to extend with continuous proba-
bility; second to develop a model-based specification language that supports continuous
probability; third to explore and evaluate the application of the language developed.

The methods used in these phases include: language definition; specification of se-
mantics; and the development of case studies for the purposes of language exploration
and evaluation.

The first phase explored the use of probability in formal methods through the use
of case studies. The case studies were used for two main purposes. The first, on flash
memory, was used to understand the capabilities of probabilistic formal methods and
to determine the kinds of questions that require continuous probability distributions to
answer. The second, on an emergency brake system, was used to illustrate the strengths
and weaknesses of existing languages and to explore a prototype language that includes
continuous probability. The first phase concluded with the identification of a suitable
language to be extended formally with continuous probability.

The second phase was the formal development of the new language, sGCL. This
involved the definition of the language syntax and the specification of its semantics. The
semantics is made up of two parts, the proof theory (transformer semantics) and the
underpinning mathematics (relational semantics). The phase ended with an exploration
of the additional language constructs and semantical revisions required to include non-
determinism, for the purposes of abstraction.

The third phase used a final case study to evaluate the usefulness of sGCL. The case
study, on an aeroplane pitch monitor, was used to explore the new analysis techniques
provided by sGCL and how such analysis fits in with engineering practices. The phase
ended with a more general evaluation of the effectiveness of sGCL and the opportunities
for further development of the research.

1.3 Thesis Organisation

The remainder of the thesis is structured into three parts. The first part contains
background material on the use of probability in formal methods. The second part
describes the new language, sGCL, detailing its syntax and semantics. The third part
analyses the application of sGCL, evaluates its usefulness and identifies areas for further
research.

The first part opens with an introduction to the basic concepts and definitions that

1.3 Thesis Organisation 6

occur when discussing probability in formal methods (Chapter 2). This includes: an
introduction to probability, and what is meant by continuous probability; followed by
an overview of formal methods, particularly focussing on model-based specification lan-
guages. The existing approaches to extending formal methods with probability are then
discussed, this includes an overview of the related work. In particular, the languages on
which the majority of this thesis is based (GCL and pGCL) are summarised.

The first part then proceeds with a demonstration of the use of probability in model-
based specification languages in practice (Chapter 3). This uses a case study on flash
memory to show how probabilistic programs can be modelled and reasoned about in
pGCL. This leads into a discussion of the kinds of questions that are more easily answered
using continuous probability.

The conclusion of the first part of this thesis is an exploration of probability in
formal methods more generally and the prototyping of a new approach (Chapter 4). A
case study on an emergency brake is used to illustrate the strengths and limitations of
existing approaches. A new language (that aims to combine the strengths of several
existing approaches) is then prototyped and applied to the case study to demonstrate
its use. The complexities involved in defining a full formal definition of the prototype
language are discussed. This allows suitable simplifications to be identified for the
language whose development is detailed in full in Part 2.

Part 2 starts with more technical background material (Chapter 5) that is required to
understand the semantics of the new language. This includes an introduction to measure
theory, as this is the basis of the underpinning mathematics of sGCL. Other topics
introduced in this chapter include: a stochastic powerdomain for sequential composition
of programs containing continuous probability; and a metric space for measures. The
metric space is used for the discussion of a non-deterministic sGCL, where the proofs
require reasoning about compactness of sets of measures. The chapter ends with a
detailed look at the semantics of pGCL [61], as this provides the framework for the
semantics of sGCL.

The main chapter in Part 2 is the description of sGCL (Chapter 6). In this chapter
the syntax, proof theory and semantics are laid out for the language, sGCL, that consti-
tutes the main contribution of this thesis. Vital healthiness conditions for probabilistic
programs are shown to hold in sGCL. Refinement in sGCL is also discussed, including
formal proof that the refinement orderings given in the proof-theory and relational se-
mantics are consistent. The chapter ends with an evaluation and a discussion of the
novelty of sGCL.

The language defined in Chapter 6 does not include support for demonic non-
determinism. The final chapter (Chapter 7) of part two explores extensions to this
language to include such non-determinism. This includes the definition of the necessary
syntactic, proof-theoretic and semantic changes to sGCL. The challenge of proving the
consistency of the proof theory and the relational semantics (when non-determinism is

1.3 Thesis Organisation 7

introduced) is discussed briefly (a deeper discussion can be found in Appendix D). Fi-
nally the additional opportunities for refinement, when non-determinism is added, are
explored.

Part 3 starts with an exploration of how sGCL can be applied in practice (Chapter 8).
The engineering practice of design patterns is discussed and a new design pattern relating
to dependability is described. The probabilistic aspects of this pattern are then analysed
in sGCL before the pattern is applied in a final case study on an aeroplane pitch monitor.
The opportunities for refinement in the case study are discussed, as is the potential for
further analysis. Finally, the case study, and the performance of sGCL in analysing it,
are evaluated.

Part 3, and the thesis, ends with a summary of the research carried out and a forward
look (Chapter 9). The extent to which the aims of the thesis have been met is evaluated.
This assessment leads into a discussion of the opportunities for further development of
sGCL and its application to developing dependable systems.

Part I

Exploring Probability in Formal

Methods

8

Chapter 2

Background and Related Work

This chapter sets the scene for the main contributions of the thesis, by presenting back-
ground material on probability, formal methods, and the state of the art in combining the
two. This is intended to be a fairly lightweight introduction to these areas. The topics
that require a deeper examination in order to define a formal language that incorporates
continuous probability are described in more detail in Chapter 5.

2.1 Probability Theory

This thesis is concerned with modelling and analysing computer-based systems that
incorporate some element of chance. Such modelling and analysis requires an elementary
understanding of probability theory. This section introduces the terminology and basic
concepts of probability theory that are required to understand this thesis. A more
thorough treatment of probability can be found in many statistical and engineering
textbooks [71] [55].

2.1.1 Introducing probability

Probability theory is relevant to any situation where an element of chance or randomness
is possible. The process of observing or measuring the results of some random occur-
rence is known as an experiment. The possible results of the experiment are known as
outcomes. The sample space is the set of possible outcomes of an experiment. Any
subset of the sample space is called an event.

For example, an experiment could be the process of rolling a six-sided die. This
process results in an integer between one and six – these are the outcomes. The sample
space would be the set {1, 2, 3, 4, 5, 6}. Example events of rolling the die are the sets
{6} and {1, 2}.

Each event in an experiment has some probability of occurring. A probability can
take any value in [0, 1], where an event with probability zero is impossible and one with
probability one is certain. The sample space of an experiment has probability one by

9

2.1 Probability Theory 10

definition.
For example, assuming the six-sided die described above is fair (each outcome is

equally likely), the probability of obtaining the event {6}, written P ({6}) is 1
6 . Similarly

P ({1, 2}) is 1
3 as the event {1, 2} is interpreted as either a one or a two is thrown.

A random variable is any function from the sample space into the real numbers, or
more intuitively a random number. If the sample space is finite or countably infinite
the random variable is called discrete, otherwise it is called continuous.

For example, a discrete random variable may be the number of sixes thrown on a
fair die in ten consecutive rolls or the number of consecutive rolls occurring before a six
is thrown. A continuous random variable could be the time until the next bus arrives
or the rainfall in mm at some specified city on a given day.

2.1.2 Probability distributions

A probability distribution defines the probability (or probability density) of the possible
values of a random variable. If the random variable is discrete it follows a discrete
probability distribution, otherwise if it is continuous it follows a continuous probability
distribution. Therefore, discrete distributions usually range over (a subset of) the natural
numbers, and continuous distributions over (a subset of) the real numbers.

Discrete probability distributions

Discrete probability distributions are defined using a probability mass function (or pmf),
written f(x), as follows

f(x) =

pj , if x = xj

0 , otherwise

which specifies the probability of each possible value occurring.
For example the pmf of a negative binomial distribution is

f(x) =

 x− 1

x− r

 pr (1− p)x−r , x = r, r + 1, r + 2, . . .

0 , otherwise

for some probability p and required number of successes (or failures) r. The negative
binomial distribution models the number of trials observed until r instances of an event
of interest have occurred, assuming a constant probability p of the event of interest
occurring in each trial.

The cumulative distribution function (or cdf), written F (x), can also be recorded
in a similar way and specifies the probability of observing a value no greater than the
input value x.

2.1 Probability Theory 11

0 2 4 6 8 10

(a) Binomial

x

f(
x)

0.
00

0.
10

0.
20

0.
30

0 1 2 3 4 5 6 7 8

(b) Poisson

x

f(
x)

0.
0

0.
2

0.
4

0 2 4 6 8

(c) Geometric

x

f(
x)

0.
0

0.
2

0.
4

0.
6

0 2 4 6 8 11 14

(d) Negative binomial

x

f(
x)

0.
00

0.
10

0.
20

Figure 2.1: Probability mass functions of various discrete probability distributions

Frequently occurring discrete probability distributions include the binomial, Poisson,
geometric and negative binomial [71]. Illustrative probability mass functions of these
distributions are shown in Figure 2.1.

Continuous probability distributions

The definition for continuous probability distributions is slightly less intuitive. Contin-
uous random variables have an infinite sample space, so it no longer makes sense to
assign a probability to each outcome (any probability greater than zero for individual
outcomes would clearly lead to an infinite probability being assigned to the entire sample
space). Instead probabilities are assigned to subsets of the sample space. This results in
a continuous function over (a subset of) the real numbers known as a probability density
function (or pdf), written f(x). The pdf is described such that

2.1 Probability Theory 12

P (a < X ≤ b) =
∫ b

a
f(x)dx

holds for all a < b.
For example the pdf of an exponential distribution is

f(x) =

λe−λx , x ≥ 0

0 , otherwise

for some rate λ. The exponential distribution is commonly used to model the inter-
arrival times between events of interest, where λ represents the arrival rate.

The cumulative distribution function (or cdf) of a continuous probability distribu-
tion, is again written F (x) and has the same interpretation as with discrete distributions.
It can be found by integrating the pdf up to x.

Frequently occurring continuous probability distributions include the normal (or
Gaussian), exponential, hyper-exponential, uniform, chi-squared and gamma [71]. Illus-
trative probability density functions of continuous probability distributions are shown
in Figure 2.2.

2.1.3 Expectation and variance

When analysing probabilistic systems two metrics are of particular interest, the expec-
tation (or expected value) and the variance of a random variable.

The expectation of a random variable X, written E[X], is the average value the
random variable could take, weighted by the probability of it doing so. If X follows a
discrete distribution the expectation of X is

E[X] =
∑
i

xif(xi)

Whilst if X follows a continuous distribution the expectation of X is

E[X] =
∫ ∞
−∞

xf(x)

Note that x may be replaced with g(x) in both of the above to find E[g(X)], the expected
value of some (non-constant and continuous) function g of the random variable X.

The variance of random variable X, written Var(X), provides a measure of the range
of values that X can take and is defined as

V ar(X) = E[X2]− E[X]2

Taking the square root of the variance gives the standard deviation of the random
variable, that is the average distance of the values from the expected value of the random
variable.

2.1 Probability Theory 13

−4 −2 0 2 4

0.
0

0.
2

0.
4

(a) Normal

x

f(
x)

0 2 4 6 8 10

0.
0

0.
4

0.
8

1.
2

(b) Exponential

x

f(
x)

0.0 1.0 2.0 3.0

0.
0

0.
4

0.
8

1.
2

(c) Uniform

x

f(
x)

0 2 4 6 8 10

0.
0

0.
4

0.
8

1.
2

(d) Hyper−exponential

x

f(
x)

Figure 2.2: Probability density functions of various continuous probability distributions

2.1.4 Markov chains

This thesis is not directly concerned with the use of Markov Chains, however, a brief
introduction is prudent in order to understand how the work presented in this thesis
relates to other research.

A Markov chain consists of a (finite or countable) set of states and a set of possible
transitions between these states. Each transition occurs with some fixed probability, or
rate in the case of “CTMCs” (described below). A key feature of a Markov chain is that
it is memoryless. This means that the probability of being in a given state after the
next transition is only dependant on the current state – the history is irrelevant.

Markov chains may be represented diagrammatically or through the use of a tran-
sition matrix. An example, with three states and four transitions, is used to illustrate
these representations. The diagrammatic representation of the example is shown in Fig-

2.1 Probability Theory 14

Figure 2.3: Example Markov chain with three states

ure 2.3. The circles represent the states whilst the arrows represent transitions between
states, with the arrowhead indicating direction. The label on an arrow represents the
probability of the transition occurring from the given starting state. The same example
is recorded in a transition matrix as follows 0 1 0

0.2 0.5 0.3
1 0 0

 ,

where pij , the probability of a transition occurring from state i to state j, is given in
the ith row and the jth column of the matrix.

There are various properties that can be analysed using Markov chains, such as the
probability of being in state x, after n time units, from a given starting state. However,
the most interesting properties are those that relate to the steady state of a Markov
chain. Certain classes of Markov chain enter a steady state as time approaches infinity.
For these classes of Markov chains, a stationary distribution can be calculated that gives
the probability of being in each state after a sufficiently long period of time has elapsed.
This distribution can then be used to calculate properties such as the expected amount
of time the Markov chain will spend in a specific state. This is clearly useful when
certain states are more desirable than others.

There are two kinds of Markov chains that are discussed in this thesis. The first
is as described above, the Discrete Time Markov Chain (DTMC). This treats time
implicitly, state transitions occur at intervals exactly one time unit apart. The other
kind of Markov chain is the Continuous Time Markov Chain (CTMC). This associates
transitions with rates instead of probabilities (usually written λij instead of pij). The
timing of a transition in a CTMC is determined by the exponential distribution, with
the transition rate as a parameter. CTMCs have a range of additional properties that
can be analysed such as the average “sojourn time”, the average time spent in a state
before some transition occurs.

2.2 Formal Methods 15

Finally, it is worth briefly mentioning Markov decision processes, these extend Markov
chains to include non-determinism. The choice between transitions may be either non-
deterministic or probabilistic. Like Markov chains they can be discrete time (DTMDPs)
or continuous time (CTMDPs). Due to the non-determinism, the analysis of Markov
decision processes involves finding lower or upper bounds to the properties of interest,
otherwise the modelling and analysis is similar to that of Markov chains.

2.2 Formal Methods

The term formal methods encompasses a range of modelling techniques for analysing
computer programs and systems. The key feature that these approaches have in com-
mon is a sound mathematical basis for determining whether the system being modelled
respects some desirable properties [16]. An important aspect of software engineering is
determining whether or not a design/model/implementation of a computer-based sys-
tem behaves according to some “specification”. The specification of a computer system
is a document that records the desired behaviour of the system. Specifications may be
formal, expressed in a notation that has a mathematically-defined semantics, or infor-
mal, written in natural language. Throughout this thesis the term specification will be
used to describe the formal document unless otherwise stated.

There are many different formal methods, which roughly fall into the categories:
finite state machines (also known as automata); Petri nets; process algebras (also known
as process calculi); temporal logics; algebraic logics; model-based languages. Some of
these favour a diagrammatic notation such as finite state machines and petri nets, whilst
the others have a written notation. Some focus specifically on concurrent systems such
as petri nets and process algebras, whilst others such as algebraic and model-based
languages have more general applicability. Temporal logics focus on the timing aspects
of the system. This thesis focuses on model-based specification languages, described in
more detail in Section 2.2.1.

There are two types of verification techniques that are used to ensure that a model
respects some desired property. These are: model checking “a technique that relies on
building a finite model of a system and checking that a desired property holds in that
model” [16]; and theorem proving “the process of finding a proof of a property from
the axioms of the system” [16]. This thesis focuses on the latter. Many different logics
are used in theorem proving, depending on the system assumptions and properties to
be proved. Traditional logics such as boolean and predicate logic are common. More
sophisticated logics include: three-valued logics to allow for undefinedness; temporal
logics for timing properties; and of course probabilistic logics for analysing probabilistic
systems.

An overview of the development of formal methods research is given by Jones [46].
The following section provides more details on the key features of model-based spec-

2.2 Formal Methods 16

ification languages, before introducing the language upon which this thesis is based,
Dijkstra’s Guarded Command Language (GCL) [21].

2.2.1 Model-based specification languages

Recall (Chapter 1) that model-based specification languages use an abstract system
model to communicate desired system behaviour (as opposed to listing properties as
axioms). As a type of a formal specification language, these have a formal “semantics”.
The semantics of a language is a mathematical model that describes what each construct
does and provides the basis for proving properties of models written in the language.
Examples of model-based specification languages include: GCL [21]; B [2]; Event-B
[3]; VDM [45, 27]; and Z [85]. In particular, this thesis is concerned with probabilistic
extensions to GCL. An overview of GCL is given in Section 2.2.2 and McIver and
Morgan’s probabilistic extension to GCL is summarised in Section 2.3.2.

Two key features of specification languages such as those given above are “abstrac-
tion” and “refinement”. Abstraction is the process of generalising programs or models
with similar properties into a single model that captures the essential features of all of
them. Refinement is the complementary process that adds implementation details to a
model. The sorting algorithms quick sort, merge sort and bubble sort, for example, are
all refinements of the more abstract process of sorting. The most abstract model of a
program states what it should do, whereas the most refined model states how it should
achieve it. The power of abstraction and refinement is that abstract models tend to be
relatively small and simple, in which key properties of the program can be proven. It is
then possible to prove that the more complex refinements of the abstract model respect
the abstraction and thus also have the required properties of the program [44]. A num-
ber of refinement steps may be taken before the model is close to something that can
be implemented in a programming language. Conversely, if the program is the starting
point, a number of abstraction steps may be taken before the model is simple enough
to permit proof of the required properties.

Various techniques can be used to provide abstraction in model-based specifica-
tion languages. These include “implicit specification”, abstract data types, and non-
determinism.

An implicit specification consists of pre- and post-condition pairs. A pre-condition is
a predicate over the states of the model that is assumed to be true before a section of code
is executed. A post-condition is a predicate that relates the initial and final states of a
section of code. Such conditions can be used alongside the code to give extra information
about the program. In this situation proof techniques can be used to show that the
program respects the post-condition when the pre-condition is satisfied. However, pre-
and post-conditions can also be used on their own as an abstraction mechanism to state
what a section should do and when it can be executed, without giving the details on
how it will be implemented. For example, the abstract specification of a square root

2.2 Formal Methods 17

function would have a post-condition stating that the square of the result is equal to
the input, and a pre-condition requiring the input to be non-negative.

Programming languages can have complicated data types that relate to how data
is stored in memory. Model-based specification languages use abstract data types that
approximate these, but are not restricted by how the data may be stored. For example,
the abstract integer data type can take any whole number, whereas a programming
language would be restricted to numbers that can represented in a certain number of
bytes. Examples of abstract data types include: booleans; natural numbers; integers;
real numbers; sets; sequences; maps; etc. These types can be further restricted where
necessary through the use of “invariants”. An invariant is a predicate over the state
space that must always hold. Some languages, such as Event-B [3], do not have formal
types and just use invariants to restrict the set of values a variable can take.

Non-determinism provides a way of recording that there may be more than one cor-
rect solution to a problem, without having to choose which answer will be provided by
the program. For example, the square root function of a positive number always has
two solutions – the positive root and the negative one. Non-determinism can be used to
specify both alternatives without stating which should be used. However, nondetermin-
ism can make proof difficult if the final value of a variable is unknown for some initial
state. To resolve this issue two complementary interpretations of non-determinism have
been defined: “angelic” and “demonic”. For angelic non-determinism (t) it is assumed
that the best possible option (w.r.t. the property being analysed) is always chosen. For
demonic non-determinism (u) the opposite, that the worst option is chosen, is assumed.

2.2.2 Introducing GCL

Dijkstra created the Guarded Command Language [21] for the rigorous analysis and
development of algorithms. Morgan and McIver chose GCL as the basis of their prob-
abilistic language, pGCL, because it contains just the essential features, and no clutter
[61]. The same reasoning is behind the choice of GCL as the base language for the
research presented in this thesis.

Constructs in GCL take the general form of a guard followed by a command1. If
the guard holds, the command may be executed. If multiple guards hold then any one
of the commands whose guard holds may be executed. The selection of the command
to execute in this case follows demonic non-determinism. The commands available in
GCL include the usual: assignment; sequential composition; conditional choice; and
while-loops. There are also two special commands, skip and abort. The skip command
represents the program that does nothing, whilst the abort command represents the
program that can do anything – this is usually used to represent non-termination.

Prior to GCL, the meanings of programs were invariably presented as Hoare triples
1Note that in the creation of pGCL, McIver and Morgan dropped the guards and included demonic

choice explicitly.

2.2 Formal Methods 18

[39] of the form
{pre} prog {post} ,

which means that from any initial state satisfying pre the program prog is guaranteed
to terminate in a state satisfying post2. Dijkstra [21] presented an alternative way of
writing this as3

pre =⇒ wp.prog.post ,

which has the same meaning, but the wp operator provides a more goal directed approach
to specifying systems. The weakest pre-condition operator wp is defined such that for
program prog and post-condition post, wp.prog.post returns the weakest pre-condition
p that satisfies the Hoare triple above, i.e. any pre-condition pre satisfying the Hoare
triple implies that p holds.

Dijkstra uses the wp operator to define the meaning of the commands found in GCL.
As an example consider the assignment statement

x := E ,

where x is a program variable and E is an expression over the program variables of the
appropriate type. The weakest pre-condition semantics of assignment is

wp. (x := E) .post = post[x\E] ,

the post-condition with all free variables of x replaced by the expression E. Consider
the program

x := x+ 1 ,

and the post-condition x > 5. The weakest-precondition in this case is simply x+1 > 5,
i.e. x > 4. The weakest pre-condition semantics for the majority of the commands is
summarised in Figure 2.4. However, it is very hard (or impossible) to determine the
weakest pre-condition for an arbitrary loop, such that it is guaranteed to terminate [21,
Chapter 6]. Therefore the usual approach to analysing loops is to find a “variant” and
an “invariant”. The variant is a finite numeric value that decreases each iteration (and
cannot go below zero), thus ensuring termination. The invariant is a condition that must
hold at the start of the loop and be preserved by the loop body. The invariant must also
be such that the loop terminates in a state that satisfies the required post-condition.

2Note that this is a total correctness interpretation. For partial correctness termination is not re-
quired.

3Note that the dot notation is used throughout the material on GCL (and its probabilistic extensions)
to mean function application, where f.x means that function f is applied to argument x. This associates
to the left such that f.g.x is equivalent to (f(g))(x).

2.3 Probability in Formal Methods 19

prog wp.prog.Q
Abortion abort false
Identity skip Q
Assignment x := E Q[x\E]
Composition prog1; prog2 wp.prog1.(wp.prog2.Q)
Cond. choice if G then prog1 (G =⇒ wp.prog1.Q) ∧

else prog2 fi (¬G =⇒ wp.prog2.Q)

x is a program variable; E is an expression in the program variables; prog1 and prog2 are
programs; G is a Boolean-valued expression in the program variables; and Q is a predicate.

Given an expression Q, the meaning of Q[x\E] is the expression Q in which free occurrences of
x have been replaced by expression E.

Figure 2.4: Notation and weakest pre-condition semantics of GCL

2.3 Probability in Formal Methods

A number of formal methods have been developed that include an element of random be-
haviour in a model. There are two main approaches to consider: probabilistic branching
and probabilistic assignment.

In probabilistic branching the formal method includes the option of a probabilistic
choice between two or more alternative computations. In this thesis the notation p⊕
is used to represent this where p ∈ [0, 1]. For example, the program prog1 p⊕ prog2

represents a system that behaves as prog1 in p ∗ 100% of the times it is executed and
prog2 in the rest. For more than two possible outcomes the probabilistic choice is written
as prog1 @ p1 | · · · | progn @ pn meaning that the program behaves as progi with
probability at least4 pi for each of the alternatives specified, where

∑
i pi ≤ 1. Note that

the probabilities may sum to less than one to include the possibility of non-termination
(with probability 1−

∑
i pi).

In probabilistic assignment a value is assigned to a variable according to some spec-
ified probability distribution. Such probability distributions may be taken from a stan-
dard library of distributions or defined using the probability density/mass function (see
Section 2.1.2). If the probability distribution is continuous, this may be referred to as
stochastic assignment instead. Note that for discrete probability distributions, proba-
bilistic assignment is a special case of probabilistic branching.

The term probabilistic will be applied to formal methods that represent discrete
probability (including probabilistic branching). Those that represent continuous proba-
bility will be called stochastic. A more detailed discussion of probabilistic and stochastic
formal methods is presented below.

4Note that the probability pi is a minimum bound. The program can behave like any progi (or
something entirely different) for the remaining probability when the pi’s do not sum to 1.

2.3 Probability in Formal Methods 20

2.3.1 Probabilistic formal methods

There are a wide variety of probabilistic formal methods. In general these extend ex-
isting formal methods with the probabilistic choice operator. For example, there exist:
numerous probabilistic process algebras such as PCSP [69], TPCCS [34] and ACP+

π,drt

[4]; a variety of probabilistic logics such as the probabilistic Hoare logic pL [18] and
probabilistic temporal logic PCTL [35]; probabilistic model checkers such as PRISM
[57]; and algebraic approaches for probabilistic systems [65]. A number of probabilistic
model-based specification languages also exist. As probabilistic model-based specifica-
tion languages are the focus of this thesis, these are discussed in more depth below.

One of the early developments in probabilistic model-based specification languages
was the probabilistic PDL developed by Kozen [53, 54]. This introduced a seman-
tics and logic for reasoning about probabilistic systems, in particular Kozen created a
proof theory for probabilistic systems [54] that has similarities with Dijkstra’s weakest
pre-condition approach [21]. Jones [44] developed the semantic basis for probabilistic
programs further by defining a probabilistic powerdomain to integrate probability into
domain theory. However, neither of these approaches include non-determinism, which
plays an important role in providing abstraction in models. McIver and Morgan [61]
tackled the challenge of combining non-determinism and probabilistic choice and devel-
oped the probabilistic specification language pGCL (see Sections 2.3.2 and 5.4). This
was then developed further by Morgan [67] and Hoang [38] to produce a semantics and
a toolkit for a probabilistic version of the B [2] specification language.

Other probabilistic model-based specification languages have also been developed.
These include: a probabilistic version of Z [84], which uses a similar approach to that
adopted in pGCL; and the exploration of refinement in probabilistic action systems [80]
[81]. Morgan, Hoang and Abrial [68] proposed a probabilistic version of Event-B [3],
although this has not been developed in detail (apart from the use of “qualitative prob-
ability” reasoning to determine “almost-certain” termination of loops [33]). Tarasyuk
et al. [79, 78] have also investigated adding probabilistic choice to Event-B and the
translation of a suitable subset of it to PRISM for analysis.

Whilst there are many probabilistic formal methods, no such library of research
exists for the formal specification and analysis of continuous probability, as shall be
discussed in Section 2.3.3. Before that, the main probabilistic formal method that this
thesis is concerned with, pGCL, is introduced in more detail.

2.3.2 Introducing pGCL

The probabilistic specification language pGCL [61, 6] is used throughout the thesis for
modelling and analysing probabilistic programs, first in a case study to explore the use of
probability in formal methods (Chapter 3), second as a basis for a specification language
that supports reasoning about continuous probability distributions (Chapters 6, 7 and

2.3 Probability in Formal Methods 21

prog wp.prog.Q
Abortion abort 0
Identity skip Q
Assignment x := E Q[x\E]
Composition prog1; prog2 wp.prog1.(wp.prog2.Q)
Cond. choice if G then prog1 [G]×wp.prog1.Q + [¬G]×wp.prog2.Q

else prog2 fi
Nondet. choice prog1 u prog2 wp.prog1.Q u wp.prog2.Q
Probability prog1 p⊕ prog2 p∗wp.prog1.Q + (1−p)∗wp.prog2.Q
While-loop do G→ body od (FX · [G]×wp.body.X + [¬G]×Q)

x is a program variable; E is an expression in the program variables; prog1 and prog2 are
probabilistic programs; G is a Boolean-valued expression in the program variables; p is a constant
probability in [0, 1]; and Q is an expectation.

Given an expression Q, the meaning of Q[x\E] is the expression Q in which free occurrences of
x have been replaced by expression E. F is the least fixed point operator w.r.t the ordering ≤
between expectations.

Scalar multiplication ∗, multiplication ×, addition +, subtraction −, minimum, u, and the com-
parison (such as ≤ and <) between expectations are defined by the usual point-wise extension of
these operators as they apply to the real numbers. Multiplication and scalar multiplication have
the highest precedence, followed by addition, subtraction, minimum and finally the comparison
operators. Operators of equal precedence are evaluated from the left.

[·] is the function that takes a Boolean expression false to 0 and true to 1. For {0, 1} real-
valued functions, operation ≤ means the same as implication over predicates, and × represents
conjunction. Addition over disjoint predicates is equivalent to disjunction.

Figure 2.5: Notation and weakest pre-condition semantics of pGCL [6]

8). In this section the basics of pGCL are introduced in sufficient detail to understand
the material presented in Chapter 3. A more detailed description of pGCL and its
semantics is given in Section 5.4, knowledge of which is required to understand the
material in Chapters 6, 7 and 8.

The language pGCL extends standard GCL (Section 2.2.2) to include probabilistic
choice (see Section 2.3). Like GCL, it is a formalism that allows source-level reasoning
about programs; it is a generalisation since it is able to handle probabilistic (as well as
standard) properties [6].

Modelling in pGCL

The syntax of pGCL is given in Figure 2.5. In particular note the probabilistic choice
operator (p⊕) that allows the possibility of probabilistic updates. Thus x := 1 p⊕ x := 2,
would mean that x is assigned the value 1 with probability p, and 2 otherwise (with
probability 1 − p). With this, properties of interest are no longer necessarily absolute,
but rather it is possible to reason about the probability that a property is established
or to determine the expected value of a random variable of interest [6].

2.3 Probability in Formal Methods 22

Analysis of pGCL models

A pGCL model can include annotations, real-valued expressions over the state space of
the model, which from now on will be termed expectations as it is the expected value of
these annotations that is of interest. For example,

{p} x := 1 p⊕ x := 2 {[x = 1]} (2.1)

{p+ 2(1−p)} x := 1 p⊕ x := 2 {x} (2.2)

The post-expectation is treated as a random variable over the program variables. In
(2.1), the notation [x = 1] represents the characteristic random variable that returns
0 when “x = 1” is false and 1 when “x = 1” is true. In (2.2) the random variable is
simply the value of x. The pre-expectation is the expected value of the random variable
after execution of the program, thus for (2.1) it is p because the probabilistic update
establishes “x = 1” with probability p; in (2.2) the pre-expectation is p+2(1−p) because
that is the expected value of x. More generally the pre-expectations will be sensitive to
the initial state.

Formally an expectation is interpreted using the source-level wp-semantics set out
in Figure 2.5, so that {P} prog {Q} is valid provided that P ≤ wp.prog.Q.

The idea conveniently generalises loop “invariants” as follows. Consider the while-
loop in Figure 2.5. A standard loop invariant, I, has to hold at the start of every
iteration, and constrains the states that the loop can enter, formally written as G∧ I ⇒
wp.body.I. A quantitative invariant5, E, can also be defined for such a loop. The
expected value of E cannot decrease throughout the loop, written [G]×E ≤ wp.body.E.

Like standard invariants, quantitative invariants can be used to reason about prop-
erties of the whole iteration. For example, for standard invariant I of the above loop, if
the loop terminates (with probability 1) then I ⇒ wp.loop.I. Similarly, E ≤ wp.loop.E
holds for quantitative invariant E if loop is certainly terminating [6].

The use of quantitative invariants for reasoning about probabilistic loops is illus-
trated in the flash filestore case study (Chapter 3).

2.3.3 Stochastic formal methods

The number of stochastic formal methods is significantly smaller than the number of
probabilistic formal methods. Further, the majority of stochastic formal methods are
restricted to those systems that can be analysed by CTMCs (see Section 2.1.4). Exam-
ples of stochastic formal methods include: process algebras such as PEPA [37]; petri net
approaches such as Generalised Stochastic Petri Nets [50] and Stochastic Activity Nets
[74]; and also (semi-formal) architecture languages such as the error annex in AADL

5Quantitative invariants follow the same (wp) proof rules as expectations, but the term is considered
more intuitive when considering loops.

2.3 Probability in Formal Methods 23

[73]. As the above formalisms use CTMCs as their semantic basis, the continuous prob-
ability in them is limited to the exponential distribution. The stochastic model-based
specification languages are not limited to the exponential distribution, but these are
very scarce. They are discussed below along with some options for the verification of
stochastic systems.

As with probabilistic model-based specification languages, Kozen [53, 54] pioneered
the area of stochastic formal methods. Whilst the main focus of his research was on
discrete probability, the language he developed (probabilistic PDL) supports continuous
probability as well. His language contains no support for non-determinism or refine-
ment, however. McIver et al. [63] also discuss the use of continuous probability when
considering the partial correctness of loops. However, the discussion of continuous prob-
ability is essentially an aside and the details of a stochastic specification language are
not worked out in full. For example, refinement is not considered and the interaction
between continuous probability and non-determinism is not explored.

The interaction between theorem proving and stochastic behaviour has been explored
by Hasan et al. [36]. They use the HOL theorem prover [32] to reason about expectation
properties of continuous probability distributions. However, their research does not
extend to the definition of a specification language that utilises their proof theory.

There also exist model checkers for the subset of stochastic languages that can be
represented as CTMCs or CTMDPs (see Section 2.1.4). PRISM [57] provides support
for model checking of CTMCs, whilst MRMC [51, 52] allows non-determinism as well
(and thus supports CTMCs and CTMDPs). As with any approach that uses CTMCs for
analysis, the continuous probability is limited to the exponential distribution. Further,
whilst probabilistic model checkers are useful for some situations, state space explosion
issues can make some systems expensive or impossible to analyse.

The above provides a promising start for the rigorous analysis of systems containing
continuous probability. However, there are many gaps still to be resolved. In particular,
this thesis focuses on: defining a stochastic model-based specification language that
supports refinement; investigating the relationship between continuous probability and
non-determinism; and exploring the practical application of a stochastic model-based
specification language. As the closest language (other than pGCL) to that presented in
this thesis, Kozen’s probabilistic PDL is described in more detail below.

2.3.4 Probabilistic PDL

The language described by Kozen [54], probabilistic PDL, is similar in many ways to
pGCL (McIver and Morgan used probabilistic PDL as a basis for pGCL). However,
Kozen introduced probability as a replacement for non-determinism, and therefore (un-
like pGCL) probabilistic PDL does not include any non-determinism. As they are based
on two different (non-probabilistic) languages, the syntax of probabilistic PDL is quite
different to pGCL. However, they both make use of an expectation transformer seman-

2.3 Probability in Formal Methods 24

prog < prog > f
Positive linear comb. ap+ bq a < p > f + b < q > f
Composition p; q < p >< q > f
Test B? Bf
Iteration p∗ f+ < p; p∗ > f
Failure fail 0
Identity skip f
Cond. choice if B then p else q fi B < p > f + ¬B < q > f

p and q are probabilistic programs; B is a Boolean-valued expression in the program variables;
a, b are non-negative real numbers; ∗ represents finite iteration; and f is a measurable function.

Note that the constructs in the second half of the table can be defined in terms of the constructs
in the first half. Failure and identity can be defined as tests: fail = 0?, skip = 1?, and conditional
choice can be defined in terms of tests and linear combination if B then p else q fi = B?p +¬B?q.

A while-loop is defined in terms of iteration, test and composition as while B do p = (B?p)∗;¬B?

Figure 2.6: Notation and expectation transformer semantics of probabilistic PDL

tics, for reasoning about probabilistic programs.
The syntax of probabilistic PDL and its expectation transformer semantics is sum-

marised in Figure 2.6. The notation < prog > f has a similar meaning to wp.prog.f in
pGCL. Notice that probabilistic choice is implicitly included as a positive linear combi-
nation, and that Kozen’s failure construct is the same as abortion in pGCL. The syntax
and transformer semantics of assignment (stochastic or otherwise) is not given in detail
by Kozen. He only states that a primitive program may be a deterministic assignment
such as x := x + y or a random assignment x := rnd. As no examples are given that
make use of random assignment, the meaning of it is not clear, but it is assumed that
rnd can represent any probability distribution, discrete or continuous. Earlier versions
of Kozen’s research [53] discuss the use of a single probability distribution from which
a random assignment is taken. It is unclear whether probabilistic PDL is intended to
handle more than one probability distribution in any given program or not. There is
nothing inherent in the semantics to prohibit multiple distributions, however.

Kozen’s language makes a good starting point for rigorous reasoning about stochastic
systems. However, this needs to be developed to clarify the meaning of the random
assignment and its usage in practice. Probabilistic PDL also lacks support for non-
determinism and refinement. These are important for abstraction and the step-wise
development of systems using formal methods, respectively. The research presented in
Parts 2 and 3 of this thesis aim to address this gap, although including non-determinism
proves to be challenging and is not fully resolved. The rest of Part 1 explores the practical
usage of probability in formal methods to inform the development of the new language
in Part 2.

Chapter 3

Probability in Formal Methods in

Practice

This chapter explores the practical application of probability in formal methods. A case
study on flash memory illustrates how a probabilistic model-based specification language
can be used to model and analyse probabilistic programs. This leads into a discussion of
the kinds of questions that are more easily answered using continuous probability, first
with respect to the case study, and then more generally. The case study is modelled
in pGCL [61] as this forms the basis of the new stochastic language, described in Part
2 of this thesis. The discussion of continuous probability distributions motivates the
stochastic extensions to pGCL.

The chapter begins with an overview of flash memory and why it makes a good case
study (Section 3.1). A particularly interesting aspect of flash memory is then mod-
elled and analysed in pGCL (Section 3.2). This is followed by a discussion of how the
analysis could be extended with the use of continuous probability (Section 3.3). The dis-
cussion then moves away from the specifics of flash memory and examines more general
application areas of continuous probability in computer-based systems (Section 3.4).

3.1 Flash Filestore Systems

A challenge problem in flash filestore management was proposed by Joshi et al. [48]
as part of the Grand Challenge on verified software [47]. In response to this, there
has been a wide variety of contributions from the formal methods community. For
example: Butterfield and Woodcock [14] modelled and analysed the ONFI flash standard
in Z; Kang and Jackson [49] modelled flash memory in Alloy; Damchoom et al. [19]
investigated the data structure of the file system in Event-B; and Schierl et al. [75]
developed a formal model of a real flash system (UBIFS) from its code. In this chapter,
the first attempt to formalise the probabilistic aspects of flash filestores [6] is described.

Flash memory is a popular storage medium for many applications due to its lack

25

3.1 Flash Filestore Systems 26

of moving parts. However, it also behaves differently to other storage media (such as
magnetic disks) and new algorithms are required to deal with this new behaviour.

In particular, an individual bit stored on a flash memory cannot be overwritten;
data has to be erased by block (between tens and hundreds of kilobytes) [28] before
that space can be re-used. This is because individual bits can be cleared, but bits can
be reliably set only a block at a time. To overcome this problem, data is not deleted
immediately – pages (typically 512 bytes) are marked as one of the following:

• valid – contains data that is still in use by the system;

• obsolete – contains data that is marked for deletion (i.e. no longer in use);

• clean – does not contain any data.

When more space needs to be freed up, a non-empty block (i.e. a block with some valid
and/or obsolete data on it) is selected. The valid data on the chosen block is moved to
another location and the whole block is then erased (see Figure 3.1).

Another important feature of flash memory is that each block can only be erased a
fixed number (typically 10,000 to 1,000,000) [28] of times before becoming unreliable.

The combination of the above characteristics leads to novel algorithms, designed to
optimise the lifetime of the flash filestores [28]. These are known as “wear-levelling”
algorithms, and are often probabilistic in nature.

3.1.1 Wear-levelling

As each block of flash memory has a limited number of times it can be erased, it is
important to ensure that individual blocks do not become worn out prematurely. For
example if the same block was used and erased repeatedly a significant number of times
it would no longer operate reliably and the storage capacity of the flash filestore would
have to be reduced. The process of ensuring that the relative number of erasures for each
block in the filestore remains approximately the same at all times is called wear-levelling.

When designing and evaluating wear-levelling algorithms, there are (at least) two
conflicting characteristics to consider: its impact on the lifetime of the flash memory;
and the speed at which it frees up space. A näıve algorithm, that guarantees that no
block has been erased more than (say) c times more than any other block, may yield a
long lifetime (if c is small). However, it may also require a lot of relocation of data and
therefore significantly affect the performance of the device. A number of probabilistic
algorithms have been proposed for wear-levelling. It is hoped that these algorithms will
result in the blocks being worn evenly on average, so that the expected lifetime of the
system remains long, but that they will have better performance characteristics than
their non-probabilistic counterparts.

In this case study, the probabilistic aspects of one particular probabilistic wear-
levelling algorithm (taken from the JFFS flash file system [86]) are investigated. For

3.2 Specification of a Flash Filestore 27

GARBAGE COLLECTOR

∗ do true →
∗ select a non-empty block A;

find another block B that has sufficient clean
pages to receive the valid pages from A;

copy them over from A to B;
∗ erase A;
∗ od

Figure 3.1: Abstract representation of a flash filestore garbage collector

99 of every 100 iterations this algorithm selects a block for erasure to maximise the
amount of memory that will be freed up; for the remaining iteration a block is chosen
at random for reclamation. The idea behind the JFFS algorithm is to choose the most
efficient option (in terms of the space recovered) 99% of the time, but to also eliminate
the possibility of certain blocks never being erased. For example, consider the situation
where a large operating system file occupies a whole block. This file may never need
to be changed over the lifetime of the filestore, and thus the block containing it would
never be selected for erasure for efficiency reasons. However, the block has a chance of
being selected by the random choice every 100 iterations, thus releasing a block that has
not been erased as many times as other blocks.

3.2 Specification of a Flash Filestore

The previous section motivated the use of probabilistic algorithms in flash filestores.
However, there has been little or no research into formally analysing the probabilistic
aspects of these algorithms. In this section the probabilistic aspects of the JFFS wear-
levelling algorithm are modelled and analysed in pGCL. The analysis determines the
expected lifetime of a flash filestore that implements such an algorithm. For ease of
analysis, the pGCL model of the JFFS algorithm is rather abstract. A discussion of
how the model and analysis could be improved, in particular with the use of continuous
probability, can be found in Section 3.3. The reader is referred to Section 2.3.2 for an
introduction to pGCL that is sufficient to understand its use in this case study.

Before considering the JFFS wear-levelling algorithm specifically, the role of such
an algorithm, in the bigger picture of a flash filestore, is (semi-formally) examined. In
particular, the garbage collector functionality of a flash filestore is defined, as shown
in Figure 3.1. It is assumed that the garbage collector is a continual loop that runs
alongside functionality to read from, and write to, the filestore. In every iteration the
garbage collector selects two blocks: one (A) to erase and one (B) to copy any valid
data from A to.

The wear-levelling algorithm is the part of this process responsible for choosing the

3.2 Specification of a Flash Filestore 28

do m < N ∧ n < N →
m := m+ 1 1

2
⊕ n := n+ 1;

e := e+ 1
od

– m represents the number of times block m has been erased, similarly for n
– e represents the total number of times any block has been erased
– N represents the maximum number of times a block can be erased

Figure 3.2: Specification of the probabilistic wear-levelling algorithm

blocks to be reclaimed. The relevant lines of the garbage collector have been marked
with ∗ in Figure 3.1. In Section 3.2.1 these lines are expanded into a formal description
of a simple probabilistic wear-levelling algorithm based on that used in the JFFS [86]
flash file system.

3.2.1 Modelling a probabilistic wear-levelling algorithm in pGCL

In this section it is shown how to model a probabilistic wear-levelling algorithm using
pGCL (see Section 2.3.2). The chosen algorithm is a simplified version of that used in
JFFS [86]. One simplification is made to restrict the number of blocks in the filestore to
two. A second is to only include the probabilistic iterations of the algorithm in the model,
i.e. the iterations that select a block according to the amount of space reclaimed have
been omitted. The simplifications are justified because the intention is to focus on the
probabilistic aspects of the algorithm, and demonstrate how a probabilistic formalism
can assist in the analysis of these aspects. The restriction on the number of blocks
simplifies the arithmetic without losing the essence of the analysis.

The formal specification of the wear-levelling algorithm is shown in Figure 3.2. The
variables m and n represent two different blocks, and record the number of times that
each has been erased so far. In each iteration of the algorithm, one of these blocks is
selected for reclamation: block m or block n, each with probability 1

2 . A further variable
e keeps track of the total m + n. This is used in the analysis below to calculate the
expected lifetime of the flash filestore in terms of number of erasures. It is assumed
that if either of the blocks reach some maximum number of erasures, N , then the flash
filestore is retired.

3.2.2 Analysis

The probabilistic wear-levelling algorithm makes no guarantee that each block has been
erased at most c (for c < N) times more than any other block. However, the quantitative
invariant (Section 2.3.2)

n−m

3.2 Specification of a Flash Filestore 29

can be used to show that the average difference between the number of erasures of each
block is zero (after each execution of the body of the loop). Intuitively, this property
holds because of the symmetry of the probabilistic choice.

But what impact does achieving wear-levelling have on the lifetime of the flash
filestore? The wear-levelling algorithm above is now analysed to determine the expected
lifetime it provides. The lifetime of the device was chosen to be measured in terms of
the number of erasures. This involved determining the expected value of the (random)
variable e on termination of the loop, written E[e], which is calculated with the assistance
of loop “invariants” (Section 2.3.2).

Using the standard loop invariant

e = m+ n

gives E[e] = E[m + n], and so it is enough to calculate the expected value of m + n;
but to do this a complex quantitative invariant is required. Knowledge of the negative
binomial probability distribution provides one.

Recall (Section 2.1.2 or [71]) that the negative binomial distribution models the
number of trials required until x instances of a specific event have been observed, as-
suming that the probability of the event occurring is constant across all trials. Consider
the expected value of m alone initially: an increment in m can be thought of as the
event of interest for a negative binomial distribution, with N being the target number
of increments required. However, this distribution allows situations not permitted by
our model, for example, the case where m = N and n = N + 1. It is also necessary
to include the situation where n reaches N before m does. To resolve this the nega-
tive binomial distribution is adapted to have an upper bound on the number of trials
allowed, and to have two instances of the distribution – one each for the situations in
which m and n reach N first. Using the basis of the negative binomial distribution, and
incorporating the complications described above, it turns out that there exists another
quantitative invariant of the loop, as shown in Formula 3.1. Intuitively this equation
assumes that m+ n trials have already occurred (first line) and calculates the expected
number of remaining trials given this fact (second line).

m+ n+

2N−(m+n+1)∑
e=N−m

e

(
e− 1

N −m− 1

)(
1
2

)e
+

2N−(m+n+1)∑
e=N−n

e

(
e− 1

N − n− 1

)(
1
2

)e (3.1)

It can be formally confirmed that the expression (call it inv) shown in Formula 3.1 is a
quantitative invariant of the loop. This requires (Section 2.3.2) showing that [G]×inv ≤
wp.body.inv. Using the wp proof rules defined in Figure 2.5 it can be shown that

3.2 Specification of a Flash Filestore 30

wp.body.inv ≡ inv, as is summarised below (a more detailed version of this proof can be
found in Appendix A). It can also be trivially proved (see Appendix A) that the values
of m and n on termination are as expected (e.g. that inv (N,n, e) = N + n).

wp.body.inv

≡ wp.
((
m := m+ 1 1

2
⊕ n := n+ 1

)
; e := e+ 1

)
.inv definition of body

≡ composition, assignment, probability and definition of inv

1
2 ∗

m+ 1 + n+

2N−((m+1)+n+1)∑
e=N−(m+1)

e

(
e− 1

N − (m+ 1)− 1

)(
1
2

)e

+
2N−((m+1)+n+1)∑

e=N−n
e

(
e− 1

N − n− 1

)(
1
2

)e

+ 1
2 ∗

m+ n+ 1 +

2N−(m+(n+1)+1)∑
e=N−m

e

(
e− 1

N −m− 1

)(
1
2

)e
+

2N−(m+(n+1)+1)∑
e=N−(n+1)

e

(
e− 1

N − (n+ 1)− 1

)(
1
2

)e

≡ algebra including combination and summation rules

m+ n +
2N−(m+n+1)∑

e=N−m
e

(
e− 1

N −m− 1

)(
1
2

)e
+

2N−(m+n+1)∑
e=N−n

e

(
e− 1

N − n− 1

)(
1
2

)e
≡ inv definition of inv

The expected lifetime of the flash filestore (E[e]) can be determined from inv by
substituting m and n with their initial values (both zero). This gives the expression
found in Formula 3.2.

E[e] = 2 ∗
2N−1∑
e=N

e

(
e− 1
N − 1

)(
1
2

)e
(3.2)

Using the expression in Formula 3.2, the expected lifetime of the flash filestore was
calculated for various values of N , tabulated in Figure 3.3. It can be seen that E[e]/N
approaches two as N gets larger (Figure 3.3). Note that an algorithm that always
alternated between blocks (i.e. ensured each block had been erased at most once more
than the other) would have an expected lifetime of 2N − 1, for any N . In spite of
this, the JFFS wear-levelling algorithm advocates the use of a random choice, perhaps
because this does not require any historical data about block erasures. The justification
(for using a random choice of blocks) is irrelevant, however, for demonstrating the use
of probabilistic formal methods via the analysis of the probabilistic aspects of the JFFS

3.3 Continuous Probability in Flash Filestores 31

N E[e] E[e]/N
2 2.50 1.25
3 4.13 1.38
4 5.81 1.45
5 7.54 1.51

10 16.48 1.65
50 92.04 1.84

100 188.73 1.89
500 974.77 1.95

1000 1964.32 1.96
●

●

●

●

●

●

●

●
●

0 200 400 600 800 1000

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

N
E

[e
]/N

Figure 3.3: Expected lifetime (E[e]) for the probabilistic wear-levelling algorithm

wear-levelling algorithm in pGCL.

3.3 Continuous Probability in Flash Filestores

The previous section demonstrated the use of a model-based specification language for
modelling and analysing the probabilistic aspects of a flash filestore wear-levelling algo-
rithm. The model abstracts away from a lot of the details of a real system, however,
which means that a number of interesting questions have to be neglected in its analy-
sis. This section discusses some of the questions that deserve further exploration, but
cannot be answered by the model presented. Questions that are more easily answered
with the use of continuous probability are of particular interest. The discussion focuses
on two dependability related problems: what it means for a flash filestore to fail and
require replacement; and the need for performance-reliability trade-offs. Throughout
the discussion, the role of continuous probability distributions is highlighted.

3.3.1 When does a flash filestore fail?

Deciding when a flash filestore is no longer useful or reliable (and needs to be replaced
with another) is not always straightforward. In particular, if the disk in question is to be
used in a remote location (in outer space in the extreme case), the cost associated with
replacement may be high. In other applications the filestore may be straightforward and
cheap to replace. In the former situation, it would be necessary to estimate the lifetime
of the disk before its deployment. A number of different strategies for determining when
a disk should be replaced are discussed below, along with the analysis that would be
required to determine their expected lifetime.

3.3 Continuous Probability in Flash Filestores 32

A block reaches its maximum number of erasures

The simplest retirement strategy to model and analyse is that considered in Section 3.2.
This strategy chose to retire the flash filestore as soon as a single block had reached
its (recommended) maximum number of erasures. Beyond this number of erasures, the
reliability of the block is thought to drop below acceptable levels. However, even if one
block can no longer be used, there may be a large proportion of the filestore that is
still serviceable. Therefore, for most situations this approach seems a little extreme, but
may be necessary for applications that require a high percentage of the total disk space
to operate correctly.

For some situations, it is sufficient to analyse the expected lifetime of a flash filestore
that implements this retirement strategy (without continuous probability) as shown
above. However, a more accurate analysis would need to take into account the usage
of the flash filestore (in terms of the size and rate of write and deletion operations), to
determine the behaviour of the non-probabilistic iterations of the JFFS algorithm. In
some situations all of this data may be available and the wear-levelling algorithm may
be modelled precisely. However, it is more likely that limited usage data is available and
that the rate of write operations, for example, may only be approximated by a continuous
probability distribution such as the exponential distribution. In this situation the use
of continuous probability provides an indication of the expected lifetime of the flash
filestore in the absence of complete information about how it will be used.

A given proportion of blocks reach the maximum number of erasures

A simple extension to the above strategy is to retire the flash filestore when a given
proportion of blocks reach their maximum number of erasures. The choice of this pro-
portion would depend on how much disk space is required for the installed applications
to operate correctly. Individual blocks would be retired once they reached the maximum
number of erasures, i.e. these would be marked as unusable, and the flash filestore would
proceed to operate as if the retired blocks did not exist.

The analysis approach for this strategy would be similar to that described above,
although the complexity of the analysis would increase as the number of blocks to choose
from would not remain consistent throughout the lifetime of the flash filestore.

Valid data cannot be relocated

More complex strategies use the approach of allowing individual blocks to be retired as
described above. The criterion for retiring the whole filestore, however, are not based on
the number of blocks reaching their maximum number of erasures. The first of the more
complex strategies is to retire the flash filestore when an erase procedure is not possible
due to insufficient free space on the filestore. When a block is erased, it is necessary to
find sufficient free space to move the valid data remaining on the chosen block to. If

3.3 Continuous Probability in Flash Filestores 33

sufficient space cannot be found regardless of the block chosen for erasure, the filestore
should be retired immediately otherwise data will be lost.

To model this situation it is necessary to know the number of valid, obsolete and clean
pages on each block every time the wear-levelling algorithm chooses a block to erase.
This could be modelled using a (discrete) multinomial distribution [71] that states the
probability of each page in each block being either valid, obsolete or clean. However,
a realistic model of the system requires data about the usage of the flash filestore as
before. Again, it is likely that this information will need to be modelled using continuous
probability distributions such as the exponential distribution.

Data cannot be written

The second of the more complex strategies is to retire the flash filestore if a write
operation is requested and insufficient free space exists for the data to be written. Whilst
write operations are not handled by the garbage collector modelled above, this is still an
important situation to consider. This strategy may be relevant in situations where the
incoming data rate is high and there is a limited buffer in which data pending a write
operation can be stored. Once more, it is assumed that individual blocks are retired
when they reach their maximum number of erasures.

In order to model this strategy, data would be needed on the rate at which write
requests occur (including the size of the requests) and the rate at which write requests
are processed. Continuous probability distributions may be used to model: the time
between write operations; the size of the write operations; and the rate at which data
is processed from the write buffer of the flash filestore.

Determining the maximum number of erasures

The final point to discuss is not really a retirement strategy, but an exploration of how
a suitable maximum number of erasures per block may be determined. This requires
a model of the failure rate of the individual bits of memory. Flash memory has been
analysed by electrical engineers and the time to failure of a bit in flash memory found
to occur according to a probability distribution called the Fréchet distribution [40].
This could be used to determine a suitable maximum number of erasures to set for a
block, based upon an acceptable level of risk of data loss. The Fréchet distribution is
a continuous probability distribution, therefore this analysis clearly requires the use of
continuous probability.

3.3.2 Considering trade-offs

In Section 3.1.1 an example was given where the choice of wear-levelling algorithm
affected the performance of a flash filestore. If sufficient data were included in the model
of the flash filestore and wear-levelling algorithm about the read, write and deletion rates

3.4 Applications of Continuous Probability in Computing 34

of data it may also be possible to analyse the trade-off between the expected lifetime
of the flash filestore and the performance issues. Such analysis is complex and would
benefit from the formal modelling of continuous probability distributions.

It is conceivable that other trade-offs may also be of interest. For example, the size
(cost) of the write buffer (that stores incoming data until it is written to the flash file-
store) may be traded off against the probability of losing data. Many of these trade-offs
would either require (or have simpler reasoning with) the use of continuous probability
distributions.

3.4 Applications of Continuous Probability in Computing

In this section the wider application of continuous probability in computing is briefly
discussed. There are many application areas of continuous probability. This section only
intends to provide a sample of these. In particular, the focus is on the use of continuous
probability distributions for dependability analysis.

The area of embedded systems (safety-critical or otherwise) possibly has the most
prevalent occurrence of continuous probability in computing. This is because the be-
haviour of an embedded system cannot be considered in isolation to the hardware that it
controls. Such hardware has (moving) parts that deteriorate over time. This deteriora-
tion process is typically modelled by a continuous probability distribution that provides
the probability of the hardware failing over time. Sometimes this failure distribution
is given by a single rate parameter that relates to the exponential distribution. How-
ever, more complex (continuous) probability distributions are often more appropriate.
For example, the “bathtub curve” models components that are more likely to fail early
or late in their lifetime than during the middle of their lifetime. Another example of
a continuous probability used to model component failures is the Fréchet distribution
discussed above for the failure of bits of flash memory. Failure distributions may also be
applied to software failures, but this is much rarer as software is generally not considered
to fail by chance.

Another example of where continuous probability occurs in embedded systems is in
(analogue) sensor reading errors. Analogue sensors are typically not 100% accurate,
i.e. the reading generally differs from the actual value it is intended to measure. The
difference between the actual value and the reading (the sensor error) can be modelled by
a continuous probability distribution. In the simplest situation, a (continuous) uniform
distribution can be used to model the error, but more complex distributions (such as
the normal distribution) may also be used. This application of continuous probability
in computer-based systems is explored in more detail in Chapter 8.

Hasan et al. [36] present another application area for the continuous uniform dis-
tribution. They use it to model the round-off error in floating point arithmetic. This
clearly applies to any computer-based system that relies on (accurate) floating point

3.5 Concluding Remarks 35

arithmetic.
Performance analysis is another area where continuous probability is frequently used

in computing [37]. The arrival rate and processing time of jobs are often modelled by
the exponential distribution, to calculate performance metrics of a system such as its
throughput. The hyperexponential distribution may be used instead in the situation
where the system has a number of different modes. Whilst performance is not an
attribute of dependability in itself, it often needs to be considered for dependable systems
as dependability and performance tend to be conflicting concerns.

Continuous probability may be used in a variety of other situations (beyond those
that are dependability related) in computing. For example: bio-technology applications
may use continuous probability to model (random) biological processes; or scheduling
algorithms may use continuous probability to model the processing time jobs require.
These are not discussed in detail because this thesis is particularly concerned with
modelling and analysing dependability.

It is worth noting at this point that due to necessary restrictions to the state space
of sGCL models (see Chapter 6), the flash filestore case study is not the most suitable
case study for revisiting with continuous probability.

3.5 Concluding Remarks

This chapter has provided a demonstration of how to apply a probabilistic model-based
specification language to the analysis of dependability properties of computer-based
systems. It also described the first attempt at formally analysing the probabilistic
aspects of flash filestores. However, the analysis of flash filestores is limited when using a
modelling language that only allows discrete probability. The extensions (to the analysis
of flash filestores) that would be possible with the use of continuous probability, in
addition to discrete probability, were discussed at length. This led into a wider discussion
of the use of continuous probability in computing, particularly when modelling and
analysing dependability attributes.

Chapter 4

Towards a Stochastic

Model-Based Specification

Language

The previous chapter demonstrated the use of probability in formal methods in practice
and discussed the need for continuous probability in particular. The first half of this
chapter illustrates how existing formalisms can be used to model and analyse a case
study (on an emergency braking system of a train) that is stochastic in nature. For
this discussion, two existing and complementary formalisms are chosen to model and
analyse the case study. The first of these (PRISM) supports continuous probability,
but is a model-checker (which has limited support for abstraction), not a model-based
specification language. The second (pB) is a probabilistic model-based specification
language, but does not support continuous probability. These formalisms were selected
for their complementary features and accessibility. The intention is to provide a practical
illustration of the strengths and limitations of formalisms discussed in Section 2.3.

The second half of this chapter develops a novel prototype stochastic model-based
specification language (Stochastic Event-B [5]), and illustrates how this could be used
to model and analyse the case study. Stochastic Event-B combines the use of contin-
uous probability illustrated in PRISM, and the features of a model-based specification
language found in pB. The use of Stochastic Event-B in analysing the case study is
discussed, before evaluating the required simplifications to such a language for a full
formal treatment (as presented in Part 2 of this thesis). In particular, it is beneficial
to be able to remove non-determinism from the language because the semantic defini-
tion of a model-based specification language containing non-determinism and continuous
probability is especially challenging.

The chapter begins with an overview of the emergency brake case study (Section 4.1).
This is followed by the application of PRISM (Section 4.2) and pB (Section 4.3) to the
case study. Stochastic Event-B is then introduced and also applied to the case study

36

4.1 The Emergency Brake 37

(Section 4.4). The chapter concludes with a discussion of the (un)suitability of Stochastic
Event-B for a full formal description (Section 4.5).

4.1 The Emergency Brake

This section describes the emergency brake case study that is used throughout this
chapter. The purpose of the case study is to illustrate the strengths and limitations of
existing formalisms, and to demonstrate the ideas behind Stochastic Event-B. Therefore
the scenario considered is rather simple, and only loosely based on a real system.

The emergency brake case study is derived from an industrial problem considered
in the DEPLOY project1 [26]. A train has an emergency brake (EB) that can either
be applied (the brake is on and the train is stopping) or not applied (the brake is off
and has no effect on the speed of the train). Some external system (either a person or
another computer system) can command the brake to be applied at any time.

The emergency brake system can fail in two possible ways:

• An unsafe failure occurs when the emergency brake has been commanded, but not
applied ;

• A safe failure occurs when the emergency brake is applied, even though it has not
been commanded.

For simplicity, recovery from emergency brake requests and failures is ignored in this
study.

There are two types of events that can occur in this system. Those that occur in
time according to some average transition rate and those that occur instantaneously,
triggered by some other state change. An example of the former is the rate at which
the emergency brake is requested – events like this are most naturally modelled by the
exponential distribution. An example of an instantaneous transition is whether, after
an emergency brake request has occurred, the emergency brake is applied or has an
unsafe failure. This type of event is most naturally modelled as a probabilistic choice
between the two options, occurring immediately after the state change triggering the
choice. Therefore, an intuitive model of this system should include state transitions
according to the exponential distribution as well as instantaneous state updates with
probabilistic choice.

Figure 4.1 shows the transitions that can occur in the emergency brake system
considered. State 1 is the initial state in which the EB is not applied and has not been
commanded. From the initial state there are two possibilities. An emergency brake
request can occur taking the system to state 2 where EB command is set – this is
modelled according to the exponential distribution with rate λreq. State 2 is considered

1The EU FP7 project on industrial deployment of advanced system engineering methods for high
productivity and dependability (Grant Agreement Number: 214158), www.deploy-project.eu.

4.2 Modelling the Emergency Brake in PRISM 38

λreq λsafe

punsafe 1-punsafe

1

2 3

4 5

Safe
Failure

EB
Requested

Unsafe
Failure

EB
Applied

Normal
Operation

Figure 4.1: States and transitions for the EB system

to be a transient state from which one of two options will occur instantaneously. The
first possible transition from state 2 is that of an unsafe failure (state 4), where the
emergency brake is not set – this occurs with some probability, punsafe. The other
transition from state 2 is a normal application of the emergency brake (state 5), i.e.
EB applied is set – this occurs with probability 1 − punsafe. The final transition that
should be mentioned is the safe failure transition, which occurs from state 1 and takes the
system to the safe failure state (state 3) in which EB applied is set, but EB command

is not. This transition is considered to occur according to the exponential distribution
with rate λsafe.

There is a safety objective [26] that “unsafe situation ≤ λmax/hour”. For the
purposes of this case study, the safety objective is interpreted to mean that (on average)
less than λmax transitions into an unsafe situation occur per hour, where an unsafe
situation is represented by an unsafe failure.

4.2 Modelling the Emergency Brake in PRISM

This section introduces the probabilistic model checker PRISM [57], and applies it to the
case study. The strengths and limitations of PRISM, as illustrated by the case study,
are then discussed. The feature of PRISM that is of particular interest is its ability to
model and analyse continuous probability (in terms of the exponential distribution). It
also has excellent tool support that is readily available. It is not, however, a model-based
specification language, which means that its support for abstraction is limited.

4.2 Modelling the Emergency Brake in PRISM 39

4.2.1 PRISM overview

PRISM is a probabilistic model checker that provides support for three different types
of probabilistic models: Discrete Time Markov Chains (DTMCs); Continuous Time
Markov Chains (CTMCs); and Discrete Time Markov Decision Processes (DTMDPs).
Of these, the CTMC model is of interest as this supports the exponential distribution.

The behaviour of a CTMC model in PRISM is given through a set of guarded
commands that model the state transitions, and the conditions under which they occur.
Each state transition has an associated rate, which indicates the timing aspects of the
transition. The rate determines how much time passes before an enabled transition
occurs (according to the exponential distribution). A summary of the syntax of the
CTMC models in PRISM2 is provided in Figure 4.2. Analysis in PRISM is achieved
by allocating rewards to states and state transitions, and computing the expected value
of such rewards (Kartson et al. give some examples of their use [50]). The syntax for
rewards is also included in Figure 4.2.

4.2.2 PRISM models and analysis

Two PRISM models of the emergency brake case study were developed. The first con-
sisted of just one module, in which all the behaviour was modelled. Figure 4.3 shows
the unsafe failure event, the full model can be found in Appendix B.1.1. Realistically
the subsystem for requesting the EB would be a separate subsystem to that responsible
for applying the EB. Therefore the second PRISM model described these behaviours
in separate modules. The request event (see Figure 4.4) is synchronised over both the
modules to link their behaviour. The full model can be found in Appendix B.1.2. Both
versions of the model are semantically equivalent. As PRISM only allows numerical (and
not algebraic) analysis, the transition rates were given sample values for this purpose.

A safety analysis was carried out on both of the PRISM models described above. A
reward of 1 was allocated to the unsafe failure state (EB command ∧ ¬EB applied),
with a reward of 0 being allocated elsewhere. This reward is cumulative, i.e. for every
time unit in which the model is in a unsafe state the reward is incremented by one.
PRISM was then used to analyse the expected value of the reward (R) in steady state
(S) by verifying the property R =?[S]. The result of this analysis can be interpreted
as the probability that the final state is unsafe. Some example results are tabulated in
Figure 4.5, these show that punsafe is a key parameter. Note that (as recovery is being
ignored) there is no way of returning to the initial state once it has been left. This
means that the steady state analysis described above provides no information about
the amount of time spent in the initial state (the probability of staying in the initial
state forever is negligible). It is also possible to analyse the sojourn time3 in PRISM.

2For more details (and for information about modelling DTMCs and DTMDPs in PRISM) see
http://www.prismmodelchecker.org/.

3Defined as the average time spent in some state until a transition occurs [50].

4.2 Modelling the Emergency Brake in PRISM 40

A PRISM model consists of a set of constant declarations, one or more modules, and a
set of rewards. Each module consists of a number of variable declarations and a number
of commands detailing the permitted state transitions. The syntax for constant, variable
and command declarations is tabulated below.

Declaration Syntax
Constant const type name = value;
Variable name : type init init value;
Command [action] guard -> rate : update;

A command is only enabled if the expression guard evaluates to true. The rate determines
(stochastically according to the exponential distribution) how much time passes before
an enabled event actually occurs. When an event occurs, the state transitions in update
are implemented. Note that the rate clause is optional. If it is left blank there must be
another command in a separate module with the same action with which this command
is synchronised, i.e. when a command occurs in a module, all commands with the same
action label in other modules are also triggered.

Rewards are used to provide a range of analysis in PRISM, they have the following
syntax:

rewards “label”
[action] guard : reward;
[action2] guard2 : reward2;
. . .

endrewards

The occurrence of a transition labelled action from an originating state satisfying the
guard expression is awarded the stated reward. The action clause is optional – if it is
omitted, reward is acquired by being in a state that satisfies the guard expression.

Figure 4.2: PRISM syntax for CTMC models

4.2 Modelling the Emergency Brake in PRISM 41

[unsafe failure] commanded = false & applied = false ->
request rate * unsafe fail prob : commanded’ = true;

Figure 4.3: First PRISM model - unsafe failure event

module EB request
. . .
[request] commanded = false & applied = false ->

request rate : commanded’ = true;
. . .

endmodule

module EB application
. . .
[request] true -> 1 - unsafe fail prob : applied’ = true +

unsafe fail prob : applied’ = false;
. . .

endmodule

Figure 4.4: Second PRISM model - synchronised request event

However, for this case study such analysis would only reveal the average time before
any of the three possible events occur and thus gives little insight into the safety of the
system.

4.2.3 Experiences with PRISM

PRISM is a well-designed tool with a clear user interface and simple modelling language.
This makes it particularly attractive to software engineers who may have little or no
knowledge about statistical modelling. PRISM also has constructs that allow the user to
write their model in synchronised modules, providing good structuring facilities for large
or complex modules. Having a different section of the model for rewards annotations
allows good separation of the information needed to model the functionality from that
needed for analysing desired properties of the model. The ability to model Continuous
Time Markov Chains (CTMCs) as well as discrete ones is a key advantage for modelling
scenarios such as the one described in Section 4.1. Without these continuous variables,
abstractions have to be made either at the cost of the detail in the model or the ease
of modelling (see Section 4.3.2 for further discussion about this). However, because
Markov Chains rely on the memoryless property (historical behaviour does not affect the
probability of future behaviour), the only continuous distribution that can be modelled
is the exponential distribution (which is not applicable in many situations).

A further limitation of PRISM is the lack of support for abstraction. There are
no abstract data types, such as the natural numbers. Every parameter needs to be
initialised and the range of values each variable can take needs to be recorded. The values

4.3 Modelling the Emergency Brake in pB 42

λreq λsafe punsafe R =?[S]
0.1 0.001 0.01 0.00990
0.5 0.001 0.01 0.00998
0.1 0.005 0.01 0.00952
0.1 0.001 0.05 0.04955

Figure 4.5: Sample results of the emergency brake analysis in PRISM

of parameters are not always known at the early stages of design, instead it can be helpful
to perform some algebraic analysis over models to determine the relationship between
different parameters of the model and design requirements. Such algebraic analysis is
not possible in PRISM. There is also no way to combine continuous probability and
non-determinism in PRISM (although this is possible in other model checkers such as
MRMC [52] as discussed in Section 2.3.3). With limited support for abstraction, there
is also no notion of refinement in PRISM. It is not possible to determine equivalence or
an ordering of PRISM models. This is likely to be due to it not being obvious how to
define an ordering or equivalence for CTMCs in general, although there has been some
research to address this for process algebras [37]. A final interesting feature of PRISM
is that there is no real notion of termination. If the user wishes to model a terminating
state, an infinite loop back to that final state is required.

Overall PRISM is a useful tool for analysing stochastic behaviour that can be cap-
tured by the exponential distribution. However, it is perhaps more useful in the later
stages of the software lifecycle when most parameters of the model will have known
values and no refinement of the model is required.

4.3 Modelling the Emergency Brake in pB

This section introduces the probabilistic model-based specification language pB [38],
and applies it to the case study. The strengths and limitations of pB, as illustrated
by the case study, are then discussed. The feature of interest in pB is its support for
abstraction and refinement. It is also supported by a toolkit (although this is not cheap
to obtain and as such was not used for this case study). The drawback of pB, however,
is that it only supports discrete probability. This means that the stochastic behaviour
inherent in the case study has to be approximated in some way for its analysis.

4.3.1 pB overview

Probabilistic B is essentially standard classical B [2] extended to include the probabilistic
choice operator (p⊕), e.g. x := 1 p⊕ x := 2. A pB model includes a number of variable
declarations and operations over those variables. Each operation has a pre-condition
to record the valid states from which the operation may be called. A novel construct,

4.3 Modelling the Emergency Brake in pB 43

S [S] Q
Assignment x := E Q[x\E]
Pre-condition P | S P × [S] Q
Choice S1 [] S2 [S1] Q min [S2] Q
Probability S1 p⊕ S2 p× [S1] Q + (1−p)× [S2] Q
Composition S1;S2 [S1] ([S2] Q)
Cond. choice P =⇒ S 1/P × [S] Q
Identity skip Q
Parameterised subs. @x · S ux · ([S] Q)

x is a variable (or vector of variables); E is an expression in the program variables; P is a
predicate; S, S1 and S2 are probabilistic generalised substitutions; p is a constant probability in
[0, 1]; and Q is an expectation. The expression ux · (E) is interpreted as the minimum of E for
all x.

Given an expression Q, the meaning of Q[x\E] is the expression Q in which free occurrences of
x have been replaced by expression E.

Figure 4.6: Notation and expectation transformer semantics of pGSL

known as an expectation, is used to define probabilistic properties that hold throughout
the model. These are essentially probabilistic versions of invariants. The language
shares similarities with pGCL (Section 2.3.2), in particular in the use of an expectation-
transformer semantics for analysing properties of interest.

The syntax and semantics of pB are based on the probabilistic generalised sub-
stitution language (pGSL) [67]. This is given in terms of an expectation transformer
semantics (similar to pGCL4), as shown in Figure 4.6. The interpretation of pGSL is
(the same as pGCL – Section 2.3.2) that [S] Q determines the expected value of Q after
the substitution S has occurred. For composite substitutions, this is given in terms of
the expected value of its constituent substitutions.

The expectations construct is used to analyse safety properties in the pB models
of the emergency brake system. Therefore this will now be described in more detail.
An expectation is a numeric expression over the (random) variables of the model. It is
written e ≤ Inv, where e is a value and Inv is an expression over the variables of the
model. For a pB model to satisfy an expectation, it is required that the expected value
of expression Inv is never below the value e (throughout the model). For example,
consider a system that observes the number of heads (h) and tails occurring when a
tossing a fair coin n times. An expectation of the system may be 0 ≤ h − n

2 , meaning
that heads account for at least half of the total number of observations. Note that a
similar expectation about the number of tails observed would also be required to ensure
that the coin is fair. The use of expectations leads to the following proof obligations:
e ≤ [Init]Inv for initialisation Init; and Inv ≤ [Op]Inv for every operation (Op) in the
pB model. Note that these are the probabilistic versions of invariant proof obligations.

4The [S] Q notation has a similar meaning to wp.prog.Q in pGCL.

4.3 Modelling the Emergency Brake in pB 44

4.3.2 Discrete approximations of the emergency brake system

The pB formalism [38] has no representation of time or continuous probability distri-
butions. Therefore to model the EB scenario in pB, first it is important to decide how
best to abstract away from time and transform the stochastic behaviour into discrete
probabilistic choice statements.

There are essentially two ways in which the probabilities can be calculated based on
the rate (CTMC) based description of the system and the choice between them depends
on what kind of questions are to be asked of the model. One question a system designer
may like to consider is which state transition is likely to occur first from a given state –
this scenario is described in Option 1. Alternatively, a designer may like to know what
could happen in the next time step (including the possibility of nothing), or for how
long the system is likely to remain in a state – this scenario is described in Option 2.
The limitations and benefits of both of these options are discussed in more detail below.

Option 1: Embedded Markov Chain (What happens next?)

In this option the relative likelihood of each state transition occurring next (from the
current state) is determined. This is a simple and popular way of abstracting a CTMC
into a DTMC, known as the Embedded Markov Chain. The rates are converted into
probabilities as follows:

pij =

λij∑

k 6=i
λik

i 6= j

0 otherwise

. (4.1)

Recall (Section 2.1.4) that pij is the probability that a transition from state i to state
j occurs, and λij is the rate at which transitions from state i to state j occur in the
CTMC. Applying the above to all possible transitions results in a DTMC that can then
be modelled with probabilistic choice statements in pB.

Whilst this is a straightforward approach for calculating probabilities for use with
pB, it is not without consequences. With a model like this all sense of how long is
spent in each state is lost, and in fact for the EB scenario all that can be determined
from this model is the probability of the system ending up in each of the terminating
states. When interested in dependability data such as the mean time between failures
this abstraction is clearly not very useful.

Option 2: Single time unit transitions (What happens in the next time unit?)

In the second option the question of interest is: what could happen within some small
amount of time, t? This includes the possibility of nothing happening. The probability
of each possible transition occurring within time t needs to be calculated. The prob-

4.3 Modelling the Emergency Brake in pB 45

ability of doing nothing within time t also needs to be calculated (by subtracting the
probabilities of all the other possible transitions from one). In general, these calculations
are far from straightforward, especially for large, complex systems. The calculations are
further complicated in a system where chains of several transitions can occur within
time t. The emergency brake system is a high level description and does not have chains
of transitions to consider, making it possible to obtain the required probabilities as
follows5:

pij =

λij∑
∀k

λik

1− e
−
∑
∀k

λikt
 i 6= j

λii∑
∀k

λik

1− e
−
∑
∀k

λikt
+ e

−
∑
∀k

λikt

otherwise

, (4.2)

where pij is the probability that a transition from state i to state j occurs; and λij is the
rate at which transitions from state i to state j occur in the CTMC. As with the first
option, pij is calculated for all possible state transitions to produce a DTMC, which can
then be modelled with probabilistic choice statements in pB.

This approach allows for more powerful reasoning about the system, and would make
it possible to determine dependability measures such as the mean time between failures.
However, the required calculations are far from straightforward in the general case. The
interpretation of any analysis results in terms of the parameters of the original CTMC
is also not straightforward.

4.3.3 pB models and analysis

Separate models were created in pB for the emergency brake scenario for each of the
abstraction options given in Section 4.3.2. In this section an overview of the models is
provided and the analysis of the safety property (given in Section 4.1) is shown. Full
descriptions of the pB models can be found in Appendix B.2, the proofs for the safety
property can be found in full in Appendix B.3.

Both of the pB models6 consist of two operations, main and EB Request, to capture
the behaviour of the emergency brake (see Figures 4.7 and 4.8). The EB Request

operation is the same in both models and describes what occurs after the emergency
brake has been requested (either there is an unsafe failure with probability p us or the
brake is applied). The main operation models the choice between a safe failure occurring
versus an emergency brake request. In option 2 there is also the possibility of just time

5Note that it is outside of the scope of this thesis to find a way of calculating such probabilities for
the general case, as this is a complex problem in itself.

6Note that these models have been designed to be as comparable as possible to the Stochastic Event-
B models later in the chapter, and thus pB’s syntax has been slightly adapted to use the mathematical
notation for probabilistic choice.

4.3 Modelling the Emergency Brake in pB 46

main =̂
PRE
EB command = FALSE ∧ EB applied = FALSE

THEN
(EB applied := TRUE p safe⊕ EB Request())
|| n := n+ 1

END

EB Request =̂
PRE
EB command = FALSE ∧ EB applied = FALSE

THEN
(EB command, c := TRUE , c+ 1) p us⊕
(EB command,EB applied := TRUE ,TRUE)

END;

Figure 4.7: pB main and EB Request operations for option 1

passing (without any other state change), which is modelled using SKIP . This enables
the analysis of the rate at which events occur in the second model.

A safety analysis was carried out on both of the pB models. The safety property
was modelled using the expectations clause described in Section 4.3.1. However, the
formulation and analysis of such expectations requires access to historical data about
the probabilistic behaviour to provide useful analysis. Thus fresh variables are required
in the model to record: the number of times the model has been exercised; and of
these times the number of occurrences of the property of interest. This is similar to the
rewards approach of CTMCs, however in pB these fresh variables have to be integrated
into the model.

For option 1 fresh variables n and c were added: n records the number of times the
model has been exercised (i.e. is incremented every time main is called); and c records
the number of unsafe failure occurrences (i.e. is incremented every time an unsafe failure
occurs). These variables are used in an expectation, to record the safety property that
the expected proportion of unsafe failures is bounded above (by some given value). This
expectation is written as follows:

0 ≤ n× p max− c . (4.3)

This is interpreted as n × p max − c is always at least 0, i.e. that the expected pro-
portion of unsafe failures, c

n , is always at most some maximum p max. Analysis of the
above expectation determines how the probabilistic parameters (p safe and p us from
Figure 4.7) relate to each other and the required maximum probability of unsafe failure

4.3 Modelling the Emergency Brake in pB 47

main =̂
PRE
EB command = FALSE ∧ EB applied = FALSE

THEN
(EB applied := TRUE p safe⊕ (EB Request() p req⊕ SKIP))
|| time := time+ 1

END

EB Request =̂
PRE
EB command = FALSE ∧ EB applied = FALSE

THEN
(EB command, c := TRUE , c+ 1) p us⊕
(EB command,EB applied := TRUE ,TRUE)

END;

Figure 4.8: pB main and EB Request operations for option 2

(p max) in order to respect the expectation. The result (see Appendix B.3 for the full
proof) obtained is:

(1− p safe)× p us ≤ p max . (4.4)

Informally, this states that the probability of an EB Request happening and resulting
in the unsafe failure state is at most p max.

For option 2 fresh variables time and c were added: time records the number of time
units that have passed (i.e. is incremented every time main is called); and c records the
number of unsafe failure occurrences (i.e. is incremented every time an unsafe failure
occurs). As before, these variables appear in the expectation to ensure that the rate of
unsafe failures is bounded above by some given value. This expectation is written as
follows:

0 ≤ time× p max− c . (4.5)

This is interpreted as time × p max − c is always at least 0, i.e. that the expected
rate of unsafe failures, c

time , is always at most some maximum p max. Analysis of the
above expectation shows how the probabilistic parameters (p safe, p req and p us from
Figure 4.8) relate to each other and the required maximum rate of unsafe failure (p max)
in order to respect the expectation. The result (see Appendix B.3 for the full proof)
obtained is:

(1− p safe)× p req × p us ≤ p max (4.6)

Informally, this states that the rate of an EB Request (instead of a safe failure or SKIP ,
i.e. nothing) happening and resulting in the unsafe failure state is at most p max. Note

4.3 Modelling the Emergency Brake in pB 48

that the result is given in terms of probabilities of events occurring within one time unit
(forming an approximate rate of occurrence), as opposed to the rate parameters of the
original CTMC. To get back to the rates it is required to substitute the pij ’s according
to the equations given in Section 4.3.2 and re-arrange/simplify the resulting inequality.
This step is omitted here as it is not straightforward and does not contribute to the
illustration of pB. The fact that this final step is arduous (especially for more complex
systems) means that a discrete approximation is not a good approach for reasoning
about continuous probability.

4.3.4 Experiences with pB

The probabilistic model-based specification language pB provides a good formal basis
for the analysis of probabilistic systems. The proof-theoretic semantics of pB allow
the user to rigorously analyse properties of interest. The proof rules can be used al-
gebraically (as well as numerically) to derive properties of the model parameters with
respect to the design requirements, as shown above. This enables the designer to gain a
better understanding of the system, and analyse alternative designs at a higher level of
abstraction. However, the designer must have a good understanding of the mathematics
involved to do so, as this process is not automated (and is not simple to automate for the
general case). A further advantage to pB (although not illustrated in this case study) is
the use of abstraction and refinement. The refinement calculus [11, Preface] enables a
designer to start with a simple abstract model and, through a series of (mathematically
proven) refinements, develop a (more) concrete implementation of the abstract model.
This process ensures that the correctness (i.e. the required properties) of the design is
preserved in the final product.

The disadvantage of using a probabilistic model-based specification language (like
pB) to model a system that is stochastic in nature has clearly been illustrated in this
case study. There is an unavoidable trade-off between the complexity of the discrete
approximation (and its analysis) and the information that can be obtained through its
analysis. There are also some relatively trivial issues with pB: the tool support is not
freely available, resulting in a cost overhead in using pB (either in terms of money or time
to do manual proofs); the use of fresh variables to allow analysis is a little clumsy; and
probabilistic choice clauses are restricted to two options, making multi-way probabilistic
branching over complex.

Overall pB is an interesting approach to modelling and analysing stochastic be-
haviour. In particular the abstraction and refinement facilities, and the ability to obtain
algebraic solutions, are very powerful and potentially very useful for designers. However,
the lack of support for continuous probability distributions does limit its applicability
somewhat as it is not really feasible for modelling systems that are naturally described
using such distributions.

4.4 Modelling the Emergency Brake in Stochastic Event-B 49

4.4 Modelling the Emergency Brake in Stochastic Event-B

This section prototypes a new stochastic model-based specification language (Stochastic
Event-B) based on the Event-B formalism [3]. This aims to combine the benefits of
model-based specification languages and formalisms that support continuous probability,
as discussed in Sections 4.2 and 4.3. The analysis approach of Stochastic Event-B is
similar to that of pB (using expectations to model properties of interest). However,
it also includes support for modelling and analysing the exponential distribution (and
potentially further continuous probability distributions). Event-B was chosen as the
base language (instead of B) because Event-B has an open source toolkit7 for proof
support. Event-B also seems to be a more natural language for modelling the occurrence
of failures, as behaviour is specified in events (instead of operations).

An overview of standard Event-B is given below, followed by a description of the
proposed stochastic extensions. The emergency brake scenario is modelled and analysed
in this proposed language as an illustration of its use. Stochastic Event-B is then
evaluated and compared to the approaches discussed above.

4.4.1 Event-B overview

The Event-B formalism is derived from classical B [2], but also incorporates concepts
from Action Systems [10]. The functionality of an Event-B model is given in events.
Such events may update variables, but do not include flow constructs such as conditional
choice, loops or even calls to other events. Instead the flow of an Event-B model is
determined by a demonic choice over the set of events that may occur (see “guard”
below) from the current state.

An Event-B model consists of two types of components: machines and contexts. A
machine models the dynamic behaviour of the system such as the variables and the
events. The context provides details of the static information – constants, values and
properties over such values.

The machine description contains the bulk of the model and may include variables,
invariants and events. Variables store the state of the machine. Invariants are used
to constrain the types of the variables as well as state other logical properties over the
variables that must hold at all times. Events define the behaviour of the system, i.e.
the state transitions that may occur. Each event may include a guard, which defines the
states from which the transition can occur, and includes a set actions which define the
updates to the variables. For more detailed information about the contents of Event-B
models the reader is referred to Abrial [3].

A number of proof obligations are automatically generated for an Event-B model.
These state the requirements for the model to be internally consistent. For example,
events must not invalidate the invariants (known as invariant preservation), the proof

7The Rodin platform, available at http://www.event-b.org/platform.html.

4.4 Modelling the Emergency Brake in Stochastic Event-B 50

obligation that states this is as follows:

I(v)
G(t, v)
S(t, v, v′)

`
I(v′)

,

where v and v′ represent the variables of the machine before and after the event has
occurred, respectively; t represents the parameters of the event; I(v) represents the
invariants over the variables; G(t, v) represents the guard of the event; and S(t, v, v′)
represents the actions occurring in the event (as a before-after predicate). Proof obli-
gations are also used to define the refinement rules of Event-B, for details of these, and
other proof obligations, the reader is referred to Abrial [3].

4.4.2 Stochastic extensions

As with classical B, standard reasoning in Event-B only determines what is possible,
not what is probable. Such reasoning is not sufficient for analysing quantitative prop-
erties such as reliability and safety. Therefore some extensions to standard Event-B are
proposed to support stochastic reasoning for the analysis of such properties.

Hallerstede and Hoang’s work on introducing probabilistic to choice to Event-B [33]
focuses on qualitative probabilistic reasoning; it is not possible to analyse numerical
properties such as the emergency brake’s safety requirement using such techniques. To
reason about the safety requirement, quantitative reasoning is essential. Therefore it is
proposed to extend Event-B actions with the probabilistic choice operator, i.e. to allow
actions such as x := 1 p⊕ x := 2.

The ability to model continuous probability distributions is also of importance. Two
language extensions are proposed for this purpose. First it is proposed to allow events
to occur according to the exponential distribution. To do this each event may have
an associated rate parameter (written as a special kind of action called rate), which
represents the rate of the occurrence of the event with respect to the exponential proba-
bility distribution. This is interpreted in a similar way to a PRISM (CTMC) command
and enables CTMCs to be modelled in Stochastic Event-B. Note that events with rate
parameters are selected probabilistically (like in CTMCs) as opposed to demonically.

The second construct allows more general probability distributions to be specified.
It is proposed to extend Event-B actions to allow a variable to be assigned according to a
continuous probability distribution. When used in conjunction with the rate parameters,
this could be used to accumulate the amount of time that has passed in a CTMC for
analysis purposes8. For example time := time + exp(λ) would increment a time

8Note that without the rate parameter events are chosen demonically, so for this situation both
constructs are needed.

4.4 Modelling the Emergency Brake in Stochastic Event-B 51

variable by a randomly assigned observation from the exponential distribution with
parameter λ. However, it can also be used to model more general probabilistic behaviour,
such as the level in a water tank (which may follow a normal distribution).

For analysis of stochastic properties, such as the safety property in the emergency
brake scenario, the use of expectations as in pB (see Section 4.3.1) is advocated. There-
fore, an expectations clause will be added to Event-B Machines to model these. The
semantics of such statements is intended to be very similar to that of expectations in pB,
except that Stochastic Event-B has events that would have to respect the expectations
instead of pB’s operations.

4.4.3 Event-B models and analysis

This section summarises how Event-B was used to model and analyse the case study.
Three different models of the emergency brake are discussed. In a first model the limita-
tions of analysing the scenario in standard Event-B (i.e. without any stochastic exten-
sions) are demonstrated. Afterwards, two different options for analysing the stochastic
behaviour of the emergency brake are explored. In option 1 time is modelled implicitly
using a rate parameter. Option 2 makes use of the statement time := time + exp(λ) to
update time explicitly. Note that these two options for modelling stochastic behaviour
are semantically equivalent. The main differences are in the event and expectation no-
tations, and the amount of flexibility each option provides, these issues are discussed
towards the end of this section. Full descriptions of all the Event-B models can be found
in Appendix B.4.

In standard Event-B the closest approximation to the emergency brake scenario in-
volves a non-deterministic choice between possible events: EB Normal, Safe Failure
and Unsafe Failure. There is no way of stating how often each of these events oc-
cur. Similarly, the best approach available for including the safety property is to
model it as an invariant EB command = TRUE =⇒ EB applied = TRUE. The
Unsafe Failure event violates this invariant as it sets EB command to TRUE, but
EB applied remains FALSE. Therefore, it can be concluded from the standard Event-B
model that the safety property is not preserved by the Unsafe Failure event. However,
it is not possible to build an implementation of the emergency brake system in which
it can be guaranteed 100% that an unsafe failure will never occur. Thus stochastic
modelling is needed to establish and minimise the chances of an unsafe situation (and
guarantee the stochastic version of the safety property).

For the Stochastic Event-B models of the emergency brake, the standard model
described above is used as a basis and the EB Normal and Unsafe Failure events
are combined into a single EB Request event. This event includes a probabilistic
choice statement that results in either the unsafe failure situation (with probability
p) or the normal application of the emergency brake. Both the EB Request event and
the Safe Failure event are assigned a rate value (λreq and λsafe respectively). These

4.4 Modelling the Emergency Brake in Stochastic Event-B 52

Event EB Request =̂

when

grd1 : EB applied = FALSE ∧ EB command = FALSE

then

rate : λreq

act1 : (EB command , c,n := TRUE , c + 1 ,n + 1) p⊕
(EB applied ,EB command ,n := TRUE ,TRUE ,n + 1)

end

Figure 4.9: Stochastic Event-B EB Request event for option 1

Event EB Request =̂

when

grd1 : EB applied = FALSE ∧ EB command = FALSE

then

rate : λreq

act1 : (EB command , c := TRUE , c + 1) p⊕
(EB applied ,EB command := TRUE ,TRUE)

act2 : time := time + exp(λreq + λsafe)

end

Figure 4.10: Stochastic Event-B EB Request event for option 2

rate values are taken to be parameters of the exponential distribution parameter and
model the rate at which the events occur. Note that this representation of the emer-
gency brake scenario is analogous to the natural way of modelling the system, described
in Section 4.1.

For the first Stochastic Event-B model considered (option 1), time is treated implic-
itly through the use of the rate parameter (see Figure 4.9). Similarly to the pB models,
fresh variables are required for analysis, to track the history of the probabilistic choice
statement. The total number of times the probabilistic choice is exercised is represented
by n, and the number of times it resulted in an unsafe failure by c. The safety property
is translated into the following expectation to be analysed:

0 ≤ n× λmax − c× λreq . (4.7)

This is interpreted as n × λmax − c × λreq is always at least 0, i.e. that c
n × λreq (the

frequency of unsafe failures) always occurs at some maximum rate λmax. The above
expectation is analysed on the event of interest (EB Request) to provide a relationship

4.4 Modelling the Emergency Brake in Stochastic Event-B 53

between the parameters of the model and the safety property. The following inequality
is obtained as a result:

p× λreq ≤ λmax . (4.8)

Informally, this means that the request rate of the brake, multiplied by the brake’s
probability of failure on demand, must be less than the allowed rate of unsafe failures.
Full details of the expectation analysis can be found in Appendix B.5.1. Note that the
expectation analysis for the Safe Failure event is omitted, but is satisfied trivially as
the event does not update any of the variables included in the expectation.

In the second Stochastic Event-B model considered (option 2), time is updated
explicitly in the actions of the events according to the exponential distribution (see
Figure 4.10). Notice that the time that passes before an EB Request event occurs
depends on both λreq and λsafe. From the definition of CTMCs, the distribution of the
time to an EB Request event is essentially the distribution of the sojourn time9 of the
initial state. The sojourn time of a state depends on the rate of all of the transitions
available from that state. Intuitively the system can be thought to be delayed in a
state for its sojourn time, before a probabilistic choice is made (according to the rate
parameters) between the available transitions from that state.

The analysis of option 2 proceeds using just one fresh variable c (the number of unsafe
failures), because time is being recorded explicitly. The safety property is translated into
the following expectation to be analysed:

0 ≤ time× λmax − c . (4.9)

This is read as time×λmax−c is always at least 0, i.e. that c
time (the frequency of unsafe

failures) always occurs at some maximum rate λmax. The expectation in Formula 4.9 is
analysed on the event of interest (EB Request) and gives the following

p× (λreq + λsafe) ≤ λmax . (4.10)

Full details of the expectation analysis can be found in Appendix B.5.2. Again, note
that the expectation analysis for the Safe Failure event is omitted, but is satisfied
trivially as this event only increments time (not c) and therefore never decreases the
value of the expectation.

The analysis of option 2 provides an interesting result. Note how Formula 4.10 differs
from the inequality found for option 1 (Formula 4.8), even though the two options are
semantically equivalent. The reason for this discrepancy is due to how expectations
work. These assume that the events are chosen demonically when multiple events are
enabled from the same state. However, adding rate parameters to the events changes the
demonic choice to a probabilistic choice, which is not taken into account in the analysis

9Recall that the sojourn time is defined as the time spent in a state before a transition occurs.

4.4 Modelling the Emergency Brake in Stochastic Event-B 54

of expectations. In option 2, this leads to a conservative estimate of the relationship
required between λmax and the parameters of the model to satisfy the safety property.
This feature of expectation analysis does not have any impact on the analysis of option
1, because the rate parameters used in that analysis are independent of the existence of
other events (so the interpretation of how events are selected is irrelevant). This is not
the case for the explicit time update found in option 2, which depends on the rates of
all of the events available from the initial state.

Whilst this issue is caused by an inherent conflict in how expectations and rate pa-
rameters are interpreted, there is a workaround (for this specific case) to find the correct
result. If the following expectation were analysed for option 2 (see Appendix B.5.2)

0 ≤ time× λmax −
λreq

λreq + λsafe
× c , (4.11)

then the result would be the same as that given for option 1 (Formula 4.10). This
explicitly incorporates the probability

(
λreq

λreq+λsafe

)
of the EB Request event occurring

(instead of the Safe Failure event) into the expectation, and hence into the analysis.
The workaround used above requires knowledge of CTMCs and how the next event

to occur is chosen probabilistically (according to the Embedded Markov Chain – see
Section 4.3.2). However, this approach becomes more complex when the states of interest
are reached from multiple events or chains of events. Therefore, this workaround is not
recommended as a general solution to resolve the conflict between expectations and
events that are selected probabilistically.

The second (explicit) approach to modelling the stochastic behaviour in Event-B is
more flexible than the first (implicit) approach in terms of the behaviour that can be
defined. However, care is needed when using expectations to analyse explicit assignments
in events that are selected probabilistically instead of demonically.

4.4.4 Experiences with Stochastic Event-B

In this section the use of Stochastic Event-B for modelling the emergency brake case
study is discussed. This includes some interesting observations about the analysis of
expectations. Comparisons are also made to the PRISM and pB models discussed
earlier in the chapter.

Both options for Stochastic Event-B, illustrated by the emergency brake case study
above, provide a clean and useful method for combining stochastic and logical reasoning.
The use of rates and the exponential distribution allow an intuitive model of the case
study, whereas using probabilistic choice alone (as with pB) is rather more complicated.
As a consequence the Stochastic Event-B models are more concise than those in pB
(and require fewer proof steps10 to analyse the safety property). With a more intuitive

10The pB models require nine and ten proof steps (for options 1 and 2 respectively) to discharge
the expectation proof obligation, whereas the Stochastic Event-B models only take four and five (see
Appendices B.3 and B.5).

4.4 Modelling the Emergency Brake in Stochastic Event-B 55

notation, more complex problems should be easier to analyse. The expectation approach
allows an algebraic analysis of the model (but must be used with care when events are
selected probabilistically). This reveals the precise relationship between parameters of
the model and the stochastic requirements, thus making the impact of design decisions
more transparent. Finally, refinement rules could be established for Stochastic Event-B
models allowing a formal and correct development from requirements to implementation.

Some valuable lessons were learnt whilst analysing the emergency brake scenario in
the proposed stochastic version of Event-B. The first of these concerns the interaction
between rate parameters and the use of expectations for analysis. Rate parameters make
the choice of events probabilistic, whereas the expectation analysis approach assumes a
demonic choice between events. When explicit stochastic assignments occur in events
with rate parameters this can lead to conservative analysis of expectations. Thus care
must be taken when performing expectation analysis in this situation. This issue was
discussed in detail for the emergency brake case study (Section 4.4.3).

It would also seem that the way an expectation is formulated has an impact on
the algebraic solution obtained. For example, for option 1, an alternative (semantically
equivalent) expectation was initially analysed, 0 ≤ λmax− c

n ×λreq, and gave the result
p ≤ c

n . Whilst the two solutions are not contradictory (different variables of the model
are referred to in each), the solution presented in Section 4.4.3 is clearly more useful for
finding a suitable design for the system. Therefore the way in which expectations are
formulated seems to impact on the usefulness of the results obtained.

There are a couple of other minor issues that a user should be aware of in the
manipulation or simulation of an Event-B model with explicit stochastic assignments.
There are rounding issues to consider when obtaining an observation from a continuous
probability distribution, i.e. when simulating a statement such as time := time+exp(λ).
Also the statement

(x := 1 p⊕ x := 2) || time := time+ exp(λ)

would not be equivalent to

(x := 1 || time := time+ exp(λ)) p⊕ (x := 2 || time := time+ exp(λ))

in general. This parallel substitution rule is valid for probabilistic programs. However,
if there is a stochastic assignment on the right-hand side of || there needs to be some
constraint in place to prevent different values being allocated to each instance of the
stochastic assignment in the resulting statement. Note that this is not an issue if the
analysis only depends on the expected value of the observation.

Overall, Stochastic Event-B looks like a promising approach to modelling and analysing
stochastic systems. However, in order to define a full formal semantics for Stochastic
Event-B there are many challenges to be overcome. These are discussed in the next

4.5 Next Steps and Challenges 56

section.

4.5 Next Steps and Challenges

A stochastic version of Event-B promises to be a useful approach to modelling de-
pendable systems, particularly those with naturally occurring continuous probability
distributions. However, for Stochastic Event-B to become an accepted model-based
specification language it requires a formal semantics. This is not a trivial problem to
solve.

The key challenge in formally defining Stochastic Event-B is that demonic non-
determinism is inherent in Event-B. The next event to occur in an Event-B model is
chosen according to a demonic choice between all the events that are active in the current
state. This non-determinism may be eliminated (in practice) from an Event-B model by
including special variables to create a deterministic flow, or by using rate parameters11.
However, the non-determinism is still inherent in the semantics of Event-B. This causes
considerable challenge for a formal definition of the semantics of Stochastic Event-B,
because (at a semantical level) the interaction between non-determinism and continuous
probability is especially hard to resolve (see Chapter 7).

There is also very little literature on how continuous probability distributions could
be included in any model-based specification language. Due to this and the above, it was
decided to develop the formal semantics of a simpler stochastic model-based specification
language (sGCL), instead of Stochastic Event-B. The language chosen for the basis of
this new stochastic model-based specification language was pGCL (see Section 2.3.2).
This is because constructs in pGCL are very simple, there are no functions or events
for example, and because demonic non-determinism is modelled explicitly through the
demonic choice operator. This operator could be removed and a formal deterministic
stochastic language developed (Chapter 6), before exploring how non-determinism can
be included as well (Chapter 7).

Even the semantics of a simple stochastic model-based language are challenging. The
following issues are explored in the semantics of sGCL:

• How to define refinement in order to be as applicable as possible, whilst not being
too restrictive?

• How do continuous probability distributions and demonic choice interact?

• How do recursion and continuous probability interact?

• How to deal with real numbers and truly infinite state spaces?

It is intended that the lessons learnt from developing a formal semantics of sGCL can be
applied when reconsidering the formal definition of Stochastic Event-B. That is beyond

11But recall (Section 4.4.4) that this approach may cause other issues for expectation analysis.

4.6 Concluding Remarks 57

the scope of this thesis, however.

4.6 Concluding Remarks

This chapter has used a simple case study (on an emergency brake) to illustrate the
strengths and limitations of two contrasting approaches to modelling and analysing
stochastic computer-based systems. The material presented in this chapter was not
used as the sole basis for designing a stochastic model-based language, but rather was
intended to illustrate key points of the discussion of the related work in Section 2.3.
The prototype language introduced in this chapter (Stochastic Event-B) was used to
illustrate the benefits of a stochastic model-based specification language, with respect
to the case study. However, this language was not found to be suitable for a formal
semantics definition, mainly because of the inherent demonic non-determinism in it.
As will be seen in Chapter 7, integrating non-determinism and continuous probability
in the semantics of a model-based specification language is far from a trivial problem.
Therefore, the semantics of a relatively simpler language, sGCL, is formally defined in
Part 2 of this thesis.

Part II

Defining sGCL

58

Chapter 5

Foundations of sGCL

This chapter provides some key theory and results that form the foundations of the
semantic basis of a new language for describing computer-based systems with stochastic
elements. This new language, called “Stochastic Guarded Command Language” or
sGCL for short, is described in detail in Chapters 6 and 7.

An overview of measure theory is presented first (Section 5.1), providing many of
the key definitions and terminology for the formal definition of continuous probability.
This section includes an introduction to Lebesgue integration, a technique for integrat-
ing over (functions of) measures. A stochastic powerdomain, which forms the basis
of sequential composition of stochastic programs, is then defined (Section 5.2). A fur-
ther section describes a metric space for measures (Section 5.3), providing a basis for
compactness arguments and recursion of stochastic programs. Finally, the semantics
of pGCL (the version of GCL that enables discrete probability distributions, as sum-
marised in Section 2.3.2) is described in enough detail to form a basis for the semantics
of sGCL described in Chapters 6 and 7.

5.1 Measure Theory

Measure theory provides the mathematical foundation for all probability theory. It
is the most general theory upon which all the well established results (such as those
summarised in Section 2.1) are based. Measure theory is used as the semantic basis
in sGCL partly because it allows the use of existing research (such as the stochastic
powerdomain presented in Section 5.2), and partly because it makes the language as
generally applicable as possible. This section summarises the measure theory results
needed to understand the semantics of sGCL.

5.1.1 Basic definitions

A “measure” is essentially a function from a sets of values to a non-negative real numbers
(often thought of as the size of the set). Only suitable subsets of a state space can be

59

5.1 Measure Theory 60

measured. These are given by a “sigma algebra” (or σ-algebra) over that state space.
A σ-algebra is defined as follows [7, Section 1.2.1]:

Definition 5.1. For state space S, a σ-algebra A over S is a collection of subsets of S
that satisfies the following properties

1. A 6= ∅ ,

2. A ∈ A =⇒ S \A ∈ A ,

3. A1, A2, A3, . . . ∈ A =⇒ A1 ∪A2 ∪A3 ∪ · · · ∈ A .

Together these three properties require that a σ-algebra contains at least ∅ and S, and
that it is closed under countable unions and countable intersections. The elements of
a σ-algebra are measurable sets. A pair (S,A), where S is a state space and A is a
σ-algebra over S, is known as a measurable space.

It is now possible to define a measure formally as follows [7, Section 1.2.3]:

Definition 5.2. For state space S and σ-algebra A over S, a measure µ is a function
on A to the set of extended reals1 that satisfies the following properties

1. µ(A) ≥ 0 for all A ∈ A ,

2. µ (
⋃
iAi) =

∑
i µ (Ai) for all countable collections of disjoint sets A1, A2, . . . in A ,

3. µ(∅) = 0 .

Note that the second property is known as countable additivity.

The countable additivity property leads to some useful derived properties, for example
monotonicity can be shown. Monotonicity states that µ(A1) ≤ µ(A2) for measure µ and
measurable sets A1, A2 with A1 ⊆ A2. The triple (S,A, µ) is known as a measure space
for state space S, σ-algebra A and measure µ.

Three specific measures are of particular interest, “probability measures”, “sub-
probability measures” and “Lebesgue measure”. A probability measure has the extra
condition µ(S) = 1 for state space S, measure µ. In a sub-probability measure the
measure µ of the whole state space S is at most one, µ(S) ≤ 1. Lebesgue measure is
the standard way of assigning length, area, etc. to Euclidean space, for example the
Lebesgue measure on closed interval [a, b] is equal to b− a [7, Section 1.4].

5.1.2 Integration over measures

It is often necessary to integrate functions over measurable spaces, for example in cal-
culating the expected value of a random variable. This section provides an overview of

1The extended real numbers is the set of reals plus ±∞.

5.1 Measure Theory 61

“Lebesgue integration” and its relationship with the more commonly understood (Rie-
mann) integral. Intuitively the Lebesgue integral can be thought to be dividing the
area under the graph into slices according to the range of the function, whereas the
Riemann integral does so according to the domain of the function. In doing so the
Lebesgue integral provides a method for integration over spaces that are more general
than Euclidean space. Lebesgue integration is used to define the weakest pre-condition
semantics of stochastic assignment in sGCL. It is also used throughout the definition of
the relational semantics of sGCL.

Before constructing the Lebesgue integral, it is instructive to define the collection of
functions that can be integrated. These are called the “measurable functions” and are
defined as [23, Section 4.2]

Definition 5.3. For measurable spaces (S,A), (T,B), a function f from S into T is
measurable if f−1(B) ∈ A for all B ∈ B.

The definition of the Lebesgue integral is built up from basic “indicator functions”
and then generalised to more complex functions. An indicator function, written IA(x),
is a function that returns one if x ∈ A, and zero otherwise. A simple function is a finite
linear combination of indicator functions. The Lebesgue integral for a simple function
is defined as [7, Section 1.5.3]:

Definition 5.4. For measure space (S,A, µ) and simple function f , the Lebesgue inte-
gral of f with respect to µ is defined∫

S
f dµ =

∑
i

aiµ(Ai) ,

where f =
∑

i aiIAi for reals ai and disjoint sets Ai in A.

Note that an alternative notation for Lebesgue integration,
∫
µ f , is used in Chapters 6-8,

where the state space S is defined in advance. Also, for more complex integrals, such as
those in Section 5.2, the more explicit notation

∫
S f(x)µ(dx) is used to avoid confusion.

For more complex (non-negative) functions a limiting approximation is given to the
Lebesgue integral as follows [7, Section 1.5.3]:

Definition 5.5. For measure space (S,A, µ) and non-negative function f , the Lebesgue
integral of f with respect to µ is defined∫

S
f dµ = sup

{∫
S
s dµ · s simple, 0 ≤ s ≤ f

}
.

Signed functions can be integrated as long as the integral of their absolute value is
finite. This integral is defined as [7, Section 1.5.3]:

5.2 A Stochastic Powerdomain 62

Definition 5.6. For measure space (S,A, µ) and function f such that
∫
S |f | dµ < ∞,

the Lebesgue integral of f with respect to µ is defined∫
S
f dµ =

∫
S
f+ dµ−

∫
S
f− dµ ,

where f+ = max(f, 0) and f− = max(−f, 0). For example, f+(x) = f(x) when f(x) >
0, and 0 otherwise.

It is worth noting that if a function is Riemann integrable on interval [a, b], it can
be shown [7, Section 1.7.1] that the function is also Lebesgue integrable on [a, b], and
that the two integrals are equal. This allows Riemann integration to be used instead of
Lebesgue integration, if preferred, when a function is Riemann integrable.

5.2 A Stochastic Powerdomain

In its simplest form a stochastic program takes a state to a distribution over states.
However, this representation leads to problems when finding the sequential composition
of two stochastic programs as the input for the second program is now a distribution
of states, not a single state. To overcome this problem powerdomains are used, these
provide techniques for converting distributions to single states and vice versa. The
theory behind such powerdomains comes from monads, in particular for a stochastic
powerdomain the Giry monad is used [31, 22]. An overview of the Giry monad is
described in this section, further details on monads in general can be found in standard
texts on category theory and computation [66, 1]. The Giry monad provides the theory
behind sequential composition in sGCL (Section 7.2).

Before the Giry monad is presented a few definitions are required. A Polish space
is defined [22] as a separable metric space for which a complete metric exists. For the
purposes of this thesis, it is suffice to know that the real number line is an important
example of a Polish space, as are (open or closed) intervals of reals. The Borel sets of
a state space S (written BS) include by definition [23] all of the open subsets of S and
form a σ-algebra over that space. For example the Borel sets of the real number line
includes all the intervals (a, b] where a, b ∈ R [7, 23].

A monad is a triple (T,η,µ) consisting of an “endofunctor” over a given category C,
and two “natural transformations” [66]. The endofunctor, T : C → C, is a functor that
maps elements of the category to other elements of the same category. The first natural
transformation (also known as unit), is defined as η : 1C → T , where 1C represents the
identity functor on C. The second natural transformation is defined as, µµµ : T 2 → T ,
where T 2 = T ◦ T . The transformations η,µ must satisfy the commutative diagrams
shown in Figure 5.1. Informally, a monad represents a powerdomain where the natural
transformations provide means of going up into and back out of the powerdomain.

For the Giry monad the endofunctor S takes a measurable space (S,BS), where S is

5.2 A Stochastic Powerdomain 63

Figure 5.1: Monad coherence conditions represented as commutative diagrams [66]

a Polish space and BS is the Borel sets of S, to the set of all sub-probability measures
defined on that space (along with some suitable σ-algebra induced from BS). The unit
transformation, η, of the Giry monad allows states to be transformed into measures. It
is based on the “Dirac measure”, which is defined as [22]:

Definition 5.7. For a measurable space (X,Σ) and any measurable subset A ∈ Σ the
Dirac measure is defined

δx(A) :=

1, if x ∈ A,

0, if x /∈ A,

for a given x ∈ X.

Note that the Dirac measure can be used in a similar way to transform a single distri-
bution into a distribution of distributions. The natural transformation ηS : S → SS of
the Giry monad is simply the Dirac measure over measurable space (S,BS). The second
transformation µ : S2 → S transforms measures into single states (or measures over
measures into simple measures) by calculating the expected value and is defined as [22]:

Definition 5.8. The natural transformation µS : SSS → SS is defined

µS(µ)(A) :=
∫

SS
s(A)µ(ds)

for measurable space (S,BS), initial measure µ over SS and final measurable set A ∈
BS .

A Kleisli triple (S,η,−∗) can be associated with the Giry monad (S,η,µ) defined
above. Such a triple provides a morphism −∗ that converts a function f : X → SY to
a function f∗ : SX → SY . Informally, the −∗ provides a program with a mechanism
for handling a measure as input when it would normally require a single state. It works
by averaging the results for all elements of the state space with respect to the input
measure. The composition of two stochastic programs can be defined according to the
“Kleisli” product as [22]:

5.3 A Metric Space for Measures 64

Definition 5.9. For stochastic programs f : X → SY and g : Y → SZ, the Kleisli
composition g∗ ◦ f is defined

(g∗ ◦ f)(x)(C) :=
∫
Y
g(y)(C) f(x)(dy) ,

for initial state x ∈ X and final measurable set C ∈ BZ .

Thus providing a means for the composition of two stochastic programs. Note that in
the case where the stochastic programs are defined over the same state space S, the
spaces X,Y and Z all reduce to S. This result will be used for defining the sequential
composition of two stochastic programs in the relational semantics of sGCL (Section 7.2).

5.3 A Metric Space for Measures

When defining an iterative language with non-determinism in it, an appropriate way of
determining compactness and convergence is required. To do this, there needs to be some
way of determining how close two states are. When these states are actually distributions
of states, this becomes more complex. Various metrics have been defined to compare
distributions [30]. Of these, the “Kantorovich metric” is of particular interest when
dealing with continuous probability and non-determinism [82]. This section provides
the terminology required to understand the definition of the Kantorovich metric, before
presenting the Kantorovich metric along with its duality and simplification for real
numbers.

5.3.1 Joint probability distributions

The duality of the Kantorovich metric relies on the theory and terminology from joint
probability distributions. A brief overview of the required knowledge is provided in this
section. This builds on the terminology presented in Section 2.1.

A joint probability distribution describes the probability of pairs of (sets of) values
instead of single (sets of) values. For both discrete and continuous functions the joint
distribution can be characterised by its “joint distribution function” as follows [71]:

Definition 5.10. A joint distribution function over random variablesX and Y is defined

F (x, y) := P (X ≤ x, Y ≤ y) .

The probability of observing a value within a specified rectangle can be found using
the distribution function as follows

P (x1 < X ≤ x2, y1 < Y ≤ y2) = (F (x2, y2)− F (x2, y1))− (F (x1, y2)− F (x1, y1))

5.3 A Metric Space for Measures 65

for random variables X, Y and observations x1, x2 ∈ X and y1, y2 ∈ Y .
The joint mass function and the joint density function, for joint discrete and contin-

uous distributions respectively, relate in a similar way to the joint distribution function
as described in Section 2.1. However, where single summations/integrations are required
for (separate) distributions to convert from pmfs/pdfs to cdfs (see Section 2.1), double
summations/integrations are required for joint distributions.

For a joint distribution over random variables X and Y it is often required to know
the probability of a obtaining a certain value in X, without caring what the value of
Y is. The distribution of X in this situation can be found by summing/integrating the
pmf/pdf over all values of Y , for example

fX(x) =
∫ ∞
−∞

f(x, y) dy ,

defines the marginal density of X for joint continuous distribution f(x, y) over X,Y .
Such a density function describes the marginal distribution of X (or marginal measure
when defining distributions using measures). The marginal distribution of Y is defined
symmetrically.

5.3.2 The Kantorovich metric

The Kantorovich metric provides an indication of how different two probability distri-
butions are based on the “transportation problem” [83]. That is, if one imagines a
probability distribution as a mound of earth, the Kantorovich metric calculates the op-
timal work involved in transforming one mound of earth to a differently shaped one.
The Kantorovich metric is also known as the Wasserstein metric [30].

The Kantorovich metric is defined [20, Definition 2.1] as follows:

Definition 5.11. Given any two Borel probability measures µ and ν on separable metric
space (S, d), the Kantorovich distance between µ and ν is defined by

K(µ, ν) := sup
{∣∣∣∣∫

S
fdµ−

∫
S
fdν

∣∣∣∣ · ||f || ≤ 1
}
,

where || · || is the Lipschitz semi-norm defined by ||f || = supx 6=y
|f(x)−f(y)|
d(x,y) for a function

f : S → R.

The Kantorovich metric has a dual definition [83] for ease of understanding and
calculation. This is defined [20, Definition 2.2] as follows:

Definition 5.12. Given any two Borel probability measures µ and ν on separable metric
space (S, d), the metric L is defined by

L(µ, ν) := inf
{∫

S×S
d(x, y)dγ(x, y) · γ ∈ Γ(µ, ν)

}
,

5.4 Semantics of pGCL 66

where Γ(µ, ν) is the set of all probability measures on S × S with marginal measures
µ and ν. The probability measures µ and ν must satisfy

∫
S d(x, z)µ(x) < ∞ and∫

S d(x, z)ν(x) <∞ for all z ∈ S respectively. Note that
∫
S×S is used as a shorthand to

mean the double integral
∫
S

∫
S .

In both of these definitions d(x, y) represents the distance between points x and y in the
metric space over which the measures are defined. This is intuitively the cost associated
with moving a single piece of dirt from x to y or vice versa.

A further simplification of the Kantorovich metric applies when the state space of
the measures involved is the real number line, i.e. if the metric space (S, d) is the space
of real numbers with Euclidean distance. This is defined [30] as follows:

Definition 5.13. Given any two Borel probability measures µ and ν on the metric
space (R, d), where d represents Euclidean distance, the Kantorovich distance between
µ and ν is defined by

K(µ, ν) :=
∫ ∞
−∞
|F (x)−G(x)| dx ,

where F (x) and G(x) represent the cumulative distribution functions of µ and ν respec-
tively.

Note however that neither the duality, nor the simplification to real numbers, hold
in general for sub-probability measures. So care must be taken over their use when
working with sub-probability (see Appendix D.2).

5.4 Semantics of pGCL

The new stochastic language, sGCL, was developed using the probabilistic language
pGCL [61] as a guide. Therefore, a closer look at the theory and semantics of pGCL
is presented in order to aid the understanding of the semantics of sGCL. First, the
description of the pGCL syntax and the transformer semantics (proof theory) given in
Section 2.3.2 is reviewed, and where necessary more details are added. This is followed
by a detailed description of the relational semantics (the underlying mathematics) of
pGCL and the relationship between this and the transformer semantics. The healthiness
conditions of pGCL are also discussed, these ensure that all programs written in pGCL
have meanings.

In the following, the state space of pGCL, written S, is a finite set of states that
programs may enter. Also, recall (Section 2.3.2) that the dot notation f.x is used in
pGCL to represent function application, f(x).

5.4 Semantics of pGCL 67

prog wp.prog.Q
Abortion abort 0
Identity skip Q
Assignment x := E Q[x\E]
Composition prog1; prog2 wp.prog1.(wp.prog2.Q)
Cond. choice if G then prog1 [G]×wp.prog1.Q + [¬G]×wp.prog2.Q

else prog2 fi
Nondet. choice prog1 u prog2 wp.prog1.Q u wp.prog2.Q
Probability prog1 p⊕ prog2 p∗wp.prog1.Q + (1−p)∗wp.prog2.Q
While-loop do G→ body od (FX · [G]×wp.body.X + [¬G]×Q)

x is a program variable; E is an expression in the program variables; prog1 and prog2 are
probabilistic programs; G is a Boolean-valued expression in the program variables; p is a constant
probability in [0, 1]; and Q is an expectation.

Given an expression Q, we write Q[x\E] to mean expression Q in which free occurrences of x
have been replaced by expression E. F is the least fixed point operator w.r.t the ordering ≤
between expectations.

Scalar multiplication ∗, multiplication ×, addition +, subtraction −, minimum, u, and the com-
parison (such as ≤ and <) between expectations are defined by the usual point-wise extension of
these operators as they apply to the real numbers. Multiplication and scalar multiplication have
the highest precedence, followed by addition, subtraction, minimum and finally the comparison
operators. Operators of equal precedence are evaluated from the left.

[·] is the function that takes a Boolean expression false to 0 and true to 1. For {0, 1} real-
valued functions, operation ≤ means the same as implication over predicates, and × represents
conjunction. Addition over disjoint predicates is equivalent to disjunction.

Figure 5.2: Review of notation and weakest-precondition semantics of pGCL [6]

5.4.1 Syntax review

Recall (Section 2.3.2) that pGCL extends Dijkstra’s Guarded Command Language [21]
to include a probabilistic choice operator p⊕. For example the program fragment x :=
1 p⊕ x := 2 means that x is assigned the value 1 with probability p, and 2 otherwise
(with probability 1 − p). The syntax of pGCL was described in Section 2.3.2 and is
repeated in Figure 5.2 for convenience.

The syntax in pGCL has the usual meaning, but it is worth recalling that abort

represents the program that can do anything, whilst skip represents the program that
does nothing. An interesting feature of pGCL is that conditional choice is actually a
special case of probabilistic choice. The program if pred then prog else prog′ fi can be
re-written as prog [pred]⊕ prog′, where [pred] returns one if predicate pred is true, and
zero otherwise. Therefore any discussion and semantic definition of probabilistic choice
also applies to conditional choice. It is also worth mentioning that the while-loop in
pGCL is a special case of recursion, a more general repetition method. But as recursion
in sGCL is limited to while-loops, there is no reason for a detailed discussion of the more
general recursion available in pGCL. One final shorthand that is used in this thesis is
demonic assignment, x :∈ {expr1, expr2, · · · }, which is interpreted as the demonic choice

5.4 Semantics of pGCL 68

x := expr1 u x := expr2 u · · · .

5.4.2 Transformer semantics

The transformer semantics is the expectation2 based approach for reasoning about pGCL
programs as summarised in Section 2.3.2. A program is considered to transform (the
expected value of) one random variable into another. This section provides a more
formal description of these semantics.

First the space of transformers is defined [61, Definition 1.5.2] as follows:

Definition 5.14. The space of expectations over S is defined

ES := (S → R≥,≤) ,

where the relation ≤ is the pointwise extensions of the normal ≤ ordering in R≥. The
expectation-transformer model for programs is

TS := (ES ← ES,v) ,

where McIver at al. write the functional arrow backwards just to emphasise that such
transformers map final post-expectations to initial pre-expectations, and where the re-
finement order v is derived pointwise from ≤ on ES.

This means that for one program to refine another the following [61, Definition 1.2.1]
needs to hold:

Definition 5.15. A program prog′ is a refinement of a second program prog, written
prog v prog′ when for any post-expectation Q

wp.prog.Q ≤ wp.prog′.Q ,

where ≤ represents the pointwise extension of ≤ between expectations.

It is worth noting at this point that if a program r satisfies α ≤ wp.r.β then for
every pair of distributions ∆0, ∆ in S̄ such that ∆0 can be taken to ∆ by r the following
should hold3 [61, Formula 5.10]:

∑
∆0

α ≤
∑
∆

β . (5.1)

Informally, this means that the expectations must not decrease as execution proceeds.
The transformer semantics of the program constructs is given by the weakest pre-

condition operator as shown in Figure 5.2.
2Also known as quantitative annotations or probabilistic predicates.
3Note that the sum notation is used throughout this definition of pGCL (instead of the integral

notation adopted by McIver et al.) to distinguish it from the integration in the measure theory approach
used in sGCL.

5.4 Semantics of pGCL 69

sublinearity c1 (t.β1) + c2 (t.β2)	 c ≤ t. (c1β1 + c2β2 	 c)

monotonicity β1 ≥ β2 implies t.β1 ≥ t.β2

feasibility t.β ≤ tβ
scaling t. (cβ) ≡ c (t.β)

continuity t. (tβ) ≡ (tβ : B · t.β)

t is a transformer in TS; β, β1 and β2 are expectations in ES; c, c1, c2 are non-negative real
numbers; B is a bounded, ≤-directed subset of ES; and t represents maximum. The symbol 	
represents subtraction in R≥ so that x	 y = (x− y) t 0.

Figure 5.3: Healthiness conditions for pGCL transformers.

Healthiness conditions

The transformer model provides a rich language for specifying probabilistic programs.
However, to enable some nice properties (such as “modular reasoning”4), and to ensure
that all pGCL programs have meanings, the transformer model needs to be restricted
through a set of “healthiness conditions”.

The healthiness conditions required are “sublinearity”, “monotonicity”, “feasibility”,
“scaling” and “continuity”. These are defined in Figure 5.3. McIver et al. show that
if sublinearity holds, then monotonicity, feasibility and scaling also hold (i.e. these
properties are derived from sublinearity) [61, Definition 1.6.2]. Continuity simplifies the
treatment of recursion and enables the proof of the existence of a fixed point [61, Lemma
5.6.8]. Non-negativity of transformers is also an implicit healthiness condition, due to
the restriction to non-negative expectations (see Definition 5.14).

5.4.3 Relational semantics

The relational semantics of pGCL gives a formal mathematical model as a basis to
the language. This model of the language can then be compared to the transformer
semantics to ensure that these two semantics are consistent and provide assurance that
the proof rules are reasonable. The relational semantics of pGCL is described in detail
in this section. First the semantics of deterministic probabilistic programs is defined
and later built on to include non-determinism.

The main idea behind the relational semantics of pGCL is that a program takes an
initial state S to a set of (discrete) probability distributions over the state space. A
set of distributions is used instead of a single distribution to allow for non-determinism.
The distributions are actually sub-distributions as the probabilities may sum to less than
one, allowing for some chance of non-termination.

4McIver et al. use the term modular reasoning to mean that once a property of interest has been
proven for a specific program, this property can be used in subsequent proofs about the program.

5.4 Semantics of pGCL 70

Deterministic relational semantics

For deterministic probabilistic programs a state maps to a single sub-distribution. McIver
et al. [61, Definition 5.1.1] define a distribution5 as:

Definition 5.16. For state space S, the set of sub-distributions over S is

S̄ = {∆ : S → [0, 1] |
∑

∆ ≤ 1} ,

the set of functions from S into the closed interval of reals [0,1] that sum to no more
than one. (McIver et al. write

∑
∆ to abbreviate

∑
s:S ∆.s.)

Note that ∆ is a total function as unreachable final states are mapped to a probability
of 0. A sub-distribution with a probability of 0 for every state represents the abort

program.
McIver et al. [61, Definition 5.1.2] go on to define a complete partial order over

distributions (S̄):

Definition 5.17. For ∆,∆′ ∈ S̄ define

∆ v ∆′ := (∀s : S ·∆.s ≤ ∆′.s)

Thus the least element of S̄ is when every state has a probability of 0 (i.e. the
program with no chance of termination, abort), and S̄ is maximal when the probabilities
sum to one (i.e. a program with certain termination).

Using Definitions 5.16 and 5.17, the space of deterministic probabilistic programs
over S and their refinement order can now be defined [61, Definition 5.1.3]:

Definition 5.18. For state space S the space of deterministic probabilistic programs
over S is defined

DS := (S → S̄,v)

where for programs f , f ′ in S → S̄ McIver et al. define v pointwise:

f v f ′ := (∀s : S · f.s v f ′.s) .

The order v of DS is called the refinement order.

To complete the description of deterministic probabilistic programs it is important
to show how (deterministic) standard programs can be defined in terms of them. McIver
et al. [61, Definition 5.1.4] define a point distribution to assist in this goal:

5From here on distributions will be written to mean sub-distributions unless otherwise stated.

5.4 Semantics of pGCL 71

Definition 5.19. For state s the point distribution at s is defined

s̄.s′ := 1 if (s = s′) else 0 .

Now the embedding of standard programs can be defined [61, Definition 5.1.5] as:

Definition 5.20. For every standard deterministic program f in S → S⊥ there is a
corresponding deterministic program f̄ in DS, defined

f̄ .s := f.s if f.s 6= ⊥
0 otherwise,

where s is the initial state. Equivalently McIver et al. define for arbitrary final state s′

that

f̄ .s.s′ := 1 if f.s = s′

0 otherwise,

noting in both cases that s, s′ are restricted to proper elements (not ⊥).

A few more definitions are useful before the details of non-deterministic probabilistic
programs can be defined. First a random variable is defined as [61, Definition 5.2.1]:

Definition 5.21. A random variable is a non-negative6 real-valued function on the sam-
ple space which, for probabilistic programs, is the state space over which the programs
operate.

Using this definition the expected value of a probability distribution can be defined
[61, Definition 5.2.2]:

Definition 5.22. For bounded random variable α in S → R≥ and distribution ∆ ∈ S̄,
the expected value of α over ∆ is defined

∑
∆

α :=
∑
s:S

(α.s ∗∆.s) .

This definition of expected value provides a means for composing two probabilistic
programs through a Kleisli composition as follows [61, Definition 5.2.3]:

Definition 5.23. For f ∈ DS, (initial) distribution ∆ ∈ S̄ and (final) state s′ ∈ S

McIver et al. define f∗, an element of S̄ → S̄ as follows:
6The non-negative requirement on random variables is to ensure demonic choice can always be clear

about the minimum value.

5.4 Semantics of pGCL 72

f∗.∆.s′ :=
∑
∆

(f.s.s′ds) ,

where (f.s.s′ ds) is interpreted as a function over the state space S such that s ∈ S, i.e.
it is equivalent to λs · f.s.s′.

Non-deterministic relational semantics

The semantics for deterministic programs can now be extended to include demonic non-
determinism, transforming the program space to approximately S → PS̄. However,
the set of distributions a demonic and probabilistic program can result in must be
restricted as not all combinations are appropriate. Therefore the demonic probabilistic
program space is restricted to the subset of distributions that satisfies “non-emptiness”,
“up closure”, “convexity” and “Cauchy closure”. Non-emptiness is trivially defined
as requiring that the program results in at least one distribution, the rest are defined
formally below.

Up closure is defined by McIver et al. [61, Definition 5.4.1] as follows:

Definition 5.24. A subset D of S̄, a set of distributions, is up closed if it is closed
under refinement of its elements – if for all ∆,∆′ ∈ S̄ then

∆ ∈ D and ∆ v ∆′ implies ∆′ ∈ D .

This definition allows refinement to be expressed by reverse subset inclusion of the result
sets, i.e. program r is refined by r′ when r′.s ⊆ r.s (for any initial state s). Note that
the up closure of abort will be the whole of S̄ as all programs refine abort.

Convexity is defined [61, Definition 5.4.2] as follows:

Definition 5.25. A set D of distributions is convex if for every ∆,∆′ ∈ D and proba-
bility p ∈ [0, 1] then ∆ p⊕∆′ ∈ D also.

Requiring convexity allows a demonic choice of two programs to be refined by any
probabilistic choice of the same two programs.

The definition of Cauchy closure requires a geometric interpretation of distributions.
Each distribution ∆ ∈ S̄ is considered a point in finite-dimensional Euclidean space,
where each axis corresponds to an element s of S and the s−coordinate of distribution
∆ is ∆.s. Cauchy closure is then defined [61, Definition 5.4.3] as follows:

Definition 5.26. A set of distributions over S is Cauchy closed if as a subset of N -
dimensional Euclidean space RN it is closed in the usual sense,7 where N is the (finite)
cardinality of S.

7That is, in the sense that it contains its boundary.

5.4 Semantics of pGCL 73

Finally the model for demonic probabilistic programs can be defined [61, Definition
5.4.4] as follows:

Definition 5.27. Given a state space S, the set of non-empty, up closed, convex and
Cauchy closed subsets of S̄ is written CS, and such subsets are said to be probabilistically
closed. It can be shown that CS is a cpo under ⊇.

The cpo of demonic probabilistic programs over S is then defined

HS := (S → CS,v) ,

where for r, r′ ∈ HS

r v r′ := (∀s : S · r.s ⊇ r′.s) .

The relational semantics of the language constructs can now be defined. As an illus-
tration the semantics of probabilistic choice, demonic choice and sequential composition
is given below. For further details the reader is referred to He et al. [43].

Probabilistic choice is defined by McIver et al. [61, Definition 5.4.5] as follows:

Definition 5.28. For two programs r, r′ ∈ HS, their p-probabilistic combination is
defined as

(r p⊕ r′).s := {∆ : r.s; ∆′ : r′.s ·∆ p⊕∆′} .

The relational semantics for demonic choice [61, Definition 5.4.6] is given by finding
all possible probabilistic combinations8 of the programs:

Definition 5.29. For two programs r, r′ ∈ HS, their demonic combination is defined as

(r u r′).s := (∪p : [0, 1] · (r p⊕ r′).s) .

The definition of sequential composition [61, Definition 5.4.7] relies on that of Kleisli
composition (Definition 5.23):

Definition 5.30. For two programs r, r′ ∈ HS, their sequential composition is defined
as

(r; r′).s := {∆ : r.s; f : DS | r′ v f · f∗.∆} .
8Note that this includes the cases where one of the programs is selected with probability one to allow

r u r′ v r, for example.

5.4 Semantics of pGCL 74

where by r′ v f McIver et al. mean (∀s : S · f.s ∈ r′.s), agreeing with the notion of
refinement that would result were DS to be embedded in HS in the obvious way.

Therefore the sequential composition is found by taking all the possible intermediate
distributions ∆ that r can take from s, and finding for each the Kleisli composition of
all the possible deterministic refinements f of r′.

5.4.4 Relating the transformer and relational semantics

To enable consistency checks between the two semantics of pGCL, relationships need
to be defined between them. This section describes the relationship between the trans-
former and relational semantics of pGCL. In particular, the relational-to-transformer
embedding and the transformer-to-relational retraction are given. Consistency of the
transformer model with respect to the relational model is also discussed.

First, consider translating a model from the relational semantics to the transformer
semantics. McIver and Morgan call this relational-to-transformer embedding [61, Defi-
nition 5.5.2] and define it formally as

Definition 5.31. The injection wp ∈ HS → TS is defined

wp.r.β.s := (u∆ : r.s ·
∑
∆

β) ,

for program r ∈ HS, expectation β ∈ ES, and state s ∈ S.

Informally this states that the distribution that minimises the expected value of β is
selected from the set of distributions in HS. Minimum is used due to the demonic
interpretation of non-determinism in pGCL.

The relationship from the transformer model to the relational model requires a little
more work. This is because the transformer model is richer than the relational model
and can thus describe programs that are invalid in the relational model. Therefore, a
set of “regular transformers” is defined [61, Definition 5.5.3], which are exactly those
that correspond to a valid relational model as follows:

Definition 5.32. The set of regular expectations transformers TrS over S is the wp-
image of HS in TS, thus defined as

TrS := {r : HS · wp.r}

Note that TrS is obtained when TS is restricted according to the healthiness conditions
described in Section 5.4.2, i.e. TrS is characterised by the healthiness conditions.

Now the inverse relationship, that of translating a model from transformer semantics
into relational semantics, can be given. McIver and Morgan call this “transformer-to-
relational retraction” [61, Definition 5.7.1], and define it as:

5.5 Concluding remarks 75

Definition 5.33. The function rp ∈ TS → HS is defined

rp.t.s := {∆ : S̄ | (∀β : ES · t.β.s ≤
∑
∆

β)} ,

for transformer t ∈ TS and state s ∈ S.

McIver et al. [61, Section 5.7] show that the two semantics are consistent by proving
two results. The first is that (provided the domain of rp is restricted to TrS) there is a
1–1 correspondence between HS and TrS through the mutual inverses wp and rp. The
second is that the program constructs preserve the relationship between the transformer
and the relational semantics [61, Section 5.8].

5.5 Concluding remarks

The theory presented in this chapter provides the building blocks for developing a
stochastic model-based specification language. The new language, sGCL, is developed
first as a deterministic language, and then the extensions required to make it non-
deterministic are examined.

Measure theory is used throughout the definition of sGCL, whereas the material on
the Giry monad and the Kantorovich metric is used in the definition of the relational
semantics for the non-deterministic version of sGCL (a simpler existing theory can be
used when there is no non-determinism present). The syntax and transformer semantics
of pGCL are closely related to both versions of sGCL, whilst the relational semantics of
pGCL was used as a guide throughout the development of the relational semantics of
the non-deterministic version of sGCL.

Chapter 6

A Deterministic sGCL

McIver and Morgan’s probabilistic language, pGCL [61], only allows discrete probability
distributions to be included in a specification. This chapter presents a new stochastic
GCL (sGCL), based on pGCL, that also allows assignment to continuous probability
distributions (or measures). Demonic non-determinism is excluded from the language
initially in order to simplify the presentation. It is re-introduced in Chapter 7.

The syntax (Section 6.2) and (proof-theoretic) transformer semantics (Section 6.3)
of sGCL are presented. A measure theory representation of sGCL is briefly described
(Section 6.4) and a unique link is provided between measure theory and the transformer
semantics. The notions of refinement that are available in sGCL are also explored
(Section 6.5). The chapter ends (Section 6.6) with a discussion of the language defined
and how it compares to other stochastic specification languages. A working knowledge
of the background material presented in Chapters 2 and 5 is assumed throughout this
chapter.

6.1 Preliminaries

This section introduces the standard terminology and notation to be used throughout
the definition and usage of sGCL. Some limitations of the state space are also set out.

The most important term to introduce is measure. The continuous probability in
sGCL is defined using measure theory, therefore the term measure represents any con-
tinuous probability distribution (represented as a measure). To provide consistency with
text books however, the term distribution is used when a named probability distribution,
for example the uniform distribution, is being discussed. Although both terms represent
a mapping from sets of states to probabilities, distributions tend to be defined in terms
of probability density functions, and measures with respect to measure theory.

The state space of a program or measure will be denoted S. The state space is
restricted to a metric space consisting of any bounded interval [a, b] with standard Eu-

76

6.2 Syntax 77

clidean distance1, where a and b are finite real numbers. The restriction to bounded
intervals allows the consistency of the transformer and relational semantics to be shown,
but at some cost2. The σ-algebra (measurable subsets) of the state space of sGCL will
be taken from the Borel sets of S. This will be denoted as BS throughout. Any sub-
interval of space [a, b] is a Borel set of it, including the empty interval and the interval
[a, b] itself. For programs with multiple variables, the state space may be generalised to
a bounded n-dimensional interval3 (for finite n) such as [a, b]n. Once more its Borel sets
are used for the σ-algebra of this space.

The dot notation is used for function application throughout the definition and
analysis of sGCL programs. This associates to the left so that f.g.x is equivalent to
(f (g)) (x)4. This reduces the number of parentheses needed in the definitions and
proofs, making it easier to parse. Finally the notation := is used to mean is defined to
be.

6.2 Syntax

This section introduces the syntax of sGCL, which is essentially the same as that of
pGCL (Section 5.4.1), but with an extra notation for assignment according to a measure.
In the deterministic version of sGCL, defined in this chapter, demonic non-determinism is
not carried across from pGCL. Some further syntactic sugar and restrictions on recursion
are also discussed.

To assign a value to a (random) variable x according to a continuous probability
measure µ the base syntax is defined:

x :⊕ µ . (6.1)

In the base syntax µ is a measure (Section 5.1) that maps the measurable subsets of the
state space to some probability, formally, µ : BS → [0, 1]. The measure µ must satisfy
all the properties of measures (see Section 5.1). Recall (Section 2.1) that continuous
probability distributions have infinite state spaces as they are defined over the reals.
This means that the probability of any single state is zero, probabilities have to be
defined over subsets of the real line, hence the need for measure theory and the Borel
sets of the state space. Note that µ is total because any unreachable sets of states would
map to a probability of zero.

Measure theory (whilst being the most general approach) is not particularly intuitive
1The distance used for the metric space impacts on the range of values that the Kantorovich metric can

take when finding the distance between two measures (see Appendix D for a more detailed discussion).
2This restriction excludes important distributions such as the exponential and Normal distributions.

However, truncated (where the distribution is cut off at some finite limit and the remaining mass re-
distributed proportionally) versions of these distributions can be used to approximate them if required.

3Also known as a hyperrectangle.
4Note that this is not the same as functional composition, (f ◦ g)(x), which is functional application

that associates to the right.

6.2 Syntax 78

or necessarily familiar to users of the formalism, so some syntactic sugar is also proposed
for stochastic assignments. A first alternative is to define the measure according to its
cumulative distribution function (see Section 2.1.2) and its bounds (using the keyword
cdf):

x :⊕ cdf.F.min.max (6.2)

where x is the (random) variable to be assigned to, F represents the cumulative dis-
tribution function and min and max represent the minimum and maximum values
the distribution can take respectively. This notation has the advantage of being more
commonly used in probability theory and it is also fairly easy to convert to the base
(measure-theoretic) syntax as follows:

µ.[a, b] :=

F.b− F.a , for min ≤ a < b ≤ max

0 , otherwise
(6.3)

where F , min and max are those given in the definition cdf.F.min.max.
In further syntactic sugar, a library of commonly used probability measures could

be provided and declared as follows:

x :⊕ distId.params (6.4)

where distId is a unique identifier for the distribution and params represents the param-
eters the distribution requires. For example the Normal distribution could be defined as
N.µ.σ and the exponential distribution could be defined as exp.λ. These would then be
converted to their measure theoretic definitions for analysis etc. It is not intended that
a full library of measures be defined in this thesis, although some definitions may be
given and used as shorthand for convenience in examples or the case study (Chapter 8).

At this point a discussion about recursion is required. The complexity of extending
the state space to closed intervals of real numbers presents two interesting problems for
recursion. The first issue is a problem with proving the continuity of recursion (thus
allowing nested recursions). It is not possible to show in general that the limit of a
sequence of continuous functions is continuous, for a state space of real numbers. In fact
the following counterexample demonstrates this is not the case

fn.x =

0 if x ≤ 0

n ∗ x if 0 < x < 1
n

1 if x ≥ 1
n

.

As n approaches infinity, the value of 1
n approaches zero, therefore x ≤ 0 holds when x

is zero as well as x ≥ 1
n . This means that the value of the limiting function at zero can

be either zero or one, but nothing in between, thus creating a discontinuity. Therefore

6.3 Transformer Semantics 79

recursion breaks a required healthiness condition of the language (see Section 6.3.1). The
second issue relates to the fact that the state space has to be compact and as such is
limited to closed intervals of the real space. An infinite loop has the potential to produce
measures that break this. Consider, for example a fundamental theorem of statistics,
the central limit theorem. This states that the sum of a sequence of independent and
identically distributed distributions tends to a Normal distribution as the sequence tends
to infinite length. The Normal distribution is not restricted to finite real numbers and
as such is not allowed in sGCL. However, it would be easy to write a recursive program
that returns the sum of an infinite sequence of independent and identically distributed
distributions.

The resolution to these two problems is to restrict recursion in sGCL to finite (tail)
recursion5. This makes the while-loop a base syntax construct for sGCL. The finiteness
checks for while-loops are not built into sGCL, it is up to a user of the language to
ensure that a loop terminates in a finite number of iterations in order for the sGCL
analysis to be valid. In practice, finiteness would be proved using a loop variant that is
initially finite and is guaranteed to decrease each iteration.

The syntax and transformer semantics of a deterministic sGCL is summarised in
Figure 6.1. Recall (Section 5.4.1) that conditional choice is a special case of probabilistic
choice, where p is a predicate [pred].

6.3 Transformer Semantics

The transformer semantics of sGCL is based on that defined for pGCL (as described
in Section 5.4.2). This section discusses how the transformer semantics of pGCL are
changed to make them appropriate for the new language, a deterministic sGCL.

The first important change is to the expectation space ES (Definition 5.14), as this
now needs to work over continuous probability measures. This now needs to transform
a measurable space into another measurable space, thus including a σ-algebra for each
of the state spaces as follows:

Definition 6.1. The space of expectations over state space S is defined

ES := (S → R≥,≤) ,

where the relation ≤ is the pointwise extension of the normal ≤ ordering in R≥. The
Borel sets BS and BR≥ of the spaces S and R≥ respectively provide the σ-algebras to
complete these measurable spaces. The expectation-transformer model for programs is

TS := (ES ← ES,v) ,

where the refinement order v is derived pointwise from ≤ on ES.
5Kozen [54] has a similar restriction to finite recursion in his probabilistic PDL.

6.3 Transformer Semantics 80

prog wp.prog.Q
Abortion abort 0
Identity skip Q
Assignment x := E Q[x\E]
Stoch. assignment x :⊕ µ

∫
µ

Q
Composition prog1; prog2 wp.prog1.(wp.prog2.Q)
Cond. choice if G then prog1 [G]×wp.prog1.Q + [¬G]×wp.prog2.Q

else prog2 fi
Probability prog1 p⊕ prog2 p∗wp.prog1.Q + (1−p)∗wp.prog2.Q
While-loop do G→ body od (FX · [G]×wp.body.X + [¬G]×Q)

x is a program variable; E is a measurable function over the program variables; µ is a continuous
probability measure; prog1 and prog2 are stochastic programs; G is a predicate over the program
variables that results in a measurable set; p is a constant probability in [0, 1]; and Q is an
expectation.

Given an expression Q, the meaning of Q[x\E] is the expression Q in which free occurrences of
x have been replaced by expression E. F is the least fixed point operator w.r.t the ordering ≤
between expectations. Note that the while-loop is required to terminate in a finite number of
iterations.

Scalar multiplication ∗, multiplication ×, addition +, subtraction −, and the comparison (such as
≤ and <) between expectations are defined by the usual point-wise extension of these operators
as they apply to the real numbers. Multiplication and scalar multiplication have the highest
precedence, followed by addition, subtraction, and finally the comparison operators. Operators
of equal precedence are evaluated from the left.

[·] is the function that takes a Boolean expression false to 0 and true to 1. For {0, 1} real-
valued functions, operation ≤ means the same as implication over predicates, and × represents
conjunction. Addition over disjoint predicates is equivalent to disjunction.

Figure 6.1: Syntax and weakest pre-condition semantics of deterministic sGCL

Note that because the state space is infinite, the expectations must be bounded above
by some finite real number [61].

Similarly the comparison of expectations needs to change for continuous measures
to use Lebesgue integration (Section 5.1). A program r satisfies α ≤ wp.r.β if for every
pair of measures µ, µ′ ∈ S̄ where r takes µ to µ′ the following holds:∫

µ
α ≤

∫
µ′
β . (6.5)

where
∫
µ β is used as shorthand for the Lebesgue integral

∫
S β dµ.

The semantics of the new stochastic assignment construct (x :⊕ µ) also needs to be
defined. Therefore, the greatest pre-expectation semantics of stochastic assignment is
defined as follows:

wp. (x :⊕ µ) .Q :=
∫
µ
Q (6.6)

where x is the variable being assigned to, µ represents a probability measure with state

6.3 Transformer Semantics 81

space S, and Q represents the post-expectation of interest. Intuitively this gives the
expected value of the random variable Q with respect to the probability measure µ over
the state space S. Note that where the state space S is made up of several variables (not
just x) the integral

∫
µQ is a partial integral with respect to x. Therefore the integration

could result in an expression in terms of the other state variables instead of a constant
value.

The transformer semantics of stochastic assignment and the other constructs is sum-
marised in Figure 6.1 for convenience. Recall that demonic choice has been removed
from this summary to create a deterministic sGCL.

The last definition required for the transformer semantics is that of the refinement
ordering. This is defined as follows:

Definition 6.2. A program prog′ is a refinement of a second program prog, written
prog v prog′ when for any post-expectation Q

wp.prog.Q ≤ wp.prog′.Q ,

where ≤ represents the pointwise extension of ≤ between expectations.

Intuitively, refinement can occur when there is some chance of non-termination (i.e. the
probability of the state space S is less than one). A program prog′ refines another prog
when prog′ reduces the chance of non-termination, but doesn’t reduce the probability
of any other outcome occurring.

6.3.1 Healthiness of the transformer semantics

Before defining the relational semantics of a deterministic sGCL, it is important to san-
ity check (through a set of healthiness conditions) the transformer semantics presented
here. The first property to show is measurability, that every program results in a measur-
able greatest pre-expectation when given a measurable post-expectation. Without this
property sequential composition would not be possible as the greatest pre-expectation
of the latter program becomes the post-expectation for the former (see Figure 6.1). The
second property to show is continuity of the transformers, defined formally in the usual
way in Definition 6.3 below

Definition 6.3. An expectation transformer wp.prog is boundedly continuous iff the
following holds

wp.prog. (tB) ≡ (tQ : B · wp.prog.Q) ,

where B is a ≤-directed and bounded subset of ES, such that tB exists.

Continuity facilitates reasoning about loops using fixed-points. Transformers also need
to be non-negative

6.3 Transformer Semantics 82

wp.prog.Q ≥ 0 whenever Q ≥ 0 ,

and linear

wp.prog.(aα+ bβ) = a ∗ wp.prog.α+ b ∗ wp.prog.β ,

for expectations α, β and reals a, b. These two conditions together enable a unique link
between the transformer semantics and measure theory (see Section 6.4).

The rest of this section is dedicated to demonstrating that the properties of measur-
ability, continuity, non-negativity and linearity hold for all of the program constructs
defined in Figure 6.1.

Measurability

Most of the program constructs trivially transform measurable functions into measurable
functions using established rules about measurable functions [Chapter 3, Section 5][72].
However some of the program constructs require extra restrictions.

The transformer wp.abort.Q transforms any Q to the measurable function that maps
every state to zero. Therefore abortion trivially respects measurability. Identity also
trivially respects measurability as wp.skip.Q results in Q for any measurable function
Q.

In order for assignment to respect measurability a further restriction is required.
The transformer wp. (x := E) .Q results in Q[x\E], i.e. the function Q where all free
occurrences of x have been replaced by E. This only describes a measurable function for
measurable Q if the expression E is also a measurable function. In practice, this means
that E can be all the standard functions such as addition, multiplication of variables and
constants as well as more complex functions such as trigonometric functions [72, 24].

Stochastic assignment trivially preserves measurability when Q is only a function
of x in wp.(x : ⊕ µ).Q. In this situation the integral

∫
µQ results in a map from the

state space to a (constant) real number representing the expected value of x under µ.
The situation is more interesting when the state space is made up of several variables
x, y, z, . . . and Q is a function of several of these. For example, consider the program

y :⊕ U.[0, 2];x :⊕ U.[0, 1] ,

where U.[a, b] represents the continuous uniform distribution on interval [a, b]. A prop-
erty of interest may be the probability that x ≤ y, represented by a post-expectation
of [x ≤ y] where [Q] = 1 when Q holds, zero otherwise. Finding the probability x ≤ y

requires the calculation

wp. (y :⊕ U.[0, 2]) . (wp. (x :⊕ U.[0, 1]) .[x ≤ y]) .

6.3 Transformer Semantics 83

Evaluating the transformer on the right gives 0 ∗ [y < 0] + y ∗ [0 ≤ y ≤ 1] + 1 ∗ [y > 1],
which is clearly a function of y6. But is it measurable? In this case it is because all of
the sets involving y are measurable and y itself is measurable.

In the general case, stochastic assignment respects measurability for measurable Q
due to the construction of the Lebesgue integral and the fact that the limit of a sequence
of measurable functions is also measurable [72].

Sequential composition of two programs, prog1; prog2, trivially respects measura-
bility as long as its constituent programs prog1 and prog2 do. If this is the case, the
transformer wp.prog2.Q will result in some measurable function, say R, when Q is mea-
surable. The transformer wp.prog1.R then has the measurable function R as its input,
which is transformed into a further measurable function (through prog1) as required.

The probabilistic choice of two programs prog1 p⊕ prog2 satisfies measurability as
long as prog1, prog2 do and p is a measurable function from S to [0, 1]. This is because
the product and sum of measurable functions is also measurable. Conditional choice is
a special case of probabilistic choice where p = [G] for some predicate G. Conditional
choice then also respects measurability as long as G represents a measurable set (and
hence ¬G does as the complement of a measurable set is also measurable). Any inequal-
ity, e.g. f(x) ≤ α for some real number α and measurable function f over variable x,
produces a measurable set.

When recursion is unfolded a sequence of functions is obtained, where the limit of the
functions is the least-fixed point of the recursion. If the elements of the recursive function
are measurable (e.g. the body and the guard [G] in a while-loop), then each function
in this sequence will also be measurable by the measurability of sequential composition
and the fact that the sum of measurable functions is also measurable. Finally, the limit
of a sequence of measurable functions is also measurable [72], therefore the least-fixed
point of the recursion will be measurable and thus recursion (and while-loops as a special
case) respect measurability for some measurable expectation Q.

To illustrate the discussion above, consider a counter example of a program respect-
ing measurability. Assume that conditional choice does not require that the predicate G
describes a measurable set. In this situation it is possible to write a program that results
in a non-measurable greatest pre-expectation for some post-expectation as follows

if G then x :⊕ 0̄ else x :⊕ 1̄ ,

where ā represents the point distribution at a. Consider a post-expectation Q = [x ≤ 0]
that returns one for input less than or equal to zero, and zero otherwise. The greatest
pre-expectation for post-expectation Q is

6Note that if the left side is evaluated on post-expectation 0 ∗ [y < 0] + y ∗ [0 ≤ y ≤ 1] + 1 ∗ [y > 1],
the probability 0.75 is obtained as expected.

6.3 Transformer Semantics 84

[G] ∗ wp. (x :⊕ 0̄) .[x ≤ 0] + [¬G] ∗ wp. (x :⊕ 1̄) .[x ≤ 0]
= [G] ∗ 1 + [¬G] ∗ 0
= [G] ,

but [G] is not measurable. Therefore G has to represent a measurable set for conditional
choice to respect measurability.

Continuity

The continuity of each of the program constructs is demonstrated in full in Appendix C.
These proofs are discussed here, most are straightforward but others require a more
complex argument.

Abortion is trivially continuous (Lemma C.1) because abort has the same effect
irrespective of the expectation. Identity is also trivially continuous (Lemma C.2) because
skip leaves the expectation unchanged, and thus the maximum of a set of expectations.

Assignment is continuous because an assignment operation simply transforms the
current state to any other valid state. As the ordering of the expectations is defined for
any state, updating a state will not change the ordering of the expectations, and hence
the supremum will not be changed under assignment. A similar argument follows for
stochastic assignment, which is reinforced by the monotone convergence theorem [72] as
shown in Lemma C.3.

The sequential composition of two programs prog1; prog2 is continuous as long as
its constituent programs prog1, prog2 are (Lemma C.4), following a similar argument
to that presented for measurability. The proof for the continuity of probabilistic choice
is a bit more involved (Lemma C.5), relying on the fact that addition is continuous.
However, continuity holds as long as both of the programs involved in the probabilistic
choice are continuous (Lemma C.5). Conditional choice is also continuous, as a special
case of probabilistic choice where the probability p is [G] for some valid condition G.

Finally, consider the continuity of recursion. This is not possible to prove for recur-
sion in general (see Section 6.2). However, it is possible to show that a finite while-loop
is continuous as follows:

Lemma 6.4. A finite loop do G → body od is continuous when the program body is
continuous, i.e.

wp. (do G→ body od) . (tB) ≡ (tQ : B · wp. (do G→ body od) .Q) ,

where B is a ≤-directed and bounded subset of ES, such that tB exists.

Proof. The proof follows from unfolding the definition of the loop, based on the fact
that a finite loop terminates within n iterations for some finite n:

6.3 Transformer Semantics 85

wp. (do G→ body od) . (tB)
≡ unfolding (up to n iterations)

[¬G] ∗ (tB)
+ [G] ∗ wp.body. ([¬G] ∗ (tB))
+ [G] ∗ wp.body. ([G] ∗ wp.body. ([¬G] ∗ (tB)))
+ . . .

+ ([G] ∗ wp.body)n . ([¬G] ∗ (tB))
≡ G not dependent on Q

(tQ : B · [¬G] ∗Q)
+ [G] ∗ wp.body. (tQ : B · [¬G] ∗Q)
+ [G] ∗ wp.body. ([G] ∗ wp.body. (tQ : B · [¬G] ∗Q))
+ . . .

+ ([G] ∗ wp.body)n . (tQ : B · [¬G] ∗Q)
≡ body and sequential composition continuous, G not dependent on Q

(tQ : B · [¬G] ∗Q)
+ (tQ : B · [G] ∗ wp.body. ([¬G] ∗Q))
+ (tQ : B · [G] ∗ wp.body. ([G] ∗ wp.body. ([¬G] ∗Q)))
+ . . .

+ (tQ : B · ([G] ∗ wp.body)n . ([¬G] ∗Q))
≡ addition is continuoustQ : B ·

[¬G] ∗Q

+ [G] ∗ wp.body. ([¬G] ∗Q)
+ [G] ∗ wp.body. ([G] ∗ wp.body. ([¬G] ∗Q))
+ . . .

+ ([G] ∗ wp.body)n . ([¬G] ∗Q)

≡ (tQ : B · wp. (do G→ body od) .Q) folding (up to n iterations)

where ([G] ∗ wp.body)n represents n nested applications of [G] ∗ wp.body. For example,
([G] ∗ wp.body)2 .X is interpreted as [G] ∗ wp.body. ([G] ∗ wp.body.X).

As recursion in sGCL is restricted to finite while-loops this is sufficient.

Non-negativity

The program constructs of sGCL are examined to show that each transforms non-
negative expectations to non-negative expectations. In most cases this is trivially true.

Abortion is trivially non-negative as wp.abort.Q takes all states to zero regardless of
Q. Identity is also trivially non-negative whenever Q is non-negative as the expectation
is unchanged by the skip program.

6.3 Transformer Semantics 86

Both the standard and stochastic assignment transformers are non-negative for any
Q that takes any valid state to a non-negative real (i.e. for any non-negative Q), because
an assignment operation simply transforms the current state to any other valid state.

The sequential composition of two non-negative programs prog1, prog2 is non-negative.
The transformer wp.prog2.Q results in some non-negative function R for any non-
negative Q. This then forms the post-expectation for prog1 and therefore

wp.(prog1; prog2).Q = wp.prog1.(wp.prog2.Q) = wp.prog1.R

is non-negative because R is non-negative.
The probabilistic choice of non-negative programs prog1, prog2 is also non-negative.

The transformer

wp.(prog1 p⊕ prog2).Q = p ∗ wp.prog1.Q+ (1− p) ∗ wp.prog2.Q

results in the sum of two non-negative functions, because p can only take values in
[0, 1] therefore both p and 1 − p must be non-negative. The sum of two non-negative
functions, and therefore probabilistic choice, is non-negative. Conditional choice is a
special case of probabilistic choice where only the values zero and one are possible for
p, so non-negativity trivially holds for conditional choice as well.

Unfolding recursion produces a sequence of non-negative functions, where the limit of
this sequence of functions is the least fixed point of the recursion. The limit of a sequence
of non-negative functions is also a non-negative function, therefore recursion respects
non-negativity. Consider the while-loop as a special case of recursion. The transformer
semantics, (FX · [G] ∗ wp.body.X + [¬G] ∗Q), of a while-loop for some non-negative Q
is unfolded as follows:

0
≤ [¬G] ∗Q Q > 0, [¬G] ∈ {0, 1}
≤ unfolding

[¬G] ∗Q
+ [G] ∗ wp.body. ([¬G] ∗Q)

≤ unfolding

[¬G] ∗Q
+ [G] ∗ wp.body. ([¬G] ∗Q)
+ [G] ∗ wp.body. ([G] ∗ wp.body. ([¬G] ∗Q))

≤ . . . unfolding

It can be seen that each unfolding step is greater than or equal to the first, which is
non-negative when Q is non-negative. Therefore the limit of this sequence of functions
must be greater than or equal to zero.

6.3 Transformer Semantics 87

Linearity

The linearity of each of the program constructs is proved in full in Appendix C. The
results are summarised here. Most of the program constructs are easily shown to be
linear, but recursion requires more thought.

Abortion is trivially linear (Lemma C.6) because abort takes any expectation to zero
and any linear combination of zeroes is also zero. It is also easy to show that identity is
linear (Lemma C.7) due to the fact that expectations are unchanged by skip.

It is straightforward to show that assignment according to some expression is linear
(Lemma C.8). This is because the substitution of a variable with a given expression
distributes over addition. Stochastic assignment is trivially linear (Lemma C.9) because
Lebesgue integration is linear.

For the sequential composition prog1; prog2, the linearity argument follows as per
the previous healthiness conditions as long as prog1 and prog2 are linear (Lemma C.10).
Likewise, the probabilistic choice of two programs is linear if its constituent programs
are linear due to some simple algebra (Lemma C.11). Conditional choice is also linear,
as a special case of probabilistic choice where the probability p is [G] for some valid
condition G.

Showing the linearity of recursion in general is hard, but it is possible to show that
a finite while-loop is linear as follows:

Lemma 6.5. A finite loop do G → body od is linear when the program body is linear,
i.e.

wp. (do G→ body od) . (aα+ bβ) = a ∗ wp. (do G→ body od) .α
+ b ∗ wp. (do G→ body od) .β ,

for expectations α, β, reals a, b and linear programs prog1, prog2.

Proof. The proof follows from unfolding the definition of the loop, based on the fact
that a finite loop terminates within n iterations for some finite n:

wp. (do G→ body od) . (aα+ bβ)
≡ unfolding (up to n iterations)

[¬G] ∗ (aα+ bβ)
+ [G] ∗ wp.body. ([¬G] ∗ (aα+ bβ))
+ [G] ∗ wp.body. ([G] ∗ wp.body. ([¬G] ∗ (aα+ bβ)))
+ . . .

+ ([G] ∗ wp.body)n . ([¬G] ∗ (aα+ bβ))

6.3 Transformer Semantics 88

≡ simple algebra

a ∗ [¬G] ∗ α+ b ∗ [¬G] ∗ β
+ [G] ∗ wp.body. (a ∗ [¬G] ∗ α+ b ∗ [¬G] ∗ β)
+ [G] ∗ wp.body. ([G] ∗ wp.body. (a ∗ [¬G] ∗ α+ b ∗ [¬G] ∗ β))
+ . . .

+ ([G] ∗ wp.body)n . (a ∗ [¬G] ∗ α+ b ∗ [¬G] ∗ β)
≡ body and sequential composition linear

a ∗ [¬G] ∗ α
+ b ∗ [¬G] ∗ β
+ a ∗ [G] ∗ wp.body. ([¬G] ∗ α)
+ b ∗ [G] ∗ wp.body. ([¬G] ∗ β)
+ a ∗ [G] ∗ wp.body. ([G] ∗ wp.body. ([¬G] ∗ α))
+ b ∗ [G] ∗ wp.body. ([G] ∗ wp.body. ([¬G] ∗ β))
+ . . .

+ a ∗ ([G] ∗ wp.body)n . ([¬G] ∗ α)
+ b ∗ ([G] ∗ wp.body)n . ([¬G] ∗ β)

≡ simple algebra

a ∗

[¬G] ∗ α

+ [G] ∗ wp.body. ([¬G] ∗ α)
+ [G] ∗ wp.body. ([G] ∗ wp.body. ([¬G] ∗ α))
+ . . .

+ ([G] ∗ wp.body)n . ([¬G] ∗ α)

+ b ∗

[¬G] ∗ β

+ [G] ∗ wp.body. ([¬G] ∗ β)
+ [G] ∗ wp.body. ([G] ∗ wp.body. ([¬G] ∗ β))
+ . . .

+ ([G] ∗ wp.body)n . ([¬G] ∗ β)

≡ folding (up to n iterations)

a ∗ wp. (do G→ body od) .α+ b ∗ wp. (do G→ body od) .β

where ([G] ∗ wp.body)n represents n nested applications of [G] ∗ wp.body. For example,
([G] ∗ wp.body)2 .X is interpreted as [G] ∗ wp.body. ([G] ∗ wp.body.X).

As with continuity, this is sufficient because recursion is restricted to finite while-loops
in sGCL.

6.4 Relational Semantics 89

6.4 Relational Semantics

A full relational semantics is not provided for a deterministic sGCL7. Instead, the “Riesz
representation theorem” (Theorem 6.9) is used to demonstrate a unique relationship ex-
ists between the transformer semantics and measure theory. Therefore, the general form
(and refinement ordering) of the relational semantics is described briefly, before provid-
ing the details of how the Riesz representation theorem links this to the transformer
semantics. The refinement ordering is included because it is sometimes easier to reason
about refinement in terms of measures instead of in terms of programs. The consistency
of the relational refinement ordering with respect to the transformer refinement ordering
is also proved.

The main idea behind the relational semantics is that a program takes an initial
state to a probability measure over the state space. Sub-probability measures, where
the total probability defined may be less than one, can also be used to allow for some
chance of non-termination. Unlike pGCL, a probability measure (distribution) in sGCL
is continuous, not discrete.

The definition of a continuous measure8 requires the use of measure theory (Sec-
tion 5.1). Recall (Section 6.1) that BS , the Borel sets of the state space S, will be used
as the σ-algebra of the measure space. The Borel sets represent the measurable subsets
of the state space. A measure is thus defined as follows:

Definition 6.6. For state space S, the set of sub-probability measures over S is

S̄ = {µ : BS → [0, 1] | µ.∅ = 0 ∧ countably-additive.µ},

the set of functions from BS into the closed interval of reals [0,1] that are countably
additive and assign zero probability to empty sets.

Countable additivity is given the standard meaning in measure theory (Section 5.1) –
for any set A1, ..., An of mutually disjoint subsets of BS , µ.(

⋃
iAi) = Σiµ.Ai must hold.

Note that Definition 6.6 does not explicitly restrict the probability of obtaining any
value in state space S to less than one – this is implicit in the map µ : BS → [0, 1] as BS ,
being a σ-algebra, will contain the union of all the measurable sets of S within itself.
This definition therefore gives the possibility for non-termination when the largest set
in BS maps to a value less than one. Finally note that µ is a total function from BS , any
unreachable sets of states are mapped to zero probability, and as with pGCL a measure
that maps every element of BS to 0 represents the abort program.

For the purposes of refinement (discussed in detail in Section 6.5), the ordering over
measures is now considered. This is similar to that of pGCL (Definition 5.17), but

7This is partly because the consistency proofs would be complex, but mainly because the Riesz
representation theorem provides an alternative, and simpler, approach.

8The term “(probability) measures” will also encompass sub-probability measures unless otherwise
specified

6.4 Relational Semantics 90

needs some adjustment as now the probabilities of sets of states need to be compared
(as individual states have zero probability):

Definition 6.7. For µ, µ′ ∈ S̄ define

µ v µ′ := (∀a ∈ BS · µ.a ≤ µ′.a) ,

where BS represents the Borel sets of the state space S.

This ordering essentially means that a measure µ′ is only greater than another µ if the
(graph of the) pdf (see Section 2.1.2) of µ′ is everywhere greater than that of µ.

Some example pdfs are given in Figure 6.2 to illustrate how measure ordering works.
The base measure (mu 1) in this example behaves like a uniform distribution over [0, 1]
for half of the time, and like abort the rest of the time. The measure (mu 2) that is being
compared to the base measure varies in each graph to illustrate different situations. The
first two graphs, (a) and (b), demonstrate that the similarity of the shape of the pdfs is
not important as long as the two lines do not cross and all the pdfs integrate to no more
than one. In both of these cases mu 2 is strictly greater than mu 1, as the line of mu 2
is above that of mu 1 for all values of x. Graph (c) gives an example where no ordering
can be determined because the lines of the pdfs cross. Finally graph (d) shows that the
two measures can range over different values and still have a defined ordering (as long
as the domain of one measure is a superset of the other).

Measures form a complete partial order where the least element of S̄ is when every
measurable subset of the state space has zero probability (i.e. abort), and S̄ is maximal
when the pdf integrates to one (i.e. the maximal set of BS maps to one).

From Definitions 6.6 and 6.7, the space of deterministic stochastic programs over S
and their refinement order can now be defined:

Definition 6.8. For state space S the space of deterministic stochastic programs over
S is defined

DS := (S → S̄,v)

where v is defined pointwise for programs f , f ′ in S → S̄ as:

f v f ′ := (∀s : S · f.s v f ′.s) .

The order v of DS is called the refinement order.

6.4.1 Linking the transformer and relational semantics

A unique link is now shown to exist between the measures described above and the
transformers described in Section 6.3 using the Riesz representation theorem. This
states that [72, Chapter 13, 4.23]:

6.4 Relational Semantics 91

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

(a) Mu 2 greater than mu 1

x

f(
x)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

(b) Mu 2 greater than mu 1

x

f(
x)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

(c) No ordering

x

f(
x)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

(d) Mu 2 greater than mu 1

x

f(
x)

Figure 6.2: Examples of measure ordering: mu 1 (solid line); mu 2 (dashed line)

Theorem 6.9. Let X be a locally compact Hausdorff space and I a positive linear
functional on Cc(X). There is a unique Borel regular measure µ on X such that for all
f ∈ Cc(X)

I(f) =
∫
µ
f ,

where Cc(X) is the space of continuous real-valued functions with compact support.

Notice that the requirement of compact support causes issues if measures are allowed
to range over the entire real line9. For example, consider a measure µ that is defined on
[0,∞) and the post-expectation [x > a] where x takes a value according to µ and a is a
constant real number. This post-expectation returns one at infinity, not zero, therefore

9A function with compact support approaches zero as its input approaches infinity.

6.4 Relational Semantics 92

this function does not have compact support. This is why the restriction to measures
over compact intervals has been enforced, otherwise a unique link between measures
and the transformer semantics cannot be shown using the Riesz representation theorem
(and may not even be possible to prove at all).

The other conditions of the theorem are also preserved. In Section 6.3.1 it was shown
that linearity and non-negativity were preserved by the program constructs of sGCL.
This satisfies the requirement of positive linear functionals. The state space of measures
and expectations in sGCL is taken to be the real numbers, which is trivially a locally
compact Hausdorff space. Finally, when X is a metric space (which trivially holds for
real numbers), any finite Borel measure is regular [72]. All probability measures are
finite, therefore this condition is satisfied by the measures used in sGCL.

Therefore, applying the Riesz representation theorem to the transformer semantics
provides a unique representation of deterministic sGCL programs in measure theory.

The Riesz representation theorem can now be used to show that the transformer
(Definition 6.2) and relational (Definition 6.7) definitions of refinement are equivalent.
The equivalence is shown by proving each direction of the bi-implication separately. The
first lemma and proof (Lemma 6.10) shows that a valid refinement in the transformer
model is a valid refinement in the relational model.

Lemma 6.10. For sGCL programs prog, prog′ such that

prog v prog′ ,

there exist two unique measures µ, µ′ that correspond to prog and prog′ respectively
and

µ v µ′ .

Proof. The proof follows using the Riesz representation theorem and by taking the post-
expectation Q to be an indicator function over an arbitrary Borel set of the state space
A:

prog v prog′

=⇒ wp.prog.Q ≤ wp.prog′.Q Definition 6.2, arbitrary Q ∈ TS

=⇒
∫
µ
Q ≤

∫
µ′
Q Riesz representation theorem (Theorem 6.9)

=⇒
∫
µ
[x ∈ A] ≤

∫
µ′

[x ∈ A] choose Q to be [x ∈ A] for arbitrary A ∈ BS

=⇒ µ.A ≤ µ′.A Lebesgue integration

The other direction (Lemma 6.11) shows that a valid refinement in the relational
model is a valid refinement in the transformer model as follows:

6.4 Relational Semantics 93

Lemma 6.11. For measures µ, µ′ such that

µ v µ′ ,

the corresponding programs prog and prog′ (to µ and µ′ respectively) are such that

prog v prog′ .

Proof. The proof follows by defining the difference µδ of µ′ and µ as µδ.A := µ′.A−µ.A
for all A ∈ BS (for state space S). By its definition and Definition 6.7, the value of µδ
must be non-negative for all A ∈ BS . The proof then proceeds for arbitrary Q ∈ TS
and s ∈ S as follows:

wp.prog.Q.s

≡
∫
µ
Q Riesz representation theorem (Theorem 6.9)

≤
∫
µ
Q+

∫
µδ

Q definition of µδ and ∀A ∈ BS · µδ.A ≥ 0

≡
∫
µ+µδ

Q linearity of integration

≡
∫
µ′
Q definition of µδ

≡ wp.prog′.Q.s Riesz representation theorem (Theorem 6.9)

The equivalence of the two definitions of refinement then follows from Lemmas 6.10
and 6.11:

Lemma 6.12. For sGCL programs prog, prog′ such that

prog v prog′ ,

iff there exist two unique measures µ, µ′ that correspond to prog and prog′ respectively
and

µ v µ′ .

Proof. Follows directly from Lemmas 6.10 and 6.11

The equivalence of these two definitions allows the most suitable definition to be used
for a given refinement proof. Some refinements are easier to show using the transformer
definition, whilst others are easier using the relational definition. This is illustrated in
the case study in Section 8.4.2.

6.5 Refinement Notions 94

6.5 Refinement Notions

In addition to the inherent refinement ordering in the definition of (deterministic) sGCL,
a second notion of data refinement is also possible. This is particularly interesting for
a language that includes both probabilistic choice and continuous probability distribu-
tions. A specification made up of a probabilistic choice statement could be refined by
some expression over a continuous probability distribution that more closely represents
the implementation. These two notions of refinement are explored in more detail below.
Examples are used to illustrate each and some interesting issues are discussed.

6.5.1 Reducing non-termination

The ordering between probability distributions was discussed in some detail in Sec-
tion 7.2.1. It is briefly revisited here for completeness. The idea behind the refine-
ment ordering between continuous probability distributions is that these can be sub-
distributions, where the total probability defined is less than one. The remaining prob-
ability represents the chance of the program not terminating. A refined program would
have a lower chance of non-termination, thus having more of the probability allocated
to valid states. However, the refined program is not allowed to have a lower chance
of achieving an observation than its specification. This was defined formally in Defini-
tion 6.7. Graphically, this means that the pdf of the refining program cannot, at any
state value, be lower than that of its specification. This was illustrated in Figure 6.2 (a
more detailed explanation of these graphs can be found in Section 7.2.1).

To illustrate this notion of refinement, consider a simple program that assigns a
value from a (truncated) Normal distribution10 ninety percent of the time, but fails to
terminate otherwise

x :⊕ N.0.1 0.9⊕ abort .

Such a program may represent, for example, the error of a sensor reading where the
sensor concerned fails completely 10% percent of the time.

This could be refined by a program that assigns a value from the same truncated
Normal distribution ninety nine percent of the time

x :⊕ N.0.1 0.99⊕ abort ,

representing a more reliable sensor that still produces an error according to a standard
Normal distribution, but only fails completely 1% of the time.

However, it could not be refined by the program that assigns a value from a uniform
10The notation N.µ.σ is used to represent the Normal distribution with mean µ and standard deviation

σ. It is assumed for compactness reasons that the distribution is truncated at some large, i.e. greater
than one, but finite value. The details of the truncation are irrelevant for the purposes of this illustration,
however.

6.5 Refinement Notions 95

distribution11 over [−1, 1] ninety nine percent of the time

x :⊕ U.[−1, 1] 0.99⊕ abort ,

because this reduces the probability of obtaining values that are not in [−1, 1].

6.5.2 Data refinement

Data refinement is also a very useful technique for designing and refining computer
systems. It allows a designer to capture the essence of a program without having to know
the exact data structures that will be used in the implementation. The details of the data
structures to be used in the implementation can be included in formal refinements of
the program. For example, a set of objects in which duplication and order is important
may be represented abstractly by a list. In the actual implementation however, this
data could be stored in an array, a linked list or something more complex. This thesis
uses the term data refinement in a broader sense, as per McIver and Morgan [61]. They
state that one datatype is refined by another if the second can replace the first in any
program without detection, where only functional properties may be detected.

In a probabilistic or stochastic program there are some interesting opportunities for
data refinement, as was illustrated by the steam boiler case study in pGCL [62]. In this
study the steam boiler specification is the very abstract program

skip p⊕ abort ,

that either works as intended (skip) with some probability, or fails (abort). The refine-
ment steps then prove what the reliability of the regulator components must be in order
to satisfy the specification.

Adding continuous probability distributions to the language provides further op-
portunities for data refinement. In sGCL a discrete probabilistic choice could be data
refined by expressions over continuous probability distributions. For example, the ab-
stract program

skip 0.9⊕ abort

represents a system that performs as expected with probability 0.9, and fails otherwise.
This could be refined by a more concrete program such as

11The notation U.[a, b] is used to represent the uniform distribution over the interval [a, b].

6.6 Discussion 96

x :⊕ U.[0, 1];

if x > 0.9 then

abort

fi

The refinement above assigns a value according to a uniform distribution over [0, 1],
if the value is greater than 0.9 (which occurs with probability 0.1, as required for a
valid refinement) the program aborts. This could represent the water level in a tank,
for example, where anything over 0.9 is dangerously high. Data refinement in sGCL is
discussed further in the case study (Chapter 8).

6.6 Discussion

This section discusses the strengths and limitations of sGCL as presented above and
contrasts it with similar stochastic formalisms.

The main strength of sGCL is that it allows a variable to be assigned according
to an arbitrary measure, not just the exponential distribution. However, as discussed
in Section 6.4.1, the use of such a general construct raises semantic problems with the
consequence that the state space has to be restricted to closed intervals. Therefore the
sGCL language can not even assign a variable according to an exponential distribution.
Although a truncated exponential distribution could be used as an approximation, this
nullifies the memoryless properties of the exponential distribution. Note that the state
space restriction is the reason why flash filestores are not revisited in the sGCL case
study (Chapter 8), as neither of the distributions (exponential and Fréchet) occurring
in flash filestores are defined over a closed interval. There are still many interesting
problems that can be analysed, however, that are not covered by typical (Markov chain
based) stochastic extensions of formal methods. One of these areas involves modelling
the errors of sensor readings, which realistically could never be infinite anyway (unless
the sensor does not return a value, which can be modelled by non-termination). In
particular, with multiple sensor readings, sGCL provides the opportunity to analyse
how these readings relate to each other in an elegant way. This allows, for example, the
analysis of the frequency of some action that is triggered when two sensor readings drift
too far apart. This example is explored in more detail in the case study (Chapter 8). A
second restriction of sGCL is that infinite loops are not permitted. This disallows the
typical (Markov chain based) analysis found in stochastic formal methods. However, as
the exponential distribution can not be modelled in sGCL anyway, this further restriction
has minimal impact. Nonetheless, it is an interesting opportunity for further work to
determine if there exist other approaches to the semantics where these restrictions are
not required.

6.6 Discussion 97

The sGCL language was designed based on three main influences: Kozen’s pioneering
research on probabilistic languages [54]; Giry’s research on stochastic monads [31]; and
McIver and Morgan’s probabilistic version of GCL [63, 61]. Therefore sGCL shares
similarities with all of the above. The differences are briefly discussed below.

Kozen’s probabilistic propositional dynamic logic (PDL) [54] shares many similar-
ities with sGCL, particularly in the transformer semantics presented above. However,
whilst his semantics covers continuous probability as well as discrete probability, the
emphasis is on discrete probability. This means that the stochastic assignment operator
(as given in sGCL) is not really discussed by Kozen. There is no expectation trans-
former definition for stochastic assignment and there are no examples or case studies
showing its use in probabilistic PDL. The syntax of sGCL (particularly for probabilistic
choice, which Kozen writes as a linear combination of programs) is considered to be
more readable than that of probabilistic PDL. Kozen also does not prove the preserva-
tion of the healthiness conditions in his transformer semantics, although the properties
of linearity and positivity are stated to hold in probabilistic PDL. But most importantly,
Kozen does not consider sub-probability measures at all, as such no refinement ordering
is given in probabilistic PDL. This is an interesting extension to Kozen’s work that is
discussed in more detail in Section 6.5 and Chapter 8.

Giry [31] describes a mathematical foundation for the sequential composition of
measures based on monads. This stochastic powerdomain forms the basis of a relational
semantics for stochastic programs. The deterministic version of sGCL does not make use
of Giry’s research, as it uses the Riesz representation theorem for the relational semantics
instead. However, this is used in the non-deterministic version of sGCL described in
Chapter 7 to define the Kleisli composition of sGCL programs. Giry’s research does
not consider an expectation transformer approach to complement the mathematical
foundations.

McIver and Morgan [61] mainly focus on discrete probability through a probabilistic
choice operator. Their language pGCL forms the basis of the sGCL language described
above. However, in a paper on partial correctness Morgan and McIver [63] also discuss
the extension to continuous probability. The approach proposed by them uses an alter-
native representation of distributions to measure theory. The alternative representation
is essentially a discrete approximation known as “valuations” [25]. This alternative is not
at all well known and as such was considered to be even more inaccessible to engineers
than measure theory. Also, the body of research available for the relational seman-
tics, such as the Riesz representation theorem (Theorem 6.9) and Giry’s [31] stochastic
powerdomain, rely on the use of measure theory to represent distributions.

Chapter 7

Towards a Non-Deterministic

sGCL

Chapter 6 described a deterministic model-based specification language, sGCL, that
allows a variable to be assigned according to a continuous probability measure. This
chapter extends that definition of sGCL to include non-determinism. The extensions
to the syntax, transformer semantics and healthiness conditions are straightforward
(Section 7.1). Therefore, the main focus of the chapter is on defining a full relational
semantics (Section 7.2) and on the challenge of proving the consistency between this and
the transformer semantics (Section 7.3). The additional refinement notion available in a
non-deterministic sGCL is explored in Section 7.4. The chapter ends with a discussion
of the language extensions presented (Section 7.5).

This chapter assumes familiarity with the material on measure theory and domain
theory presented in Chapter 5, and with the deterministic sGCL presented in Chapter 6.

7.1 Syntax and Transformer Semantics

The syntax and transformer semantics do not significantly change from the deterministic
version of sGCL. The only difference is that (finite) demonic choice (as defined in pGCL
[61]) is included. Note that the demonic choice is restricted to finite demonic choice, i.e.
demonic choice over a finite state space. This is important because, even in standard
programs, demonic choice over an infinite state space may break continuity [61, Section
8.4]. Recall (Section 6.3.1) that continuity is an important healthiness condition for
sGCL.

The syntax and transformer semantics of a non-deterministic sGCL is summarised
in Figure 7.1.

98

7.1 Syntax and Transformer Semantics 99

prog wp.prog.Q
Abortion abort 0
Identity skip Q
Assignment x := E Q[x\E]
Stoch. assignment x :⊕ µ

∫
µ

Q
Composition prog1; prog2 wp.prog1.(wp.prog2.Q)
Cond. choice if G then prog1 [G]×wp.prog1.Q + [¬G]×wp.prog2.Q

else prog2 fi
Nondet. choice prog1 u prog2 wp.prog1.Q u wp.prog2.Q
Probability prog1 p⊕ prog2 p∗wp.prog1.Q + (1−p)∗wp.prog2.Q
While-loop do G→ body od (FX · [G]×wp.body.X + [¬G]×Q)

x is a program variable; E is a measurable function over the program variables; µ is a continu-
ous probability measure; prog1 and prog2 are probabilistic programs; G is a predicate over the
program variables that results in a measurable set; p is a constant probability in [0, 1]; and Q is
an expectation.

Given an expression Q, the meaning of Q[x\E] is the expression Q in which free occurrences of
x have been replaced by expression E. F is the least fixed point operator w.r.t the ordering ≤
between expectations. Note that the while-loop is required to terminate in a finite number of
iterations.

Scalar multiplication ∗, multiplication ×, addition +, subtraction −, minimum u, and the com-
parison (such as ≤ and <) between expectations are defined by the usual point-wise extension of
these operators as they apply to the real numbers. Multiplication and scalar multiplication have
the highest precedence, followed by addition, subtraction, minimum and finally the comparison
operators. Operators of equal precedence are evaluated from the left.

[·] is the function that takes a Boolean expression false to 0 and true to 1. For {0, 1} real-
valued functions, operation ≤ means the same as implication over predicates, and × represents
conjunction. Addition over disjoint predicates is equivalent to disjunction.

Figure 7.1: Syntax and weakest pre-condition semantics of non-deterministic sGCL

7.1.1 Healthiness conditions

When demonic choice is included in a language, linearity no longer holds. Therefore
the healthiness conditions defined in Section 6.3.1 need to be revisited. However, the
weaker condition of sublinearity can be used instead. Therefore, non-deterministic sGCL
programs have the healthiness conditions of measurability, continuity, non-negativity
and sublinearity. Sublinearity is defined below in Definition 7.1, the other conditions
are as defined in Section 6.3.1.

Definition 7.1. An expectation transformer wp.prog is sublinear iff for all α, β ∈ ES
and a, b, c ∈ R≥ the following holds

wp.prog. (aα+ aβ 	 c) ≥ a ∗ wp.prog.α+ b ∗ wp.prog.β 	 c .

where x	 y means (x− y) t 0.

The condition of sublinearity is also in pGCL. Therefore it is only required to show that
the new stochastic assignment operator respects this new condition. This is shown in

7.2 Relational Semantics 100

Lemma 7.2 below.

Lemma 7.2. The program (x :⊕ µ) is sublinear, i.e.

wp. (x :⊕ µ) . (aα+ bβ 	 c) ≥ a ∗ wp. (x :⊕ µ) .α+ b ∗ wp. (x :⊕ µ) .β 	 c ,

for expectations α, β and non-negative reals a, b, c.

Proof.

wp. (x :⊕ µ) . (aα+ bβ 	 c)

≡
∫
µ

(aα+ bβ 	 c) wp definition

≡ a

∫
µ
α+ b

∫
µ
β 	 c

∫
µ

1 linearity and monotonicity of Lebesgue integration

≥ a

∫
µ
α+ b

∫
µ
β 	 c µ a sub-probability measure implies

∫
µ

1 ≤ 1

≡ a ∗ wp. (x :⊕ µ) .α+ b ∗ wp. (x :⊕ µ) .β 	 c wp definition

It is also important to check that the additional construct of demonic choice respects
the healthiness conditions. Non-negativity and continuity are conditions of pGCL, so
demonic choice has already been shown to respect these [61]. Measurability is a new
condition for sGCL however, therefore this needs to be shown for demonic choice. It is
trivially true from the properties of measurable functions. The demonic choice of two
measurable functions is measurable because the (pointwise) minimum of two measurable
functions is also measurable [12, Chapter 3, Section 26].

7.2 Relational Semantics

The full relational semantics of sGCL needs to be defined when non-determinism is
introduced as the Riesz representation function no longer provides a 1-1 link between
the transformer and relational semantics. This section starts by defining a relational
semantics for deterministic sGCL, before building on those definitions to define the
relational semantics of a non-deterministic sGCL.

7.2.1 Deterministic relational semantics

Recall (Section 6.4) that the main idea behind the relational semantics is that a program
takes an initial state to a sub-probability measure over the state space (Definition 6.6):

Definition. For state space S, the set of sub-probability measures over S is

S̄ = {µ : BS → [0, 1] | µ.∅ = 0 ∧ countably-additive.µ},

7.2 Relational Semantics 101

the set of functions from BS into the closed interval of reals [0,1] that are countably
additive and assign zero probability to empty sets.

Recall also, that the state space of measures, using the refinement ordering given in
Definition 6.7, is:

Definition. For state space S the space of deterministic stochastic programs over S is
defined

DS := (S → S̄,v)

where v is defined pointwise for programs f , f ′ in S → S̄ as:

f v f ′ := (∀s : S · f.s v f ′.s) .

The order v of DS is called the refinement order.

The rest of the relational semantics for a non-deterministic sGCL builds on these defi-
nitions.

For the purposes of representing standard (non-probabilistic) programs within sGCL,
the point distribution needs to be defined. Such a distribution selects a single value with
probability one (see Definitions 5.19 and 5.20). The Dirac measure (Section 5.1) is used
to define a stochastic point distribution as follows:

Definition 7.3. For state s ∈ S and measurable set A ∈ BS the stochastic point
distribution is defined

s̄.A := 1 if s ∈ A else 0 .

For example, a standard state of 2 would be written as 2̄, where 2̄.A returns one when
2 is an element of the set A and zero otherwise.

The embedding of standard programs in sGCL is given using the stochastic point
distribution as follows:

Definition 7.4. For every standard deterministic program f in S → S⊥ there is a
corresponding stochastic deterministic program f̄ in DS, defined

f̄ .s := f.s if f.s 6= ⊥
0 otherwise,

where s is the initial state. Equivalently the embedding is defined for an arbitrary
measurable subset A ∈ BS , as

f̄ .s.A := 1 if f.s ∈ A
0 otherwise,

7.2 Relational Semantics 102

noting in both cases that s is restricted to proper elements (not ⊥).

It is also of interest to be able to embed discrete probability distributions into the
continuous probability model. Consider a discrete probability distribution ∆ such that
∆.s1 = p1, ∆.s2 = p2, . . . , ∆.sn = pn. This can be represented in sGCL by using the
point distribution definition above as follows:

Definition 7.5. For discrete distribution ∆ such that ∆.s1 = p1, ∆.s2 = p2, . . . ,
∆.sn = pn and measurable set A ∈ BS the continuous equivalent ∆ is defined:

∆.A =
n∑
i=1

pi ∗ si.A ,

where si ∈ S, pi ∈ [0, 1] and
∑

i pi ≤ 1.

This conversion can then be used to transform discrete probabilistic programs into con-
tinuous ones in the same way as for standard programs above.

Now consider the the definition of random variables, expectation and Kleisli compo-
sition for continuous probability measures.

The expected value of a continuous probability measure can be defined as:

Definition 7.6. For random variable α in S → R≥ and measure µ ∈ S̄, the expected
value of α over µ is defined ∫

µ
α :=

∫
S
α dµ .

The Kleisli product allows the composition of two stochastic programs. This involves
lifting a stochastic program to allow it to be applied to a measure instead of a single
state as shown in Definition 7.7. This is based on the Giry monad (see Section 5.2) for
converting measures to states and vice versa.

Definition 7.7. For f ∈ DS, (initial) measure µ ∈ S̄ and (final) set of states A ∈ BS
define f∗, an element of S̄ → S̄, as follows:

f∗.µ.A :=
∫
µ

(f.s.A ds) ,

where (f.s.A ds) is interpreted as a function over the state space S such that s ∈ S, i.e.
it is equivalent to λs · f.s.A.

The Kleisli composition of g after f can then be given by g∗ ◦ f (as shown in Defi-
nition 5.9). This forms the basis for the definition of sequential composition given in
Definition 7.15.

7.2 Relational Semantics 103

7.2.2 Non-deterministic relational semantics

The main idea behind the non-deterministic relational semantics is that a program takes
an initial state to a set of probability measures over the state space. A set of measures is
used instead of a single measure to provide non-determinism. The program space then
becomes approximately S → PS̄, where S̄ is as defined in Definition 6.6. However, the
set of measures a demonic and stochastic program can result in must be restricted as
not all combinations are appropriate.

The demonic stochastic program space is restricted to the subset of measures that
satisfies “non-emptiness”, “up closure”, “convexity” and “compactness”. Note that
these are almost the same restrictions as were found in pGCL, but Cauchy closure has
been replaced by the stronger condition of compactness. Their definitions also differ
somewhat to reflect the change to continuous measures.

Non-emptiness can be trivially defined as requiring that the program results in at
least one measure, the rest are defined formally below.

Up closure allows refinement to be expressed by reverse subset inclusion of the result
sets, i.e. program r is refined by r′ when r′.s ⊆ r.s (for any initial state s). The formal
definition of up-closure is similar to that found in pGCL (Definition 5.24). However,
this now uses continuous measures and therefore follows the refinement ordering for
continuous probability measures as given in Definition 6.7. To highlight these differences
(and to be consistent with the rest of sGCL) µ represents a (continuous) measure in the
following definition:

Definition 7.8. A subset D of S̄, a set of measures, is up closed if it is closed under
refinement of its elements – if for all µ, µ′ ∈ S̄ then

µ ∈ D and µ v µ′ implies µ′ ∈ D .

Note that the up closure of abort will be the whole of S̄ as all programs refine abort.
Convexity allows a demonic choice of two programs to be refined by any probabilistic

choice of the same two programs. Again the formal definition of convexity is close to
the one in pGCL (Definition 5.25). However, more clarity is needed as to what is meant
by a probabilistic combination of two (continuous) measures. This is formally defined
as follows:

Definition 7.9. For two measures µ, µ′ ∈ S̄, their p-probabilistic combination is defined
for set of states A ∈ BS as

(µ p⊕ µ′).A := p ∗ µ.A+ (1− p) ∗ µ′.A .

Based on this definition of probabilistic choice, convexity can be defined as follows:

7.2 Relational Semantics 104

Definition 7.10. A set D of measures is convex if for every µ, µ′ ∈ D and probability
p ∈ [0, 1] then µ p⊕ µ′ ∈ D also.

Cauchy closure is related to continuity, which is an important property for show-
ing the existence of fixed points of recursion. For continuous probability, the stronger
property of compactness is required because of the infinite nature of the state space.
Compactness requires the set to be bounded as well as (Cauchy) closed. The definition
of Cauchy closure, and hence compactness, is more complex than that found in pGCL
(Definition 5.26). It is no longer possible to convert to Euclidean space and require that
it is closed in that sense as continuous probability measures have infinite state spaces,
and thus infinite axes would be required. Instead measures need to be compared in an
alternative metric space. According to van Breugel [82] and Doberkat [22] the most suit-
able metric space for modelling stochastic non-determinism is the Kantorovich metric
space. Recall (Section 5.3) the definition of the Kantorovich metric:

Definition. Given any two Borel probability measures µ and ν on separable metric
space (S, d), the Kantorovich distance between µ and ν is defined by

K(µ, ν) := sup
{∣∣∣∣∫

S
fdµ−

∫
S
fdν

∣∣∣∣ · ||f || ≤ 1
}
,

where || · || is the Lipschitz semi-norm defined by ||f || = supx 6=y
|f.x−f.y|
d(x,y) for a function

f : S → R.

Compactness is thus defined for continuous probability according to the Kantorovich
metric:

Definition 7.11. A set of measures over S is compact if they are compact under the
Kantorovich metric.

Note that Section 5.3 also provides a more intuitive duality of the Kantorovich met-
ric (Definition 5.12) and a simplification for measures over the real numbers (Defini-
tion 5.13). These alternative definitions may be used instead when determining compact-
ness where appropriate, but care must be taken when using them with sub-probability
(see Appendix D.2). An important result is that the set of all measures defined over a
closed interval of reals is compact under the Kantorovich metric [82].

It is now possible to define the model for demonic stochastic programs as follows:

Definition 7.12. Given a state space S, the set of non-empty, up closed, convex and
compact subsets of S̄ is written CS, and such subsets are said to be stochastically closed.
It can be shown that CS is a cpo under ⊇.

The cpo of demonic probabilistic programs over S is then defined

HS := (S → CS,v) ,

7.2 Relational Semantics 105

where for r, r′ ∈ HS

r v r′ := (∀s : S · r.s ⊇ r′.s) .

The final aspect of the relational semantics for a non-deterministic sGCL is the def-
inition of its operators such as probabilistic choice, demonic choice and sequential com-
position. In general the definitions are similar to those found in pGCL (Section 5.4.3),
but continuous measures are now used.

The probabilistic choice between two non-deterministic sGCL programs is defined
as follows:

Definition 7.13. For two programs r, r′ ∈ HS, their p-probabilistic combination is
defined as

(r p⊕ r′).s := {µ : r.s;µ′ : r′.s · µ p⊕ µ′} .

Note that this uses the definition of the probabilistic combination of two continuous
probability measures as given in Definition 7.9.

The demonic choice is found by taking all possible probabilistic combinations1 of the
programs:

Definition 7.14. For two programs r, r′ ∈ HS, their demonic combination is defined as

(r u r′).s := (∪p : [0, 1] · (r p⊕ r′).s) .

Sequential composition requires the use of Kleisli composition (Definition 7.7), and
is defined as:

Definition 7.15. For two programs r, r′ ∈ HS, their sequential composition is defined
as

(r; r′).s := {µ : r.s; f : DS | r′ v f · f∗.µ} .

where r′ v f means (∀s : S · f.s ∈ r′.s).

Therefore the sequential composition is found by taking all the possible intermediate
measures µ that r can take from s, and finding for each the Kleisli composition of all
the possible deterministic refinements f of r′.

1As with pGCL this includes the cases where one of the programs is selected with probability one to
allow r u r′ v r, for example.

7.3 Relating the Transformer and Relational Semantics 106

7.3 Relating the Transformer and Relational Semantics

This section describes the relationship between the transformer and relational semantics
of a non-deterministic sGCL. This differs somewhat to that of the deterministic sGCL (as
presented in Section 6.4.1) because the Riesz representation theorem no longer applies.
Instead the relationship between the semantics is defined in a similar way to that found
in pGCL (Section 5.4.4), by providing a relational-to-transformer embedding and a
transformer-to-relational retraction. The challenge of showing that the transformer
semantics is consistent with the relational model is also discussed.

The relational to transformer embedding (translation from the relational model to
the transformer model) is defined as follows:

Definition 7.16. The injection wp ∈ HS → TS is defined

wp.r.β.s := (uµ : r.s ·
∫
µ
β) ,

for program r ∈ HS, expectation β ∈ ES, and state s ∈ S.

Informally this states that the relational to transformer embedding of a program
selects the measure from the set of measures which satisfies Formula 6.5 and min-
imises the pre-expectation. Minimum is used due to the demonic interpretation of
non-determinism.

Before defining the relationship from the the transformer model to the relational
model, it is necessary to defined the set of regular transformers, i.e. those that corre-
spond to a valid relational representation:

Definition 7.17. The set of regular expectations transformers TrS over S is the wp-
image of HS in TS, thus defined as

TrS := {r : HS · wp.r}

Note that TrS is characterised by the set of healthiness conditions described in Sec-
tion 7.1.1.

The transformer to relational retraction (translation from the transformer model to
the relational model) is now defined as follows:

Definition 7.18. The function rp ∈ TS → HS is defined

rp.t.s := {µ : S̄ | (∀β : ES · t.β.s ≤
∫
µ
β)} ,

for transformer t ∈ TS and state s ∈ S.

7.3 Relating the Transformer and Relational Semantics 107

7.3.1 Proving the consistency of the two semantics

It is not sufficient to just define the transformer and relational semantics and how
they are related. Proving the consistency of the semantics is vital for a model-based
specification language. This is particularly challenging when the language combines
both continuous probability and demonic non-determinism. This section summarises:
the proof effort required; the difficulties of completing these proofs; and the progress
made towards the proof goals. A more detailed discussion of the challenges and issues
can be found in Appendix D.

The main step required to prove the consistency of the transformer and relational
semantics is to show that there is a 1–1 correspondence between TrS and HS through
the mutual inverses wp and rp. This involves showing that both wp and rp are injec-
tions. It also requires that applying wp to a program in HS results in a transformer
that is both sub-linear and continuous. Another important step is to show that all of
the program constructs preserve the relationship between the two semantics. For ex-
ample, if a probabilistic choice were carried out in the relational semantics, it needs
to be shown that the result is equivalent to doing the same probabilistic choice in the
equivalent transformer representation of the system. Finally, it needs to be shown that
the representation of each program construct in the relational semantics respects the
conditions of non-emptiness, up-closure, convexity and compactness. This essentially
means that the result of applying a program construct to arguments in HS, must also
be in HS.

In order to complete the proofs described above, a significant amount of work is
required as they are considerably challenging. In some cases, the proofs require fur-
ther development of the mathematical theory upon which the semantics is based (such
development is beyond the scope of this thesis). In particular, the proofs required to
demonstrate the 1–1 correspondence between TrS and HS through the mutual inverses
wp and rp are especially challenging. In pGCL, the proofs that wp and rp are injections
rely on the use of a representation of discrete distributions in Euclidean space. This al-
lows the re-use of fundamental geometric results. Ideally, the same approach should be
taken for sGCL. However, there is no analogous way of representing continuous measures
in Euclidean space. An approximation approach for this purpose has been explored (see
Appendix D). For the wp injection this approach looks promising. However, the ap-
proach results in further challenges relating to compactness that need to be resolved. For
example, it is not a trivial problem to translate compactness arguments from the Kan-
torovich metric space to the approximation representation in Euclidean metric space.
These issues are discussed in more detail in Appendix D. The compactness issues also
affect the proof that applying wp to a program in HS results in a transformer that is
both sub-linear and continuous. Whilst the remaining proofs have not been explored
fully, it is anticipated that these proofs will be less complex as they neither require finite
state spaces nor use the conversion to Euclidean space in their pGCL equivalents.

7.4 Refinement Notions 108

In spite of the challenges described above, significant progress has been made to-
wards showing that wp is an injection. Two approaches to this proof are discussed
in Appendix D. The first gets blocked by the problem of converting compactness ar-
guments between the Kantorovich and Euclidean metric spaces. However, the second
approach promises a resolution to the problem, although some of the detail still needs
to be completed. Some progress has also been made on the rp injection proof. However,
the compactness issue encountered in this proof still needs to be resolved. Alternative
strategies could involve a different approximation technique for representing continuous
measures in Euclidean space or an alternate metric space to the Kantorovich metric
space for measures.

Therefore, proving the consistency of a non-deterministic version of sGCL presents a
considerable challenge. Significant further research is required to develop the language
to the level required of a model-based specification language.

7.4 Refinement Notions

In addition to the refinement notions explored in the deterministic version of sGCL
(Sections 6.5.1 and 6.5.2), non-determinism allows a further notion of refinement. A set
of measures can be refined by a subset of those measures, thus reducing the amount
of non-determinism. This notion of refinement is explored below using an example to
illustrate it. Some interesting issues are also discussed.

7.4.1 Reducing non-determinism

Refinement between sets of probability measures is a powerful technique for abstracting
and designing software. In the early stages of design the exact measure of a variable
may not be known. Instead, a range of possible measures may be considered. An ab-
stract program of the system could model this lack of knowledge using non-determinism
between the possible options. Later in the development process when more information
is available some of these options may be eliminated from the design. The abstract
program could then be refined with a more concrete program that does not include the
eliminated options. This notion of refinement is given formally in Definition 7.12.

For technical reasons the sets of measures allowed in sGCL must satisfy certain
properties, as was discussed in Section 7.2.2. The property that makes this notion of
refinement particularly interesting is convexity. This states that if two measures are in a
set of measures, then all possible probabilistic combinations of those measures must also
be within it. Thus demonic choice between two measures is defined (Definition 7.14) as
the set of probabilistic combinations of those two measures. Whilst this is essential for
the mathematics, to ensure that the demonic choice of any two measures is defined, it
can be rather counterintuitive.

For example, consider the situation where a component is anticipated to fail accord-

7.4 Refinement Notions 109

ing to a truncated exponential distribution2, but the failure rate is not yet known. One
might expect

x :⊕ exp.1 u x :⊕ exp.3 ,

to provide the set of all exponential distributions with rate parameters between one and
three. However, what it really means is the set of all hyperexponential distributions over
the two exponential distributions

p ∗ exp.1 + (1− p) ∗ exp.3 ,

where p is in [0, 1]. What this means for refinement is that

x :⊕ exp.1 u x :⊕ exp.3 6v x :⊕ exp.2

because exp.2 is not included in the set of measures in the abstract program.
Based on the above one may wish to define the non-determinism over the parameters

themselves as follows3

r :∈ [1, 3]; x :⊕ exp.r .

In theory this program would define the set of exponential distributions whose rate
parameter is between one and three. It would also include all the possible hyperexpo-
nential distributions between these distributions. However, the expression r :∈ [1, 3] is
an example of infinite demonic choice, which is not allowed in sGCL4.

A valid (but not as elegant) alternative is to provide a finite set of rate parameters
between the two possible extremes at some suitable level of granularity. For example,
the rate may be chosen from the set {1, 1.1, . . . , 3}, which allows any number between
one and three to the precision of one decimal place, as shown below.

r :∈ {1, 1.1, . . . , 3}; x :⊕ exp.r . (7.1)

The result of this now is the set of all exponential distributions with a rate parame-
ter in {1, 1.1, . . . , 3} plus all the possible hyperexponential distributions between these
distributions.

The set of valid refinements of the program given in Formula 7.1 include the intuitive

x :⊕ exp.1 u x :⊕ exp.2 ,
2The notation exp.λ is used to represent the exponential distribution with a rate parameter of λ. It

is assumed for compactness reasons that the distribution is truncated at some finite value. The details
of the truncation are irrelevant for the purposes of this illustration, however.

3The notation x :∈ X means that x takes any value in the set X. Intervals of real numbers are a
special case of this notation.

4Recall (Section 7.1) that this is because infinite demonic choice breaks the continuity healthiness
condition of sGCL.

7.5 Discussion 110

r :∈ {2, 2.1, . . . , 3}; x :⊕ exp.r ,

and

x :⊕ exp.2 .

However, it also includes less intuitive programs such as

x :⊕ 0.3 ∗ exp.1 + 0.7 ∗ exp.2 ,

a hyperexponential distribution between exp.1 and exp.2.
This is a fascinating trade-off between making the language as generally applicable

as possible and providing intuitive refinements of this nature.

7.5 Discussion

This section discusses the language extension to non-determinism explored above and
contrasts it with other stochastic formalisms.

The main benefit of including non-determinism in a model-based specification lan-
guage is to provide a means of abstraction. It allows key properties of a design to be
analysed whilst enabling other decisions to be delayed. If the properties of interest hold
in spite of the non-determinism included, it allows the implementation to choose between
the options at a later date without invalidating those properties. This interpretation of
non-determinism is known as demonic – the program is guaranteed to operate correctly
in spite of not knowing which direction such decisions will take. The interpretation of
non-determinism in sGCL is demonic.

An alternative interpretation of non-determinism is angelic. This assumes that the
option that gives the best outcome, with respect to the properties of interest, will always
be chosen. This alternative is not explored in sGCL, however McIver and Morgan discuss
this option for pGCL [61, Section 8.5].

As far as the author is aware, this is the first attempt to combine demonic non-
determinism and arbitrary continuous probability distributions in a formal language.
Continuous Time Markov Decision Processes (CTMDPs), which essentially add the op-
tion of non-determinism to CTMCs for the purposes of optimisation (see Section 2.1.4),
are supported by model checkers such as MRMC [51, 52]. However, as with CTMCs,
the continuous probability in CTMDPs is limited to the exponential distribution.

The semantics presented here are mainly based on those found in McIver and Mor-
gan’s pGCL [61]. However, pGCL only covers discrete probability. Therefore, significant
adaptation of the pGCL semantics was required, particularly for the relational seman-
tics. Parts of the relational semantics were inspired by: Giry’s stochastic powerdomain
[31], in particular the Kleisli composition; and van Breugel’s use of the Kantorovich met-

7.5 Discussion 111

ric for analysing the compactness of sets of measures [82]. Neither Giry nor van Breugel
present a proof theory to complement their semantics. Further, Giry does not consider
non-determinism in his semantics either. Finally, there are once more similarities with
Kozen’s early work on developing probabilistic formalisms [53, 54]. However, his re-
search considers probability to be a replacement for non-determinism, not an addition
to it.

Demonstrating the consistency of the transformer and relational semantics of sGCL
proved to be highly challenging. As such there are still unresolved issues on how to com-
plete this proof work. This constitutes a significant area for further research. Although
no contradictions to the consistency proofs have been found, the non-deterministic ver-
sion of sGCL does not satisfy the requirements for a model-based specification language
until these proofs have been completed. Therefore the case study explored in the fol-
lowing chapter focuses on the deterministic features of sGCL as defined and examined
in Chapter 6. Even when these challenges are resolved the non-deterministic version of
sGCL (as per the deterministic version) is limited to distributions over finite intervals,
and recursion is limited to finite while-loops.

Part III

Applying and Evaluating sGCL

112

Chapter 8

Applying sGCL: Patterns and

Pitch

This chapter demonstrates the practical application of sGCL in a two-part case study.
The first part of the case study develops and examines a new design pattern that ad-
dresses the problem of using multiple, drift-prone sensors to obtain a required value.
The fact that these sensors can drift necessitates additional monitoring to traditional
voting techniques. The second part of the case study explores the use of this design
pattern in the analysis of a pitch monitor in an aeroplane, where sensors are known to
drift. Recall (Section 6.6) that the flash filestore case study is not revisited here, due to
the state space restrictions of sGCL.

Both parts of the case study illustrate the power of sGCL in analysing the interaction
between multiple continuous probability distributions. The analysis of such interaction is
much more elegant and powerful in sGCL than it would be in a discrete approximation
of the situation. The opportunities for sGCL refinements in the case study are also
discussed.

The notion of design patterns is introduced in Section 8.1, along with a description
of the design pattern for a monitoring voter. An sGCL model of a monitoring voter
is given and analysed in Section 8.2. The pitch monitor case study is introduced and
analysed in sGCL in Section 8.3. Finally further opportunities for sGCL modelling and
analysis relating to the monitoring voter pattern are discussed in Section 8.4.

8.1 Design Patterns

In software engineering it is desirable to reuse existing designs where possible to reduce
complexity. The use of design patterns [29] is a well established method for recording
and enabling the reuse of design elements that commonly occur. The idea behind de-
sign patterns is a simple one born out of architecture and the common patterns that
occur in buildings. The essence of a design pattern describes a solution to a common

113

8.1 Design Patterns 114

design problem along with possible consequences or required trade-offs associated with
its application.

Patterns describing faults and fault tolerant architectures are of particular interest
because the goal of this thesis is to enable the rigorous analysis and comparison of
approaches for improving dependability. A library of design patterns to describe com-
mon faults and fault tolerance patterns in embedded systems is being developed by the
DESTECS European project1 [13, 70]. Based on the structure of software engineering
patterns [29], the following fields may be used to describe fault tolerance design patterns:

• Name – A meaningful identifier for the pattern.

• Intent – A short statement about what problem the pattern is intended to address
and what it does.

• Also known as – Other well-known names for the pattern.

• Motivation – A scenario that illustrates the use of the pattern in solving the
identified design problem.

• Applicability – What are the situations in which the pattern can be applied and
how can these situations be recognised?

• Structure – A graphical representation of the structural aspects of the pattern,
for example, a UML class diagram.

• Consequences – The trade-offs and results of using the pattern.

• Known uses – Examples of the patterns found in real systems.

• Related patterns – Which other patterns are closely related and how do they
differ?

• Fault assumptions – The fault modes that the pattern is designed to handle.

The DESTECS pattern library includes fault modes such as noise, drift and bit flips.
Noise describes the situation where random errors occur in a sensor reading (usually in
the conversion process from analogue to digital). Drift describes a more systematic error,
where sensor readings diverge from the values they measure over time. In a bit flip fault
the sensor reading may provide a wildly inaccurate value (as opposed to noise where
the error is usually fairly small). The DESTECS pattern library also includes elements
for fault tolerance such as the voter and monitor patterns. The voter pattern describes
the process of combining the inputs from several sensors with the aim of providing a
more reliable reading. The monitor pattern describes the process of monitoring a system

1The EU FP7 project on Design Support and Tooling for Embedded Control Software (Grant Agree-
ment Number: INFSO-ICT-248134), www.destecs.org.

8.1 Design Patterns 115

controller and intervening when it tries to perform an unsafe action. A more detailed
description of the voter and monitor patterns can be found in Appendix F.

The scenario in Section 8.3 requires a combination of the features described in the
voter and monitor patterns. In this situation voting is used to provide a result, but
the sensors (that provide the inputs on which voting takes place) are prone to drift.
Therefore the outputs of the sensors are monitored and if they drift too far apart a
recovery action is taken to reset the voters. The recovery action is considered external
to the monitoring voter as this often requires external intervention (e.g. a pilot levelling
off to reset the attitude sensors, see Section 8.3). A new “monitoring voter” pattern is
described to capture this design. The design pattern for the monitoring voter is detailed
below:

Name

Monitoring voter.

Intent

To produce a single sensor reading from multiple (redundant or diverse) sensor inputs.
Indicates that a reset action is required when the sensor readings diverge with respect
to a given tolerance and reset logic.

Also known as

N/A.

Motivation

Multiple sensor readings are taken to allow for potential failure, noise or drift in sensor
readings. The sensors may be replicated (multiple copies of the same sensor) or diverse
(each sensor has a different design). The voter provides a strategy for combining these
readings aimed at increasing the dependability of the reading. Example strategies in-
clude taking the median result or having a majority vote. The monitoring extension
to the voter pattern applies in the situation where the sensors can drift over time. A
monitor is added to the pattern to provide a strategy for deciding when to trigger a
reset action, for example, when two or more sensors differ from each other by more than
an allowed tolerance.

Applicability

Use the monitoring voter pattern when:

• an accurate sensor reading is required;
• the sensors available are prone to (measurement) errors;

8.1 Design Patterns 116

• the sensors available are prone to drift;
• and a technique for resetting (or recalibrating) the sensors is available2.

Structure

The monitoring voter consists of several components, which are shown diagrammatically
below. The pattern requires two or more sensors, a voter and a monitor. The monitor
tests the level of drift of the sensors. If this is not acceptable, the need for a reset action
is alerted. The voter combines the results from the sensors. The strategy design pattern
[29] can be used to encapsulate the voting and monitoring algorithms. The strategy
pattern essentially encapsulates a family of algorithms and makes them interchangeable.
This would allow different voting and monitoring strategies to be seamlessly explored.

This structure is shown diagrammatically through a UML class and object diagram
in Figure 8.1. The object diagram shows that the monitoring voter holds a reference to
a voter and a monitor object, which in turn have references to the same set of sensors,
for the purposes of voting and monitoring respectively.

Figure 8.1: Class (left) and object (right) diagrams for the monitoring voter pattern

Consequences

The benefit of voting is that a given number of concurrent failures can be tolerated in
a timely manner (without requiring any rollback). However, it is well known that the
expected benefits are often not fully achieved because of common mode failures, caused
by insufficient diversity in the sensors [60]. The monitoring voter adds the benefit of
recovering from adverse drifting of the sensors. However, this is not without cost as it
may require external intervention.

2This may involve some external interaction, such as draining a tank, to achieve.

8.2 The Monitoring Voter in sGCL 117

Known uses

The monitoring voter pattern is found in the aerospace industry in monitoring the pitch
of an aircraft (see Section 8.3).

Related patterns

This pattern is a combination of the voter and monitor patterns from DESTECS pattern
library [13]. The pattern extends the voter pattern by adding drift monitoring to it.
The structure pattern [29] could also be used to encapsulate voting and monitoring
algorithms.

Fault assumptions

This pattern is primarily designed for sensors with (measurement) errors and a fault
mode of drift. The voting aspect of the pattern provides tolerance of errors, and for n
sensors the monitoring logic may provide detection and recovery of independent drift in
up to n sensors (if all n sensors drift at the same rate and in the same direction this
cannot be detected).

In addition voting may provide (for n sensors) tolerance of up to n − 2 sequential
faults (assuming that a sensor is retired once identified as faulty) [58], and detection of
independent (concurrent) faults. These faults are assumed to be value (fault modes that
affect the value of a sensor reading such as bit flips, noise or stuck at x) or omission3

faults.

There is already extensive research on whether voting is a suitable alternative to a
single sensor strategy in terms of both the functionality and the reliability benefits it
provides. For example, Iliasov et al. [42] demonstrate that n-version programming4 is
a valid refinement pattern in Event-B, whilst Laprie et al. [58] analyse the reliability
gains achieved by n-version programming. Therefore the rest of this chapter focuses on
the monitoring aspects of the monitoring voter, and the probability of requiring a reset
action under various circumstances. This aspect can be nicely modelled and analysed
using sGCL.

8.2 The Monitoring Voter in sGCL

In this section the reset logic aspect of the monitoring voter is explored. This logic
determines when a reset of the sensors is required. An sGCL model is created of a simple
monitoring voter scenario and the probability of requiring a reset action is calculated for

3Under the assumption that an omission fault results in an inaccurate (old) value (or detectable error
code) to be communicated for that sensor reading.

4N-version programming [8] is a technique where n versions of a program are created and voting is
used to determine the overall result.

8.2 The Monitoring Voter in sGCL 118

x :⊕ U.[0, 1];
y :⊕ U.[0, 1];

if |x− y| > T then
abort

else
skip

fi

– x, y represent the error in the reading on sensors x and y respectively
– T represents the maximum difference tolerated between the two sensor readings
– |i| represents the absolute value of variable i

Figure 8.2: A monitoring voter with two replicated sensors

various sets of sensors. This forms the basis for analysing the aeroplane pitch monitor
in Section 8.3.

A simple monitoring voter consists of two sensors, a voter and a monitor. The logic
for the monitor in this case is simply to trigger a reset action when the two sensors pro-
vide readings that are different by more than some given tolerance value. A reset action
is an undesirable and costly procedure, therefore the aim is to analyse and minimise the
occurrence of it happening. The sGCL model abstracts away from the timing issues and
only considers a single request for data from the sensors and whether or not that would
trigger a reset action. Each sensor has an associated (continuous) probability distribu-
tion for the error it can provide on the reading. For simplicity, the uniform distribution
is used in the analysis that follows, although sensors following any bounded5 continuous
probability distribution could be analysed in a similar manner.

The first example to be considered has two replicated6 sensors that have a random
error following the uniform distribution on [0, 1] (written U.[0, 1]). This is modelled in
sGCL as shown in Figure 8.2. The situation where a reset action is required is modelled
as the program which aborts, as this is the bad result that needs to be minimised. The
real value being measured is omitted from the model as it does not affect the difference
between the two readings.

To analyse this model in sGCL the post-expectation of interest is simply [true], to
give the probability that a reset action is not triggered. The formal proof follows below:

wp.prog.[true]
≡ definition of prog

wp. (x :⊕ U.[0, 1]; y :⊕ U.[0, 1]; if |x− y| > T then abort else skip fi) .[true]

5The possible values that a random variable of the distribution could take are bounded above and
below by some finite number.

6Note that these sensors are replicated in the sense that they have the same error distribution, but
are assumed to have independent observations from that distribution at all times.

8.2 The Monitoring Voter in sGCL 119

≡ sequential composition

wp. (x :⊕ U.[0, 1]) .(wp. (y :⊕ U.[0, 1]) .
(wp. (if |x− y| > T then abort else skip fi) .[true]))

≡ conditional

wp. (x :⊕ U.[0, 1]) .(wp. (y :⊕ U.[0, 1]) .
([|x− y| > T] ∗ wp.abort.[true] + [¬ (|x− y| > T)] ∗ wp.skip.[true]))

≡ abortion, identity and definition of true

wp. (x :⊕ U.[0, 1]) .(wp. (y :⊕ U.[0, 1]) .
([|x− y| > T] ∗ 0 + [¬ (|x− y| > T)] ∗ 1))

≡ simple algebra

wp. (x :⊕ U.[0, 1]) . (wp. (y :⊕ U.[0, 1]) .[|x− y| ≤ T])
≡ stochastic assignment

wp. (x :⊕ U.[0, 1]) .

(∫
[|x−y|≤T]

dU.[0, 1]

)
≡ integration theory

wp. (x :⊕ U.[0, 1]) .

[x < T] ∗

∫ x+T

0
1 dy

+ [T ≤ x ≤ 1− T] ∗
∫ x+T

x−T
1 dy

+ [x > 1− T] ∗
∫ 1

x−T
1 dy

≡ integration theory and simple algebra

wp. (x :⊕ U.[0, 1]) .

 [x < T] ∗ (x+ T)
+ [T ≤ x ≤ 1− T] ∗ 2T
+ [x > 1− T] ∗ (1 + T − x)

≡ stochastic assignment∫

[x<T]∗(x+T)+[T≤x≤1−T]∗2T+[x>1−T]∗(1+T−x)
dU.[0, 1]

≡ integration theory∫ T

0
1 ∗ (x+ T) dx+

∫ 1−T

T
1 ∗ 2T dx+

∫ 1

1−T
1 ∗ (1 + T − x) dx

≡ integration theory(
T 2

2 + T 2
)

+
(
2T (1− T)− 2T 2

)
+
(

1 + T − 1
2 − (1 + T) (1− T) + (1−T)2

2

)
≡ 2T − T 2 simple algebra

The probability of the two sensors triggering a reset is 1 − 2T + T 2 or (1− T)2. It is
pretty clearly to see that the probability of a reset action decreases as the tolerance
value T increases and vice versa. This is fairly intuitive, but it provides confirmation

8.2 The Monitoring Voter in sGCL 120

x :⊕ U.[−a, a];
y :⊕ U.[−b, b];

if |x− y| > T then
abort

else
skip

fi

– x, y represent the error in the reading on sensors x and y respectively
– a, b represent the maximum errors in the reading on sensors x and y respectively
– T represents the maximum difference tolerated between the two sensor readings
– |i| represents the absolute value of variable i

Figure 8.3: A monitoring voter with two diverse sensors

that the result of the analysis is reasonable.
The second example investigates the probability of a reset action for two diverse

sensors. Each sensor has a different range of possible errors on a given reading. For
simplicity, it is assumed that each sensor is as likely to underestimate a reading as
overestimate. Again the uniform distribution will be used to simplify the calculation,
but the approach is applicable to any bounded continuous probability distribution. The
sGCL model for the diverse sensors is given in Figure 8.3.

The sGCL model of the monitoring voter with two diverse sensors can also be anal-
ysed in sGCL using the post-expectation [true]. However, it is a little more complex
because the result depends on the relationship between the maximum errors of the sensor
readings (a and b) and the tolerance T . The proof follows below:

wp.prog.[true]
≡ definition of prog

wp. (x :⊕ U.[−a, a]; y :⊕ U.[−b, b]; if |x− y| > T then abort else skip fi) .[true]
≡ sequential composition

wp. (x :⊕ U.[−a, a]) .(wp. (y :⊕ U.[−b, b]) .
(wp. (if |x− y| > T then abort else skip fi) .[true]))

≡ conditional

wp. (x :⊕ U.[−a, a]) .(wp. (y :⊕ U.[−b, b]) .
([|x− y| > T] ∗ wp.abort.[true] + [¬ (|x− y| > T)] ∗ wp.skip.[true]))

≡ abortion, identity and definition of true

wp. (x :⊕ U.[−a, a]) .(wp. (y :⊕ U.[−b, b]) .
([|x− y| > T] ∗ 0 + [¬ (|x− y| > T)] ∗ 1))

8.2 The Monitoring Voter in sGCL 121

≡ simple algebra

wp. (x :⊕ U.[−a, a]) . (wp. (y :⊕ U.[−b, b]) .[|x− y| ≤ T])
≡ stochastic assignment

wp. (x :⊕ U.[−a, a]) .

(∫
[|x−y|≤T]

dU.[−b, b]

)
≡ integration theory

wp. (x :⊕ U.[−a, a]) .

[a < b− T] ∗
(

[−a ≤ x ≤ a] ∗
∫ x+T

x−T

1
2b

dy
)

+ [b− T ≤ a ≤ b+ T] ∗

[−a ≤ x < −b+ T] ∗

∫ x+T

−b

1
2b

dy

+ [−b+ T ≤ x ≤ b− T] ∗
∫ x+T

x−T

1
2b

dy

+ [b− T < x ≤ a] ∗
∫ b

x−T

1
2b

dy

+ [a > b+ T] ∗

[−b− T ≤ x < −b+ T] ∗

∫ x+T

−b

1
2b

dy

+ [−b+ T ≤ x ≤ b− T] ∗
∫ x+T

x−T

1
2b

dy

+ [b− T < x ≤ b+ T] ∗
∫ b

x−T

1
2b

dy

≡ integration theory and simple algebra (define β as this post-expectation)

wp. (x :⊕ U.[−a, a]) .

[a < b− T] ∗ 1
2b ∗

(
[−a ≤ x ≤ a] ∗ 2T

)
+ [b− T ≤ a ≤ b+ T] ∗ 1

2b ∗

 [−a ≤ x < −b+ T] ∗ (x+ b+ T)
+ [−b+ T ≤ x ≤ b− T] ∗ 2T
+ [b− T < x ≤ a] ∗ (b+ T − x)

+ [a > b+ T] ∗ 1

2b ∗

 [−b− T ≤ x < −b+ T] ∗ (x+ b+ T)
+ [−b+ T ≤ x ≤ b− T] ∗ 2T
+ [b− T < x ≤ b+ T] ∗ (b+ T − x)

≡

∫
β

dU.[−a, a] stochastic assignment and definition of β above

8.2 The Monitoring Voter in sGCL 122

≡ integration theory and definition of β

[a < b− T] ∗ 1
2b ∗

(∫ a

−a

1
2a
∗ 2T dx

)

+ [b− T ≤ a ≤ b+ T] ∗ 1
2b ∗

∫ −b+T
−a

1
2a
∗ (x+ b+ T) dx

+
∫ b−T

−b+T

1
2a
∗ 2T dx

+
∫ a

b−T

1
2a
∗ (b+ T − x) dx

+ [a > b+ T] ∗ 1
2b ∗

∫ −b+T
−b−T

1
2a
∗ (x+ b+ T) dx

+
∫ b−T

−b+T

1
2a
∗ 2T dx

+
∫ b+T

b−T

1
2a
∗ (b+ T − x) dx

≡ integration theory

[a < b− T] ∗ 1
2b ∗

1
2a ∗ 2T ∗ 2a

+ [b− T ≤ a ≤ b+ T] ∗ 1
2b ∗

1
2a ∗

(−b+T)2

2 + (−b+ T) (b+ T)− a2

2

+a (b+ T)
+ 2T (2b− 2T)
+ a (b+ T)− a2

2 − (b− T) (b+ T)

+ (b−T)2

2

+ [a > b+ T] ∗ 1
2b ∗

1
2a ∗

(−b+T)2

2 + (−b+ T) (b+ T)− (−b−T)2

2

− (−b− T) (b+ T)
+ 2T (2b− 2T)

+ (b+ T)2 − (b+T)2

2 − (b− T) (b+ T) + (b−T)2

2

≡ algebra

[a < b− T] ∗ Tb
+ [b− T ≤ a ≤ b+ T] ∗ 1

4ab ∗
(
−a2 + 2a (b+ T)− (b− T)2

)
+ [a > b+ T] ∗ Ta

The probability of the two sensors triggering a reset is 1 − T
b when a < b − T , 1

4ab ∗
(a+ b− T)2 when b−T ≤ a ≤ b+T , and 1− T

a when a > b+T . Again, the probability of
a reset action decreases as the tolerance value T increases and vice versa. Notice that in
this second example, the value being integrated w.r.t. x is 1

2a , and w.r.t y is 1
2b , instead

of one as in the first example. These come from the probability density functions (pdf)
of the uniform distributions, U.[−a, a] and U.[−b, b], respectively. If the sensors were to
follow different distributions, these values would be replaced by the pdf of the required
distribution.

The probabilities of triggering a reset were analysed for a variety of pairs of sensors
(all following uniform distributions). The results of these analyses are given in Figure 8.4.

8.3 The Aeroplane Pitch Monitor 123

Sensor x Sensor y Reset Probability
U.[0, 1] U.[0, 1] (1− T)2

U.[−1, 1] U.[−1, 1] 1
4 (2− T)2

U.[0, a] U.[0, a] 1
a2 (a− T)2

U.[−a, a] U.[−a, a] 1
4a2 (2a− T)2

U.[0, a] U.[0, b] [a < b] ∗

[a < T] ∗ 1

2ab (b− T)2

+ [b− a < T < a] ∗ 1
2ab

(
(a− T)2 + (b− T)2

)
+ [T < b− a] ∗ 1

2ab (T (T − 4a) + 2ab)

+ [b < a] ∗

[b < T] ∗ 1

2ab (a− T)2

+ [a− b < T < b] ∗ 1
2ab

(
(a− T)2 + (b− T)2

)
+ [T < a− b] ∗ 1

2ab (T (T − 4b) + 2ab)

U.[−a, a] U.[−b, b] [a < b− T] ∗

(
1− T

b

)
+ [b− T ≤ a ≤ b+ T] ∗ 1

4ab ∗ (a+ b− T)2

+ [a > b+ T] ∗
(
1− T

a

)
The notation U.[a, b] stands for the continuous uniform distribution over the interval [a, b]. The
reset probability in the last two cases depends on the relationship between a, b, and T . In these
cases read [pred] ∗ prob to mean the reset probability is equal to prob when pred holds.

Figure 8.4: The probability of triggering a reset action for a variety of sensor pairs

To illustrate these results the reset probability has been plotted against the tolerance
level for a variety of these pairs (see Figure 8.5).

8.3 The Aeroplane Pitch Monitor

This section describes and analyses an application of the monitoring voter, that of a
pitch monitor in an aeroplane [17]. The pitch of an aeroplane is its degree of tilt about
a lateral axis (see Figure 8.6). In order to get an acceptable pitch measurement, diverse
sensors must be used and compared as per the monitoring voter pattern. The scenario
is described in more detail in Section 8.3.1. The pitch monitor is then formally modelled
and analysed in sGCL (Section 8.3.2), building on the abstract analysis of the monitoring
voter in Section 8.2.

8.3.1 Overview of the pitch monitor

The orientation of an aeroplane in three-dimensional space is split into three different
measurements (or attitudes). These are the pitch, roll and yaw, as illustrated7 in Fig-
ure 8.6. Coombes et al. [17] discuss the need to include a “gust alleviation filter”8 within
the flight control system of an aircraft in order to reduce the impact of cross-winds. In
order for the filter to function correctly it requires measurements of the pitch and roll

7The aeroplane attitude diagram was taken from Coombes et al. [17].
8When cross-winds are detected the gust alleviation filter activates special gust-damping flaps.

8.3 The Aeroplane Pitch Monitor 124

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

(a) Both U.[0,1]

T

R
es

et
 P

ro
ba

bi
lit

y

0 1 2 3 4

0.
0

0.
4

0.
8

(b) Both U.[−2,2]

T

R
es

et
 P

ro
ba

bi
lit

y

0.0 1.0 2.0 3.0

0.
0

0.
4

0.
8

(c) U.[0,2] and U.[0,3]

T

R
es

et
 P

ro
ba

bi
lit

y

0 1 2 3 4 5

0.
0

0.
4

0.
8

(d) U.[−2,2] and U.[−3,3]

T

R
es

et
 P

ro
ba

bi
lit

y

Figure 8.5: Probability of a reset action against tolerance for various sensors

of the aeroplane. Whilst the filter itself is not safety critical, because it is placed within
the flight control system it has to be treated as a safety critical component. This means
that the pitch and roll measurements that it acts on have to be “high integrity”9. This
study focuses on the pitch measurements, although a similar discussion could be applied
to the roll measurements.

There are a number of components in the aeroplane that are capable of providing
pitch measurements. One source of pitch data is the “air motion sensor units” (AMSUs),
however these are not considered to be high integrity. A second potential source of pitch
data is to derive it (by integration) from the body rate data (rate of change of pitch,
roll and yaw). Unfortunately, whilst this measurement is considered to be of sufficient
integrity over short periods of time, it is prone to drift over the duration of a flight.

9The exact criteria used to decide whether a measurement is “high integrity” or not is unknown.

8.3 The Aeroplane Pitch Monitor 125

Normal
operation

Triggered
state

diff > tol diff < tol,
time < limit

Latched
state

diff > tol,
time > limit

pilot
reset

Figure 8.6: Aeroplane attitudes and axes (left) and pitch monitor state chart (right)

Finally the “inertial navigation unit” (IN) also provides a low integrity (independent)
source of pitch data.

The chosen solution [17] was to use the pitch data from the AMSUs and check it
against the data from the IN. If these two measurements were found to differ by more
than a given tolerance the system would enter a triggered state. If the measurements
remained out of tolerance of each other for a set time period the system would enter a
latched state, otherwise it would revert back to the normal state (see Figure 8.6). Once
the system was in the latched state the body rate data was used to provide the pitch
data until the pilot performed a manual reset of the AMSUs and IN. This required the
pilot to make the aeroplane level first, and is therefore not a desirable state.

The case study focuses on analysing the probability of the system entering the latched
state and requiring a manual reset. Given a number of safe options for the sensors and
tolerance level, it is desirable to choose that which causes the least inconvenience to the
pilot.

8.3.2 Modelling and analysing the pitch monitor in sGCL

The sGCL model of the pitch monitor focuses on the measurement errors of the sensors
and the resulting state transfers to the triggered and latched states. The timing aspects
are abstracted away into two snapshots of the system state. The system is assumed to
enter the triggered state if the first pair of measurements differ by the given tolerance.
If the subsequent pair of measurements also differ by the given tolerance the system is
assumed to enter the latched state, which is modelled by abort as it is considered an
undesirable event. Figure 8.7 shows the sGCL model of the pitch monitor. The in-line
comments explain how this abstract model links back to the pitch monitor scenario.

Notice the similarity between this model and the sGCL model of the monitoring
voter. It is essentially two instances of the monitoring voter pattern nested within

8.3 The Aeroplane Pitch Monitor 126

x :⊕ U.[−a, a]; % Sensor error for the first AMSU reading
y :⊕ U.[−b, b]; % Sensor error for the first IN reading

if |x− y| > T then % First readings are out of tolerance, enter triggered state
x :⊕ U.[−c, c]; % Sensor error for the second AMSU reading
y :⊕ U.[−d, d]; % Sensor error for the second IN reading

if |x− y| > T then % Second readings are out of tolerance
abort % Enter latched state

else
skip % Revert to normal state

fi

else
skip % Stay in normal state

fi

– x represents the error in the pitch reading for the AMSU
– y represents the error in the pitch reading for the IN
– a represents the maximum error for the AMSU in the normal state
– b represents the maximum error for the IN in the normal state
– c represents the maximum error for the AMSU in the triggered state
– d represents the maximum error for the IN in the triggered state
– T represents the maximum difference tolerated between the AMSU and IN readings

Figure 8.7: Specification of the pitch monitor

each other. This allows the re-use of some of the analysis from the previous section
when finding the probability of entering the latched state. Also note that the error
distributions of the second readings differ from the first. This is to model deterioration
in the accuracy of the sensors. Without this deterioration there would be no benefit in
carrying out a reset action.

As before the sGCL model is analysed by calculating the probability of the model
successfully terminating, using the post-expectation [true]. However, in this case the
core of the analysis has already been completed in the analysis of the monitoring voter
pattern. This analysis can be re-used for the pitch monitor. To enhance the readability
of the analysis, the following definitions are used:

p := wp. (x :⊕ U.[−a, a]) . (wp. (y :⊕ U.[−b, b]) . ([|x− y| > T)]) ,

and

q := wp. (x :⊕ U.[−c, c]) . (wp. (y :⊕ U.[−d, d]) . ([|x− y| > T)]) .

8.3 The Aeroplane Pitch Monitor 127

Based on the analysis of the monitoring voter in Section 8.2, the values of these expres-
sions are known to be equivalent to

p ≡ [a < b− T] ∗
(
1− T

b

)
+ [b− T ≤ a ≤ b+ T] ∗ 1

4ab ∗ (a+ b− T)2

+ [a > b+ T] ∗
(
1− T

a

)
,

and

q ≡ [c < d− T] ∗
(
1− T

d

)
+ [d− T ≤ c ≤ d+ T] ∗ 1

4cd ∗ (c+ d− T)2

+ [c > d+ T] ∗
(
1− T

c

)
,

respectively. The analysis of the pitch monitor then proceeds as follows:

wp.prog.[true]
≡ definition of prog

wp.(x :⊕ U.[−a, a]; y :⊕ U.[−b, b]; if |x− y| > T then

(x :⊕ U.[−c, c]; y :⊕ U.[−d, d]; if |x− y| > T then abort else skip fi)
else skip fi).[true]

≡ sequential composition

wp. (x :⊕ U.[−a, a]) .(wp. (y :⊕ U.[−b, b]) .
(wp.(if |x− y| > T then

(x :⊕ U.[−c, c]; y :⊕ U.[−d, d]; if |x− y| > T then abort else skip fi)
else skip fi).[true]))

≡ conditional

wp. (x :⊕ U.[−a, a]) .(wp. (y :⊕ U.[−b, b]) .
([|x− y| > T] ∗ wp.(x :⊕ U.[−c, c]; y :⊕ U.[−d, d];
if |x− y| > T then abort else skip fi).[true]
+ [¬ (|x− y| > T)] ∗ wp.skip.[true]))

≡ sequential composition, identity and definition of true

wp. (x :⊕ U.[−a, a]) .(wp. (y :⊕ U.[−b, b]) .
([|x− y| > T] ∗ wp. (x :⊕ U.[−c, c]) .(wp. (y :⊕ U.[−d, d]) .
(wp. (if |x− y| > T then abort else skip fi) .[true]))
+ [¬ (|x− y| > T)] ∗ 1))

≡ conditional

wp. (x :⊕ U.[−a, a]) .(wp. (y :⊕ U.[−b, b]) .
([|x− y| > T] ∗ wp. (x :⊕ U.[−c, c]) .(wp. (y :⊕ U.[−d, d]) .
([|x− y| > T] ∗ wp.abort.[true] + [¬ (|x− y| > T)] ∗ wp.skip.[true]))
+ [¬ (|x− y| > T)]))

8.3 The Aeroplane Pitch Monitor 128

≡ abortion, identity and definition of true

wp. (x :⊕ U.[−a, a]) .(wp. (y :⊕ U.[−b, b]) .
([|x− y| > T] ∗ wp. (x :⊕ U.[−c, c]) .(wp. (y :⊕ U.[−d, d]) .
([|x− y| > T] ∗ 0 + [¬ (|x− y| > T)] ∗ 1))
+ [¬ (|x− y| > T)]))

≡ simple algebra

wp. (x :⊕ U.[−a, a]) .(wp. (y :⊕ U.[−b, b]) .
([|x− y| > T] ∗ wp. (x :⊕ U.[−c, c]) .(wp. (y :⊕ U.[−d, d]) . ([¬ (|x− y| > T)]))
+ [¬ (|x− y| > T)]))

≡ definition of q

wp. (x :⊕ U.[−a, a]) .(wp. (y :⊕ U.[−b, b]) .
([|x− y| > T] ∗ (1− q) + [¬ (|x− y| > T)]))

≡ linearity, q not dependant on x or y

(1− q) ∗ wp. (x :⊕ U.[−a, a]) .(wp. (y :⊕ U.[−b, b]) .[|x− y| > T]
+ wp. (x :⊕ U.[−a, a]) .(wp. (y :⊕ U.[−b, b]) .[¬ (|x− y| > T)]))

≡ definition of p

(1− q) ∗ p+ (1− p)
≡ definition of p and q

[c < d− T] ∗ Td
+ [d− T ≤ c ≤ d+ T] ∗ 1

4cd ∗
(
−c2 + 2c (d+ T)− (d− T)2

)
+ [c > d+ T] ∗ Tc

∗

 [a < b− T] ∗
(
1− T

b

)
+ [b− T ≤ a ≤ b+ T] ∗ 1

4ab ∗ (a+ b− T)2

+ [a > b+ T] ∗
(
1− T

a

)

+

[a < b− T] ∗ Tb

+ [b− T ≤ a ≤ b+ T] ∗ 1
4ab ∗

(
−a2 + 2a (b+ T)− (b− T)2

)
+ [a > b+ T] ∗ Ta

The probability of the pitch monitor triggering a reset is 1 − ((1− q) ∗ p+ (1− p)),
which is rearranged to get pq, i.e. [a < b− T] ∗

(
1− T

b

)
+ [b− T ≤ a ≤ b+ T] ∗ 1

4ab ∗ (a+ b− T)2

+ [a > b+ T] ∗
(
1− T

a

)

∗

 [c < d− T] ∗
(
1− T

d

)
+ [d− T ≤ c ≤ d+ T] ∗ 1

4cd ∗ (c+ d− T)2

+ [c > d+ T] ∗
(
1− T

c

)
 .

8.4 Further Exploration 129

For example, if a and b were one and c and d were two, a tolerance T of one would result
in a reset probability of [1 < 0] ∗ 0

+ [0 ≤ 1 ≤ 2] ∗ 1
4

+ [1 > 2] ∗ 0

 ∗

 [2 < 1] ∗ 1
2

+ [1 ≤ 2 ≤ 3] ∗ 9
16

+ [2 > 3] ∗ 1
2

 ,

which reduces down to 9
64 .

The analysis of the pitch monitor concludes with a brief discussion about the refine-
ment notions present in the case study. The model of the pitch monitor in Figure 8.7
could be considered to be an implementation of a more abstract specification of the
pitch monitor such as

abort r⊕ skip ,

where r is the probability of a reset action. The program representing the pitch monitor
is an example of a data refinement of the above when the probability r is (greater than
or) equal to pq as defined earlier in the section. The pitch monitor model has a lot more
details about the internal workings of the program, but both of these programs exhibit
the same external behaviour. They both either fail with some probability, triggering a
reset action, or do nothing. Another type of refinement could be used for the individual
sensor units in the situation, where a sensor can fail to return a result. This is discussed
in more detail in Section 8.4.2.

8.4 Further Exploration

In this section two interesting directions for extending the analysis of the monitoring
voter pattern are briefly explored. The first is in extending the reset logic to a third
sensor, which then provides the opportunity for richer strategies for deciding when to
reset the sensors. These strategies are discussed and one of these is analysed in detail.
The second direction to be explored is that of considering the sensors as individual units
that can fail and be refined by more reliable sensors. Section 8.4.2 discusses how this
can be modelled in sGCL and gives example refinement proofs.

8.4.1 Adding a third sensor

If three sensors are used in the monitoring voter pattern, a number of different options
for determining when a reset action should be triggered are available. With two sensors
(as modelled in Section 8.2) there is only one value that can be compared to the tolerance
(the difference between the two sensor readings). However, when there are three sensors,
say x, y, and z, there are three differences to consider, |x− y|, |x− z| and |y − z|. This
leads to a number of alternative reset strategies:

8.4 Further Exploration 130

x :⊕ U.[0, 1];
y :⊕ U.[0, 1];
z :⊕ U.[0, 1];

if |x− y| > T ∨ |x− z| > T ∨ |y − z| > T then
abort

else
skip

fi

– x, y, z represent the error in the reading on sensors x, y and z respectively
– T represents the maximum difference tolerated between the two sensor readings
– |i| represents the absolute value of variable i

Figure 8.8: A monitoring voter with three replicated sensors

1. reset when at least one difference is greater than the tolerance,

2. reset when at least two differences are greater than the tolerance,

3. reset when all three differences are greater than the tolerance.

Note that the three differences are not independent of each other, therefore the analysis
of the three sensor case is more involved than simply repeating the analysis of two
sensors three times.

In this section the strategy of resetting when at least one difference is greater than
the tolerance is analysed as an example. For illustration purposes the three sensors are
assumed to be replicated and all follow a uniform distribution on [0, 1]. This also allows
comparison to the two sensor case studied in Section 8.2. The sGCL model for three
sensors is given in Figure 8.8. The changes from the two sensor case are the extra sensor
error value and the more complicated condition for abortion.

The three sensor model is also analysed in sGCL using the post-expectation of [true],
to give the probability that a reset action is not triggered. The formal proof follows
below:

wp.prog.[true]
≡ definition of prog

wp.(x :⊕ U.[0, 1]; y :⊕ U.[0, 1]; z :⊕ U.[0, 1];
if |x− y| > T ∨ |x− z| > T ∨ |y − z| > T then abort else skip fi).[true]

≡ sequential composition

wp. (x :⊕ U.[0, 1]) .(wp. (y :⊕ U.[0, 1]) .(wp. (z :⊕ U.[0, 1]) .
(wp. (if |x− y| > T ∨ |x− z| > T ∨ |y − z| > T then abort else skip fi) .[true])))

8.4 Further Exploration 131

≡ conditional

wp. (x :⊕ U.[0, 1]) .(wp. (y :⊕ U.[0, 1]) .(wp. (z :⊕ U.[0, 1]) .
([|x− y| > T ∨ |x− z| > T ∨ |y − z| > T] ∗ wp.abort.[true]
+ [¬ (|x− y| > T ∨ |x− z| > T ∨ |y − z| > T)] ∗ wp.skip.[true])))

≡ abortion, identity and definition of true

wp. (x :⊕ U.[0, 1]) .(wp. (y :⊕ U.[0, 1]) .(wp. (z :⊕ U.[0, 1]) .
([|x− y| > T ∨ |x− z| > T ∨ |y − z| > T] ∗ 0
+ [¬ (|x− y| > T ∨ |x− z| > T ∨ |y − z| > T)] ∗ 1)))

≡ simple algebra

wp. (x :⊕ U.[0, 1]) .(wp. (y :⊕ U.[0, 1]) .(wp. (z :⊕ U.[0, 1]) .
[|x− y| ≤ T ∧ |x− z| ≤ T ∧ |y − z| ≤ T]))

≡ stochastic assignment

wp. (x :⊕ U.[0, 1]) .

(
wp. (y :⊕ U.[0, 1]) .

(∫
[|x−y|≤T∧|x−z|≤T∧|y−z|≤T]

dU.[0, 1]

))
≡ integration theory

wp. (x :⊕ U.[0, 1]) .

wp. (y :⊕ U.[0, 1]) .

[x < T ∧ y < x] ∗
∫ y+T

0
1 dz

+ [x < T ∧ x ≤ y ≤ T] ∗
∫ x+T

0
1 dz

+ [x < T ∧ T < y ≤ x+ T] ∗
∫ x+T

y−T
1 dz

+ [T ≤ x ≤ 1− T ∧ x− T ≤ y ≤ x] ∗
∫ y+T

x−T
1 dz

+ [T ≤ x ≤ 1− T ∧ x ≤ y ≤ x+ T] ∗
∫ x+T

y−T
1 dz

+ [x > 1− T ∧ y > x] ∗
∫ 1

y−T
1 dz

+ [x > 1− T ∧ 1− T ≤ y ≤ x] ∗
∫ 1

x−T
1 dz

+ [x > 1− T ∧ x− T ≤ y < 1− T] ∗
∫ y+T

x−T
1 dz

8.4 Further Exploration 132

≡ integration theory and simple algebra (define α as this post-expectation)

wp. (x :⊕ U.[0, 1]) .
wp. (y :⊕ U.[0, 1]) .

[x < T ∧ y < x] ∗ (y + T)
+ [x < T ∧ x ≤ y ≤ T] ∗ (x+ T)
+ [x < T ∧ T < y ≤ x+ T] ∗ (x− y + 2T)
+ [T ≤ x ≤ 1− T ∧ x− T ≤ y ≤ x] ∗ (y − x+ 2T)
+ [T ≤ x ≤ 1− T ∧ x ≤ y ≤ x+ T] ∗ (x− y + 2T)
+ [x > 1− T ∧ y > x] ∗ (1 + T − y)
+ [x > 1− T ∧ 1− T ≤ y ≤ x] ∗ (1 + T − x)
+ [x > 1− T ∧ x− T ≤ y < 1− T] ∗ (y − x+ 2T)

≡ stochastic assignment and definition of α above

wp. (x :⊕ U.[0, 1]) .
(∫

α
dU.[0, 1]

)
≡ integration theory definition of α

wp. (x :⊕ U.[0, 1]) .

[x < T] ∗

∫ x

0
(y + T) dy

+
∫ T

x
(x+ T) dy

+
∫ x+T

T
(x− y + 2T) dy

+ [T ≤ x ≤ 1− T] ∗

∫ x

x−T
(y − x+ 2T) dy

+
∫ x+T

x
(x− y + 2T) dy

+ [x > 1− T] ∗

∫ 1

x
(1 + T − y) dy

+
∫ x

1−T
(1 + T − x) dy

+
∫ 1−T

x−T
(y − x+ 2T) dy

≡ integration theory and algebra (define β as this post-expectation)

wp. (x :⊕ U.[0, 1]) .

 [x < T] ∗
(
T 2 + 2Tx

)
+ [T ≤ x ≤ 1− T] ∗

(
3T 2

)
+ [x > 1− T] ∗

(
T 2 + 2T − 2Tx

)

≡ stochastic assignment and definition of β above∫
β

dU.[0, 1]

≡ integration theory∫ T

0

(
T 2 + 2Tx

)
dx+

∫ 1−T

T
3T 2 dx+

∫ 1

1−T

(
T 2 + 2T − 2Tx

)
dx

≡ 3T 2 − 2T 3 integration theory and algebra

8.4 Further Exploration 133

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Three sensors (solid) vs two sensors (dashed)

T

R
es

et
 P

ro
ba

bi
lit

y

Figure 8.9: Probability of a reset action for three (solid) and two (dashed) sensors

The probability of at least one of the differences being out of tolerance is 1 − 3T 2 +
2T 3. This is a reasonable result because the probability of a reset action decreases as
the tolerance increases. This is shown in Figure 8.9, which also shows how the reset
probability compares to the two sensor case. The reset strategy analysed for the three
sensor case is rather strict, therefore a reset action is more likely for this scenario than
for the two sensor case.

The volumes required for the analysis of the other strategies are not inherently
more difficult to analyse, but require breaking the integration down into even further
sections. The cross section of the volumes for the different strategies is illustrated in
Figure 8.10. The numbers indicate how many differences are out of tolerance in each
area of the cross-section. The equations indicate the planes that bound these areas. The
key part of the volume for the case where all differences have to be within tolerance is a
hexagonal prism. When a reset action is taken when at least two differences are outside
the tolerance the cross section for analysis becomes a six pointed star. This adds a
further six triangular prisms to the volume to be integrated (although in the case where
sensors are replicated only one of these need be analysed as a symmetry argument could
be used), plus the sections at either end where the limits of the probability distribution
are reached. Therefore the analysis of the other strategies is left as an exercise for the
interested reader.

8.4.2 Sensor refinement

This section explores the sGCL models and refinements for sensors that can fail. When
a sensor fails it no longer produces errors according to the given probability distribu-
tion, it can in theory return any number. This is analogous to a software routine not

8.4 Further Exploration 134

01

1 1

1

11

2

2

2

2

2

2

3

3 3

3

33 z = y - Tz = x - T

z = x + Tz = y + T
x = y - T x = y + T

Figure 8.10: The cross-section of the volume for the different three sensor strategies

terminating, and as such the abort program is used to represent this situation in sGCL.
For example, the error x given by a sensor that has an error distribution of µ whilst it
is functioning correctly, but can fail with some probability 1 − p, can be modelled in
sGCL as follows

x :⊕ µ p⊕ abort .

Such a sensor could be replaced by another sensor that has a lower chance (1 − q)
of failing, but the same error distribution. This would be a valid refinement (see Defini-
tion 6.2) in sGCL because the greatest pre-expectation of any expectation, wp.prog.β,
must be greater in the replacement sensor. This is shown formally below for p < q

prog v prog′

iff wp.prog.β ≤ wp.prog′.β Definition 6.2

iff wp. (x :⊕ µ p⊕ abort) .β ≤ wp. (x :⊕ µ q⊕ abort) .β definition of prog, prog′

iff probabilistic choice

p ∗ wp. (x :⊕ µ) .β + (1− p) ∗ wp.abort.β

≤ q ∗ wp. (x :⊕ µ) .β + (1− q) ∗ wp.abort.β

iff p ∗ wp. (x :⊕ µ) .β ≤ q ∗ wp. (x :⊕ µ) .β abortion

iff true algebra, p < q

More complicated refinements are also possible, for example the refining sensor prog′

may have a different error distribution to prog. In this case it is only a valid refinement
when the probability of any outcome in prog′ is at least that of the probability of the
same outcome in prog. For example, assume that prog has the uniform error distribution
over [0, 1], but can fail with probability 0.1. This is equivalent to

8.4 Further Exploration 135

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Density functions of mu (solid) and mu' (dashed)

x

f(
x)

Figure 8.11: The probability density functions of mu (solid) and mu’ (dashed)

µ.[a, b] :=

 9
10 ∗ (b− a) if 0 ≤ a < b ≤ 1 ,

0 otherwise .

An example prog′ that refines prog has an error distribution as follows

µ′.[a, b] :=

(b− a)− 1
20

(
b2 − a2

)
if 0 ≤ a < b ≤ 1 ,

0 otherwise .

The pdfs of these two error distributions are shown in Figure 8.11.
To show that prog v prog′ the equivalent (Lemma 6.12), relational definition of

refinement may be used (Definition 6.7). The non-trivial case (when 0 ≤ a < b ≤ 1) is
shown below:

µ v µ′

iff µ.[a, b] ≤ µ′.[a, b] Definition 6.7, for arbitrary 0 ≤ a < b ≤ 1

iff 9
10 ∗ (b− a) ≤ (b− a)− 1

20

(
b2 − a2

)
definition of µ, µ′

iff
(
b2 − a2

)
≤ 2 (b− a) algebra

iff (b+ a) (b− a) ≤ 2 (b− a) algebra

iff true algebra, 0 ≤ a < b ≤ 1

Therefore the program prog that assigns variable x according to µ is refined by the
program prog′ that assigns x according to µ′.

Refinement of sensors allows a specification of a minimum acceptable error distribu-
tion and failure rate to be given. The implementation of the system can then use any
sensor that can be shown to be a refinement of the specification. Any properties shown

8.5 Evaluation 136

to hold for the specification will be preserved in the implementation.

8.5 Evaluation

In this chapter a new design pattern, the monitoring voter, has been described and its
novel aspects have been analysed. The analysis focussed on the reset logic and how
this affected the probability of requiring a reset action for a variety of sensors. This
pattern was then applied to a real case study, that of an aircraft pitch monitor. In this
situation resetting the sensors is a significant inconvenience as it requires the aeroplane
to be in level flight before it can happen. Therefore it is important to know, and thus
be able to minimise, the probability of a reset action being required. The opportunities
for refinement and further analysis of the monitoring voter were also explored.

The main aim of the case study was to illustrate the use of sGCL, particularly in
the analysis of properties involving multiple continuous probability distributions. In
a discrete approximation of such analysis, a trade-off would be required between the
accuracy of the approximation and the size of the state space (and thus the calculations
required). However, in sGCL the integration techniques handle this complexity and
the analysis is relatively straightforward without losing any accuracy. Therefore such
analysis is a strength of sGCL. The case study of the monitoring voter required the
analysis of the difference of two variables. It is not possible to analyse this difference
without considering the two variables simultaneously. The fact that the two variables
were assigned according to continuous probability distributions meant that this provided
a good example to illustrate the strength of sGCL in this analysis. The pitch monitor
example provided a real life scenario to demonstrate the importance of this analysis.

A secondary aim of the case study was to provide and demonstrate the use of a
methodological contribution, namely that of design patterns. The use of design patterns
made the analysis of the pitch monitor easier to understand. The monitoring voter could
be analysed independently, and the results of this analysis were fed into the analysis of
the pitch monitor. This made the analysis of the pitch monitor relatively easy as the
analysis from the monitoring voters was directly transferable. This reuse of analysis
demonstrates the advantage of using design patterns, thus achieving the secondary aim
of the case study.

A further aim of the case study was to demonstrate the use of refinement in sGCL.
This was briefly discussed for the pitch monitor and explored in more detail for sensors
in the further exploration. However, it would be interesting to investigate more complex
refinement relations as further work.

There were some aspects of sGCL that the case study did not provide the scope
for examining. In particular, loops were not considered at all. This was not held to
be a priority because the techniques demonstrated still apply to finite loops, just with
more complex conditional and sequential composition combinations. However, it would

8.5 Evaluation 137

be interesting to explore loop invariant reasoning (as was illustrated in Chapter 3 for
discrete probability) in sGCL as further work.

Overall the case study provided some useful insight, and provided a good idea of the
use and benefits of sGCL. However, the study has also indicated areas that could be
explored in more depth in future work.

Chapter 9

Conclusions

This chapter summarises the work presented in this thesis (Section 9.1) and discusses
further challenges in the area of stochastic model-based specification languages. The
thesis aims (Section 1.2.1) are revisited and the extent to which they have been met is
discussed (Section 9.2). The opportunities for future research are then explored (Sec-
tion 9.3).

9.1 Summary

The need for probability in formal methods, as a means of providing rigorous analysis
of the dependability aspects of computing systems, was discussed in Chapter 1. In
particular, the need for continuous probability was highlighted as it is often difficult to
express and analyse fault behaviour without it. For example, faults may occur according
to an exponential distribution over time, or the reading error of an analogue sensor
may follow a normal distribution. The rigour associated with the specification and
analysis of systems using model-based specification languages is highly desirable for
providing the assurance required for the development of dependable systems. However,
such languages have little or no support for continuous probability. This thesis developed
a new stochastic model-based specification language as a first step towards addressing
that gap. This new language allows variables to be assigned according to continuous
probability distributions. Restrictions have been defined to ensure the consistency of
the language, in particular the state space is restricted to bounded intervals of reals,
recursion is finite, and non-determinism is excluded.

In Part 1 of the thesis the role of probability in formal methods was explored in more
detail. The key concepts needed to understand the thesis were presented (Chapter 2).
This included a discussion of related research, which concluded that whilst one or two of
the languages examined provide reasonable support for continuous probability, they lack
some desirable features. In particular, the support for refinement (a formal development
approach from abstract specifications to concrete implementations) or non-determinism

138

9.1 Summary 139

(an important abstraction technique) has not been explored. Further, the practical
application of these languages (through the use of examples or case studies) has not
been demonstrated.

Part 1 continued with a demonstration of the practical use of probability in model-
based specification languages, through a case study on flash memory (Chapter 3). The
aim of the case study was to illustrate how probabilistic systems can be described and
analysed in a formal way. The case study used the language pGCL, as this forms the
basis of the new language developed in the thesis. Using pGCL meant that only discrete
probability could be used, which led into a discussion of the limitations of the formalism
and the kinds of questions that are more easily answered using continuous probability.

Part 1 concluded with a further case study based on an emergency brake (Chapter 4)
to illustrate the features of two contrasting formalisms (PRISM and pB), and to pro-
totype a stochastic model-based specification language. The prototype language that
was presented (stochastic Event-B) aims to combine the benefits of model-based speci-
fication languages and continuous probability. The complexities involved in defining a
full formal definition of stochastic Event-B were discussed, in particular the fact that
combining probability and non-determinism is not a trivial problem. This allowed the
identification of a suitable simpler language (pGCL) for a formal stochastic extension in
Part 2 of this thesis. The key advantage of pGCL is that non-determinism is modelled
explicitly, and can therefore be removed without having to re-define the whole language.

Part 2 provided the formal development of sGCL, a model-based specification lan-
guage that supports continuous probability. Before the syntax and semantics of the
language were defined, some more technical background material (Chapter 5) was re-
quired. This included: an introduction to measure theory, which provides the basis of
the relational semantics of sGCL; an overview of the Giry monad for the sequential
composition of stochastic programs; the definition of the Kantorovich distance between
two measures, for compactness arguments; and a more detailed look at pGCL, in par-
ticular the relational semantics. These form the main building blocks of the relational
semantics of sGCL.

The main chapter of Part 2 (and the thesis) described a deterministic sGCL (Chap-
ter 6). This chapter defined the syntax, transformer and relational semantics of sGCL,
which constitutes the main contribution of this thesis. The transformer semantics is
similar to that presented by Kozen [54], but includes an explicit definition for stochastic
assignment and more intuitive syntax. Important healthiness conditions, which ensure
that all programs have meanings, were shown to hold in sGCL. The relational semantics
of sGCL was based on measure theory and related to the transformer semantics through
the Riesz representation theorem. A refinement ordering for sGCL programs was also
defined, for both the transformer and relational semantics, and its practical applications
were discussed. The chapter concluded with a comparison of sGCL to the related work
presented in Part 1.

9.2 Evaluation 140

Part 2 continued with an exploration of non-determinism and continuous probabil-
ity. The sGCL language definition was extended to include demonic non-determinism
(Chapter 7). This included the definition of the syntax, transformer and relational
semantics of a non-deterministic sGCL. However, the mathematics required to demon-
strate the consistency of the transformer and relational semantics is challenging and not
fully developed. Approaches to the consistency proofs were discussed and the remain-
ing challenges for their successful implementation were described. As this discussion is
very technical, the majority of the material was presented in Appendix D, with just an
overview offered in the main body of this thesis. Adding non-determinism enabled a
further notion of refinement in sGCL, which was also explored. Once more, the chapter
concluded with a discussion of how the state of the art was furthered by the research
presented. The author believes that this chapter presented the first attempt to combine
demonic non-determinism and arbitrary continuous probability distributions in a formal
specification language.

In Part 3 the practical use of sGCL was demonstrated through the use of a final
case study on an aeroplane pitch monitor (Chapter 8). The sGCL modelling approach
was integrated with the established engineering practice of design patterns. A new
design pattern relating to dependability was defined, and the probabilistic elements of
it were analysed in sGCL. The new design pattern was then applied to the case study,
in which it was used to simplify the analysis of the pitch monitor. Opportunities for
refinement in the case study were discussed, including the definition of an abstract
dependability specification, and the refinement of faulty sensors with (suitable) more
reliable alternatives. The chapter concluded with an evaluation of the suitability of the
case study for exploring the capabilities of sGCL, and of the performance of sGCL in
analysing the case study. The evaluation identified opportunities for further research,
particularly in more detailed explorations of refinement and iteration in sGCL.

9.2 Evaluation

Section 1.2.1 contained a discussion of aims that the research presented in this thesis
should satisfy. These included some general aims regarding the exploration of continuous
probability in model-based specification languages and some more specific aims that the
language developed should satisfy. In this section, these aims are revisited and the
extent to which they have been satisfied is evaluated. The applicability of sGCL for
modelling and analysing various classes of faults is also briefly discussed.

9.2.1 General aims

The overall vision of this thesis was to equip developers with the ability to reason about
systems with (continuous) probabilistic elements, in the context of model-based formal
methods for developing dependable systems. Recall (Section 1.2.1) that to achieve this

9.2 Evaluation 141

vision the following general aims were identified:

• to explore the role of probability in model-based specification languages, in par-
ticular continuous probability;

• to develop a model-based specification language that supports reasoning about
continuous probability;

• to demonstrate reasoning about dependability properties using the new language;

• to examine how the new language fits into software engineering practice, such as
the use of design patterns.

These are examined in turn and the extent to which they have been met is evaluated.

Exploring the role of probability in model-based specification languages

In Part 1 of this thesis a wide range of probabilistic and stochastic formal methods were
examined (Section 2.3). These ranged from probabilistic process algebras to stochastic
petri nets and probabilistic model checkers. As the main focus of this research is on
model-based specification languages, these were examined in more detail. A number
of probabilistic model-based specification languages were identified and discussed, with
pGCL and pB explored in more detail through the use of case studies (Chapters 3
and 4). The story was different for stochastic model-based specification languages,
however. The state of the art for these was found to be rather limited, with only a few
attempts to combine continuous probability and model-based specification languages.
Even then, the research on continuous probability tended to be an aside to the main
argument (on discrete probability). The literature was found to be lacking on any
practical applications of continuous probability in model-based specification languages.
Issues such as refinement and non-determinism had also not been explored in detail. This
led to a wider consideration of continuous probability in formal methods, including the
use of the emergency brake case study (Chapter 4) to explore the support for continuous
probability in the PRISM model checker. However, even in the wider context of formal
methods, the support for continuous probability was found to be limited to specific
distributions, typically the exponential distribution. The concluding section of Chapter 3
discussed the need to support a wider range of probability distributions in modelling
languages.

In conclusion, the role of probability in model-based specification languages, and
more generally in formal methods, has been explored in depth through the available
literature and use of case studies. However, as the state of the art is continually pro-
gressing, there will inevitably be further contributions to consider.

9.2 Evaluation 142

Developing a stochastic model-based specification language

A stochastic model-based specification language, sGCL, was developed in Part 2 of this
thesis. Specifically, a deterministic version of sGCL was developed in full as described
in Chapter 6, and the extension of this to include non-determinism was examined in
detail in Chapter 7. However, the completion of the non-deterministic version is beyond
the scope of this thesis. In particular, the mathematical foundations needed to prove
the consistency of the transformer and relational semantics are not readily available
for the non-deterministic version. The extent to which the specific requirements of the
language are met is discussed in more detail below (Section 9.2.2). Here, some more
general observations about the language developed are discussed.

Whilst the deterministic version of sGCL is a fully defined model-based specification
language that supports continuous probability, a number of restrictions were required
in order to achieve this. The most crucial of these was the restriction of the state space.
In order to prove the consistency between the transformer and relational semantics, the
state space had to be restricted to closed intervals of the real numbers, [a, b] for finite
a, b ∈ R. This means that standard distributions such as the exponential or normal dis-
tribution cannot be modelled in sGCL. Truncated versions of them may be used instead,
but the truncated versions do not have the useful properties of the original distributions,
such as the memoryless property of the exponential distribution used in CTMCs. How-
ever, in spite of this restriction, some interesting opportunities for analysis exist, as was
demonstrated in the case study on sGCL (Chapter 8). A second restriction of sGCL was
the limitation to finite loops. This was required to prove the healthiness conditions of
sGCL, but means that steady state properties of CTMCs cannot be analysed. However,
without the ability to model the exponential distribution, this further restriction has
minimal impact.

In conclusion, a model-based specification language has been developed that supports
continuous probability and key features such as abstraction, refinement and formal anal-
ysis of probabilistic properties. However, the state space and use of recursion had to be
restricted in order to achieve this.

Demonstrating reasoning about dependability properties in sGCL

The case study (Chapter 8) was used to demonstrate the application of sGCL, in par-
ticular, for reasoning about dependability properties. The case study had two parts, the
first analysed a monitoring voter pattern for improving dependability, whilst the sec-
ond applied this pattern for the analysis of an aeroplane pitch monitor. The first part
demonstrated how continuous probability could be modelled and analysed in sGCL. In
particular, it demonstrated how complex interactions between random variables can be
handled relatively straightforwardly using the integration techniques inherent in sGCL.
The practical application of such analysis to the pitch monitor demonstrated the need

9.2 Evaluation 143

for the capabilities of sGCL. The purpose of refinement in sGCL was also discussed with
respect to the pitch monitor and some example refinement proofs were given.

There is certainly more scope for demonstrating how to reason about dependability
properties in sGCL, in particular for features such as looping and more detailed refine-
ment chains. However, the case study presented in Chapter 8 provided a good indication
of the benefits of the reasoning capabilities provided by sGCL, and how such analysis
can be performed.

Examining how sGCL fits into software engineering practice

The case study in Chapter 8 examined how the use of sGCL would fit in with aspects
of established software engineering practice. In particular, the probabilistic aspects of a
design pattern aiming at improving dependability were analysed in sGCL. Design pat-
terns are important in software engineering to capture elements of design that frequently
occur. The case study successfully illustrated how the use and analysis of a dependabil-
ity design pattern in sGCL simplified the reasoning about an aeroplane pitch monitor.
However, there are many more methods and tools used in software engineering, so there
is plenty of scope for further investigation in this area. Also, for sGCL to be incor-
porated into recommended practice, tool support would be essential, and is currently
unavailable.

9.2.2 Language aims

As the language that was developed (sGCL) is a key feature of this thesis, a deeper
evaluation of its capabilities with respect to the original aims (Section 1.2.1) is given
here. The aims stated that sGCL should:

• include explicit support for continuous probability distributions, so that variables
may be assigned values according to a continuous probability distribution;

• allow formal analysis and proof of (probabilistic) properties over systems contain-
ing continuous probability distributions, for example dependability attributes such
as reliability and safety;

• provide means for abstraction and refinement of computer-based systems contain-
ing continuous probability distributions;

• be underpinned by a consistent mathematical foundation.

A further desirable aim suggested that sGCL should:

• support non-determinism, where the program can branch according to some ex-
ternal decisions beyond the control of the program.

The extent to which these aims have been met is discussed below. Unless otherwise
stated, the language being evaluated below is the deterministic version of sGCL.

9.2 Evaluation 144

Explicit support for continuous probability distributions

The language sGCL introduced a new program construct :⊕ that allows a variable to be
assigned a value according to a continuous probability distribution. This is described in
detail in Chapter 6. The continuous probability distribution is modelled as a measure,
but it is straightforward (Section 6.2) to translate the notation of cdfs and standard
probability distributions to that of measures. The meaning of this construct and oth-
ers in sGCL programs was defined through the transformer and relational semantics.
However, the range of continuous probability distributions that could be modelled in
sGCL had to be restricted according to the state space limitations described above
(Section 9.2.1). Only distributions defined over closed intervals of the real numbers can
be modelled in sGCL. Nonetheless, there is explicit support for continuous probability
distributions in sGCL.

Support for formal analysis of probabilistic properties

The transformer semantics (and to some extent the relational semantics) of sGCL en-
ables the formal analysis of probabilistic properties. This analysis is typically carried
out using the weakest pre-condition rules given in Section 6.3, although demonstrat-
ing valid refinements of very abstract specifications provides an alternative approach.
The practical application of the weakest pre-condition rules for analysing dependability
properties was demonstrated in the case study in Chapter 8.

Support for abstraction and refinement

There are a number of ways that sGCL supports abstraction. These include: abstract
constructs such as skip and abort; the use of sub-probability measures; and the inclusion
of probabilistic choice. It would be undesirable to have a construct in a programming
language that does nothing (skip), or worse, causes the program to not terminate or fail
(abort). However, such abstract constructs are useful in sGCL to model the situations
where something good or something bad may occur. Similarly, the distribution of a
random variable may not be fully known, but it may still be desirable to analyse it to
some extent. In this case, the use of sub-probability (where the total probability defined
is less than one) is useful, but it is unlikely to be found in any implementation. Finally,
discrete probability can be used as an abstraction for continuous probability, by parti-
tioning the state space into regions of particular interest. This abstraction is possible in
sGCL because it supports discrete probability as well as continuous probability.

There are two notions of refinement in sGCL (Section 6.5). The first is a refinement
ordering for continuous probability measures. This essentially increases the definedness
of a measure by increasing the total probability defined (without reducing the probability
of any outcome in the abstract measure). The second is the notion of data refinement,
where abstract constructs are replaced by more concrete ones (as long as the more

9.2 Evaluation 145

concrete construct can replace the more abstract one without detection in terms of
functional properties) [61]. The practical application of these notions of refinement (and
the use of abstraction) is illustrated in the case study on sGCL (Chapter 8). A further
abstraction mechanism and refinement notion is also explored in sGCL (Section 7.4).
This requires the use of non-determinism, which is discussed in detail below.

Overall, sGCL provides good support for abstraction and refinement of computer-
based systems containing continuous probability distributions.

A consistent mathematical foundation

The meaning of sGCL is defined in terms of the transformer semantics. The Riesz rep-
resentation theorem is used to provide an equivalent and consistent relational semantics
in terms of measure theory (Section 6.4). To ensure that the Riesz representation the-
orem applies to all the programs that can be defined in sGCL, a number of healthiness
conditions were shown to hold in the transformer semantics (Section 6.3.1). To prove
these, the state space had to be restricted to compact intervals of real numbers and
recursion had to be limited to finite loops. However, with these restrictions in place,
sGCL has a consistent mathematical foundation.

Support for non-determinism

The extension of the deterministic version of sGCL to include non-determinism was
examined in Chapter 7. The syntax, transformer and relational semantics for a non-
deterministic sGCL has been defined. However, the proofs needed to demonstrate a
consistent mathematical foundation are significantly challenging when non-determinism
is included in sGCL. In particular, the mathematical theorems and lemmas required
for such proofs are not readily available. Whilst, some effort has been spent exploring
alternative proof approaches, the definition of a (proven) consistent non-deterministic
sGCL is beyond the scope of this thesis.

Therefore the support for non-determinism in sGCL has been explored, but further
research is required to fully define a non-deterministic version of sGCL.

9.2.3 Discussion of the fault classes sGCL may apply to

The case study (Chapter 8) demonstrated how sGCL could be used to model and analyse
faulty sensors. This section briefly discusses what other types of faults may be analysed
in sGCL, with reference to the main fault classes identified by Avizienis et al. [9]. A
thorough examination of the fault classes applicable to sGCL is left as further work.

Avizienis et al. [9] identify three major (and partially overlapping) groupings of
faults. These are:

• Development faults – faults that occur during system development, system
maintenance or generation of procedures for operating or maintaining the system;

9.3 Further Work 146

• Physical faults – faults that affect hardware;

• Interaction faults – faults that are external, i.e. originate outside the system
boundary and propagate errors into the system by interaction or interference.

Of these categories, physical faults is the most obvious candidate for modelling in
sGCL. This includes the sensor faults from the case study, floating point arithmetic
rounding errors as discussed by Hasan et al. [36] and failure rates of hardware, all
of which may follow continuous probability distributions (although some failure rate
distributions require an unbounded state space, so would need the state space restriction
to be lifted first). In addition, physical faults that follow discrete distributions (such as
the number of messages lost in a network) may be approximated (using limit theories)
by continuous distributions for large systems (but such limiting distributions tend to
include infinity, so would probably need the state space restriction to be lifted first).

It is harder to see how sGCL could be applied to development faults. Whilst it is
possible that a continuous distribution could model the rate at which development faults
are introduced to a system (based on factors such as the work environment, procedures
followed etc.), getting sufficient data to accurately model this would not be easy.

Interaction faults are more interesting, in particularly those involving interactions
with humans. Quantification of accidental human faults (such as operator errors) is a
challenging area as the factors involved in such faults are usually complex. Therefore it
is probably premature to try to model or analyse these in sGCL as it may be hard to
identify suitable abstractions in terms of continuous probability distributions. However,
malicious human faults may follow a clearer pattern and be easier to quantify, for ex-
ample the time between service requests in a denial of service attack might be usefully
modelled and analysed (in sGCL) using continuous probability. It would be interesting
to explore this example in future work.

9.3 Further Work

Based on the above evaluation of the work presented in this thesis, some suggestions
for further research (in the area of continuous probability in model-based specification
languages) are discussed. These extensions fall into three categories: those relating to
the language itself; those relating to applying the language and integrating it with other
methods; and those relating to tool support. These are discussed in more detail below.

9.3.1 Language extensions

A number of limitations of sGCL were discussed in the evaluation. In particular: the
restriction of the state space to closed intervals of real numbers; the restriction of recur-
sion to finite loops; the exclusion of demonic non-determinism. Lifting these restrictions

9.3 Further Work 147

would turn sGCL into an even more powerful language. However, each of these is a
challenging area for further research as discussed below.

Broadening the state space

The restriction of the state space to closed intervals of real numbers is required through
the use of the Riesz representation theorem to relate the transformer and relational
semantics. Therefore, to lift this restriction, alternative approaches for relating the
transformer and relational semantics would need to be explored. Perhaps a good starting
point for this would be to examine the semantics for a subset of measures. Considering
exponential distributions, in particular, may provide some useful insight as this has
been explored already in the context of process algebras [37] and model checkers [57].
Another possibility may be to explicitly define the relational to transformer embedding
and transformer to relational retraction as for the non-deterministic version of sGCL
(Section 7.3). This would require more proof effort to determine the consistency of the
semantics, but perhaps the embedding and retraction could be defined so that the state
space restriction is no longer required.

Infinite loops

The restriction of recursion to finite loops was required to show the healthiness conditions
of sGCL, in particular continuity. This is because it is not possible to show, in general,
that the limit of a sequence of continuous functions is itself continuous. However, there
may be a subset of infinite loops that continuity may be shown to hold for. For example,
McIver et al. [61] allow loops in pGCL that “almost certainly” terminate. This means
that the loop terminates with probability one, but it is impossible to put a finite bound
on the number of iterations that will be executed before termination. It would be
interesting to investigate how such loops could fit into the definition of sGCL.

Non-determinism

In Chapter 7, the extension of sGCL to include non-determinism was examined. How-
ever, to fully define a non-deterministic sGCL, further research is required. In particular,
alternative proof strategies for the consistency proofs need to be investigated. An alter-
native strategy for one of the proofs was outlined in Appendix D, which appears to be a
promising direction for future work. The other proof is trickier, however. Possible direc-
tions for exploration include a different approach to converting measures to Euclidean
space, or examining alternative metric spaces for the compactness arguments.

Once non-determinism has been resolved, it would be possible to explore the original
idea, of extending Event-B with continuous probability (Section 4.4), in more detail. It
is, at best, difficult and inelegant to define a deterministic subset of Event-B. Therefore,
it seems pointless to revisit the development of Stochastic Event-B, before a solution

9.3 Further Work 148

has been found for handling continuous probability and non-determinism in a consistent
manner.

An especially challenging language extension would lift the state space restriction
and include non-determinism. The promising compactness arguments in the consistency
proofs rely on the fact that the underlying state space is also compact, i.e. a closed
interval of the reals. Until these language extensions have been explored separately, it
is hard to predict how a combination of the two may be achieved.

9.3.2 Methodological extensions

In the evaluation above, two key areas for further exploration with respect to the appli-
cation of sGCL were identified. These were: integrating sGCL with alternate software
engineering methods; and more detailed case studies to illustrate and explore the use of
sGCL. These extensions may not appear to be as technically challenging as the language
extensions, but are vital to encourage the wider use of sGCL. These areas are discussed
in turn below.

Integration with software engineering and dependability mechanisms

In the case study (Chapter 8) the use of sGCL to analyse design patterns was explored.
The two approaches worked well together to simplify the analysis of an aeroplane pitch
monitor. It would be interesting to investigate whether there are other design patterns
that could also benefit from such integration with sGCL. These may include: depend-
ability patterns, such as voting or recovery blocks; patterns that add more realism to a
model, such as noise on sensor readings; or more general software engineering patterns.

It would also be beneficial to examine whether there are other software engineering
or dependability practices that could benefit from the analysis provided by sGCL. For
example, could sGCL (or some similar language) assist in the quantitative analysis of
fault trees (in situations where there are complex interactions between faults occurring
according to continuous probability distributions)? Another area where a language
like sGCL may be useful is in the analysis of risk associated with hazards, e.g. in
the safety methodology HazOp. These risks can be hard to quantify, and possibly the
refinement approach of sGCL could assist with such quantification. It is envisaged that
this would work by starting with an abstract model of the world, and iteratively adding
complexities, until a realistic valuation of the risk is determined.

There are many opportunities to integrate the benefits provided by a language, such
as sGCL, with those of existing methods. The above only aims to provide a flavour of
the possibilities.

9.3 Further Work 149

Further case studies

Further case studies would aid in the understanding of the capabilities of sGCL, and
how best to use it according to its strengths. Particular features of sGCL that would
benefit from further exploration are loops and refinement chains. Therefore it would be
beneficial to determine suitable case studies to examine these features in more detail.

The flash case study (Chapter 3) provides the opportunity for exploring loops. How-
ever, the continuous probability distributions that were identified to be inherent in the
flash memory problem require the inclusion of infinity in the state space, i.e. cannot be
modelled by closed intervals of real numbers. Therefore the state space restrictions need
to be lifted to explore this properly (although truncated versions of these distributions
could be used as an approximation).

Another option would be to extend the case study on the aeroplane pitch monitor
(Chapter 8). More details could be added to the scenario through a series of refinement
steps. For example, the timing elements of the case study could be added, as these were
abstracted away from in the analysis presented in this thesis.

Finally, case studies could be used to further explore the fault classes that are suitable
for modelling in sGCL (see Section 9.2.3). For example, it could be interesting to explore
how suitable sGCL is for modelling and analysing the malicious behaviour in a denial
of service attack.

9.3.3 Tool support

No modelling language has a chance of industrial uptake without tool support. Therefore
it is an important avenue of further work to develop tools that support modelling, and
particularly reasoning, in sGCL.

Proving properties of sGCL models requires significant expertise. Therefore this is
a key area in which tool support should be provided. Luckily, there already exist some
building blocks for this in the HOL theorem prover. A mechanism of pGCL has already
been completed in HOL [41] and there is also support for reasoning about expectation
properties of (continuous) measures [36]. Therefore, it is a realistic goal to mechanise
sGCL in HOL.

Other aspects of developing sGCL models would benefit from tool support. Valida-
tion of sGCL models (through syntax and type checking, and the use of interpreters to
exercise sGCL statements) is an obvious role of tool support. To interpret (or simulate)
a model that contains (continuous) probability requires a means of obtaining random
observations from the probability distributions involved. This functionality could be
provided by statistical software (such as R1). It is worth noting that a probabilistic
model needs to be exercised a large number of times (with the results of these runs
presented graphically, for example) to obtain an accurate picture of its behaviour.

1See http://www.r-project.org/.

9.4 Closing statements 150

More ambitious features may assist users in developing sGCL models, such as a
library of patterns (like the monitoring voter from Chapter 8, or those discussed in
Section 9.3.2) that guide the user towards designing more dependable systems, or inte-
gration with other tools such as model checkers.

9.4 Closing statements

The support for continuous probability distributions in model-based specification lan-
guages has been explored to new depths in this thesis. Whilst significant challenges have
been encountered, a new language has been developed that supports rigorous modelling
and analysis of computer-based systems containing continuous probability. The capabil-
ities and usefulness of this language have been demonstrated through the use of a case
study. The limitations of the language have also been evaluated and from this many
interesting directions for further research have been identified.

Appendix A

Proving the Flash Memory Loop

Invariant

This appendix provides further details of the proof work required to analyse the flash
filestore system described in Chapter 3. In particular, this requires showing that the
expression given in Formula 3.1 is in fact an invariant of the loop described in Figure 3.2.

Recall (Formula 3.1) that the claimed invariant of the loop is as follows:

m+ n+

2N−(m+n+1)∑
e=N−m

e

(
e− 1

N −m− 1

)(
1
2

)e
+

2N−(m+n+1)∑
e=N−n

e

(
e− 1

N − n− 1

)(
1
2

)e
This will be referred to as Inv in the following for convenience. To show that this is in
fact an invariant of the loop in Section 2.1 it is required to show that:

[G] ∗ Inv ≤ wp.body.Inv . (A.1)

The proof proceeds as follows:

wp.body.Inv

≡ wp.
((
m := m+ 1 1

2
⊕ n := n+ 1

)
; e := e+ 1

)
.Inv definition of body

≡ sequential composition

wp.
(
m := m+ 1 1

2
⊕ n := n+ 1

)
. (wp. (e := e+ 1) .Inv)

151

152

≡ simple substitution and definition of Inv

wp.
(
m := m+ 1 1

2
⊕ n := n+ 1

)
.

m+ n+
2N−(m+n+1)∑
e+1=N−m

(e+ 1)

(
e+ 1− 1
N −m− 1

)(
1
2

)e+1

+
2N−(m+n+1)∑
e+1=N−n

(e+ 1)

(
e+ 1− 1
N − n− 1

)(
1
2

)e+1

≡ arithmetic (change of variables e′ = e+ 1)

wp.
(
m := m+ 1 1

2
⊕ n := n+ 1

)
.

m+ n+
2N−(m+n+1)∑

e=N−m
e

(
e− 1

N −m− 1

)(
1
2

)e
+

2N−(m+n+1)∑
e=N−n

e

(
e− 1

N − n− 1

)(
1
2

)e

≡ probabilistic choice substitution

1
2 ∗ wp. (m := m+ 1) .

m+ n+

2N−(m+n+1)∑
e=N−m

e

(
e− 1

N −m− 1

)(
1
2

)e
+

2N−(m+n+1)∑
e=N−n

e

(
e− 1

N − n− 1

)(
1
2

)e

+ 1
2 ∗ wp. (n := n+ 1) .

m+ n+

2N−(m+n+1)∑
e=N−m

e

(
e− 1

N −m− 1

)(
1
2

)e
+

2N−(m+n+1)∑
e=N−n

e

(
e− 1

N − n− 1

)(
1
2

)e

≡ simple substitution

1
2 ∗

m+ 1 + n+

2N−((m+1)+n+1)∑
e=N−(m+1)

e

(
e− 1

N − (m+ 1)− 1

)(
1
2

)e

+
2N−((m+1)+n+1)∑

e=N−n
e

(
e− 1

N − n− 1

)(
1
2

)e

+ 1
2 ∗

m+ n+ 1 +

2N−(m+(n+1)+1)∑
e=N−m

e

(
e− 1

N −m− 1

)(
1
2

)e
+

2N−(m+(n+1)+1)∑
e=N−(n+1)

e

(
e− 1

N − (n+ 1)− 1

)(
1
2

)e

153

≡ algebra

m+ n+ 1+ 1
2 ∗

2N−(m+n+1)−1∑
e=(N−m)−1

e

(
e− 1

(N −m− 1)− 1

)(
1
2

)e

+
2N−(m+n+1)−1∑

e=N−n
e

(
e− 1

N − n− 1

)(
1
2

)e
+

2N−(m+n+1)−1∑
e=N−m

e

(
e− 1

N −m− 1

)(
1
2

)e
+

2N−(m+n+1)−1∑
e=(N−n)−1

e

(
e− 1

(N − n− 1)− 1

)(
1
2

)e

The first and third summations of the big expression above are considered first:

1
2 ∗

2N−(m+n+1)−1∑
e=(N−m)−1

e

(
e− 1

(N −m− 1)− 1

)(
1
2

)e

+
2N−(m+n+1)−1∑

e=N−m
e

(
e− 1

N −m− 1

)(
1
2

)e

≡ algebra (shifting the sums by 1)

1
2 ∗

2N−(m+n+1)∑
e=N−m

(e− 1) ∗

(
e− 2

(N −m− 1)− 1

)(
1
2

)e−1

+ 1
2 ∗

2N−(m+n+1)∑
e=(N−m)+1

(e− 1) ∗

(
e− 2

N −m− 1

)(
1
2

)e−1

≡ algebra (bringing the 1
2 into the sums)

2N−(m+n+1)∑
e=N−m

(e− 1) ∗

(
e− 2

(N −m− 1)− 1

)(
1
2

)e
+

2N−(m+n+1)∑
e=(N−m)+1

(e− 1) ∗

(
e− 2

N −m− 1

)(
1
2

)e
≡ algebra (taking the first term out of the first sum)

2N−(m+n+1)∑
e=(N−m)+1

(e− 1) ∗

(
e− 2

(N −m− 1)− 1

)(
1
2

)e

+
2N−(m+n+1)∑
e=(N−m)+1

(e− 1) ∗

(
e− 2

N −m− 1

)(
1
2

)e
+ (N −m− 1) ∗ 1

2

N−m

≡ algebra (combining sums and combinations, using the rule aCb = a−1Cb + a−1Cb−1)

2N−(m+n+1)∑
e=(N−m)+1

(e− 1) ∗

(
e− 1

N −m− 1

)(
1
2

)e
+ (N −m− 1) ∗ 1

2

N−m

154

≡ algebra (putting the floating term back into the sum)

2N−(m+n+1)∑
e=N−m

(e− 1) ∗

(
e− 1

N −m− 1

)(
1
2

)e
≡ algebra (splitting into sums with e and −1)

2N−(m+n+1)∑
e=N−m

e

(
e− 1

N −m− 1

)(
1
2

)e
−

2N−(m+n+1)∑
e=N−m

(
e− 1

N −m− 1

)(
1
2

)e

A similar argument follows for the second and fourth sums of the previous expression.
Using the those results the following can now be shown:

m+ n+ 1+ 1
2 ∗

2N−(m+n+1)−1∑
e=(N−m)−1

e

(
e− 1

(N −m− 1)− 1

)(
1
2

)e

+
2N−(m+n+1)−1∑

e=N−n
e

(
e− 1

N − n− 1

)(
1
2

)e
+

2N−(m+n+1)−1∑
e=N−m

e

(
e− 1

N −m− 1

)(
1
2

)e
+

2N−(m+n+1)−1∑
e=(N−n)−1

e

(
e− 1

(N − n− 1)− 1

)(
1
2

)e

≡ algebra (see above)

m+ n+ 1+

2N−(m+n+1)∑

e=N−m
e

(
e− 1

N −m− 1

)(
1
2

)e
+

2N−(m+n+1)∑
e=N−n

e

(
e− 1

N − n− 1

)(
1
2

)e

−

2N−(m+n+1)∑

e=N−m

(
e− 1

N −m− 1

)(
1
2

)e
+

2N−(m+n+1)∑
e=N−n

(
e− 1

N − n− 1

)(
1
2

)e

≡ algebra (the second half of this is the sum of the pdf † of the distribution = 1)

m+ n+
2N−(m+n+1)∑

e=N−m
e

(
e− 1

N −m− 1

)(
1
2

)e
+

2N−(m+n+1)∑
e=N−n

e

(
e− 1

N − n− 1

)(
1
2

)e
≡ Inv by definition

The pdf remark † can be informally reasoned about as follows. These two summa-
tions expand to give the probabilities of all the possible ways in which the remaining
number of iterations of the loop can occur after m + n iterations have already happened

155

(based on the negative binomial distribution)1. As the loop is guaranteed to terminate
in one of these ways (when either n or m reaches N) these probabilities must sum to
one. Note that the guard of the loop ensures that m < N ∧ n < N .

When reasoning about loops it is also important to show that the termination values
are as expected, i.e. that:

Inv(m,N, e) = m+N , (A.2)

and

Inv(N,n, e) = N + n . (A.3)

This is proved formally for the former (a similar argument follows by symmetry for the
latter) as shown below:

Inv(m,N, e)
≡ definition of Inv

m+N+
2N−(m+N+1)∑

e=N−m
e

(
e− 1

N −m− 1

)(
1
2

)e
+

2N−(m+N+1)∑
e=N−N

e

(
e− 1

N −N − 1

)(
1
2

)e
≡ arithmetic

m+N +
N−m−1∑
e=N−m

e

(
e− 1

N −m− 1

)(
1
2

)e
+
N−m−1∑
e=0

e

(
e− 1
−1

)(
1
2

)e
≡ arithmetic†

m+N + 0 + 0
≡ arithmetic

m+N

Note that for the line marked †, the combination nC−1 is not really zero, but undefined.
To overcome this problem, the loop invariant Inv could be modified to include the guard
[m < N ∧ n < N]. It would be trivial to include this in all of the calculations, but it
has been omitted to provide a cleaner presentation.

Finally, the expected lifetime e of the system can be derived by evaluating the loop
invariant Inv at initialisation, i.e. Inv(0, 0, e). This analysis proceeds as follows:

Inv(0, 0, e)
≡ definition of Inv

0 + 0 +
2N−(0+0+1)∑
e=N−0

e

(
e− 1

N − 0− 1

)(
1
2

)e
+

2N−(0+0+1)∑
e=N−0

e

(
e− 1

N − 0− 1

)(
1
2

)e
1Note that this expression is exactly that of the second half of the expectation, without the multi-

plication by e to get the expected value of e.

156

≡ arithmetic

2N−1∑
e=N

e

(
e− 1
N − 1

)(
1
2

)e
+

2N−1∑
e=N

e

(
e− 1
N − 1

)(
1
2

)e
≡ arithmetic

2 ∗
2N−1∑
e=N

e

(
e− 1
N − 1

)(
1
2

)e

This concludes the formal analysis of the wear-levelling algorithm for flash filestores
presented in Chapter 3.

Appendix B

Emergency Brake Models and

Proofs

This appendix provides the full models and proofs for the emergency brake case study
discussed in Chapter 4. The PRISM models are presented first, these are followed by
the pB models and proofs, and finally the stochastic Event-B models and proofs are
presented.

B.1 PRISM Models

This section provides the PRISM models of the emergency brake case study as discussed
in Section 4.2. The first model contains all the functionality in one module, whereas
the second model is separated into modules for requesting and applying the emergency
brake. Both models have the same reward structure, which is used in Section 4.2 to
analyse the likelihood of ending up in the unsafe failure state.

B.1.1 Version 1

// First PRISM model of the emergency brake (EB) scenario, all functionality in one module
// Author: Zoe Andrews
// Version: 1.0 (18 July 2008)

ctmc

// Parameters:

// The brake is requested this many times per hour
const double request rate = 0.1;

157

B.1 PRISM Models 158

// The brake fails in a safe way (EB applied not commanded) this many times per hour

const double safe fail rate = 0.001;

// The probability that the brake fails in an unsafe way (EB commanded, not applied)

const double unsafe fail prob = 0.01;

module EB

// State variables

commanded : bool init false; // Whether the EB has been requested or not

applied : bool init false; // Whether the EB is applied or not

// A successful request for the EB

[request success] commanded=false & applied=false ->

request rate*(1-unsafe fail prob) : commanded’=true & applied’=true;

// An unsuccessful request for the EB (ie an unsafe failure)

[unsafe failure] commanded=false & applied=false ->

request rate*unsafe fail prob : commanded’=true;

// A safe failure occurs, ie the emergency brake is applied without a command

[safe failure] commanded=false & applied=false -> safe fail rate : applied’=true;

endmodule

// Reward structures

rewards “unsafe failures”

commanded=true & applied=false : 1;

endrewards

B.1.2 Version 2

// Second PRISM model of the emergency brake (EB) scenario

// Functionality separated into request and application modules

// Author: Zoe Andrews

// Version: 1.0 (4th December 2008)

ctmc

// Parameters:

B.1 PRISM Models 159

// The brake is requested this many times per hour

const double request rate = 0.1;

// The brake fails in a safe way (EB applied not commanded) this many times per hour

const double safe fail rate = 0.001;

// The probability that the brake fails in an unsafe way (EB commanded, not applied)

const double unsafe fail prob = 0.01;

module EB request

// State variables

commanded : bool init false; // Whether the EB has been requested or not

// Synchronises with the request action in the EB application module

// Models the act of requesting the EB

[request] commanded=false & applied=false -> request rate : commanded’=true;

endmodule

module EB application

// State variables

applied : bool init false; // Whether the EB is applied or not

// A safe failure occurs, ie the emergency brake is applied without a command

[safe failure] commanded=false & applied=false -> safe fail rate : applied’=true;

// Synchronises with the request action in the EB request module

// Once a request has occurred the EB is applied with probability

// 1 - the unsafe failure probability (and remains false with prob unsafe fail prob)

[request] true -> 1 - unsafe fail prob : applied’=true + unsafe fail prob : applied’=false;

endmodule

// Reward structures

rewards “unsafe failures”

commanded=true & applied=false : 1;

endrewards

B.2 pB Models 160

Note that the analysis of the PRISM models was described in Section 4.2 and is not
repeated here.

B.2 pB Models

This section provides the pB models of the emergency brake case study as discussed
in Section 4.3. The first model ignores the timing aspects of the case study and just
considers the relative likelihood of each the events occurring, whereas the second model
includes a time variable to approximate the advancing of time. The analysis of these
models is given in Appendix B.3.

B.2.1 Option 1

// Version 1 based on Embedded Markov Chain approach
// (What happens next? Timing aspects of the case study are ignored)

MACHINE EmergencyBrakeV 1()

CONSTANTS
p us, p safe // Probabilities of unsafe and safe failure events respectively

PROPERTIES
p us ∈ REAL ∧ p safe ∈ REAL

VARIABLES
// c and n record historical data for analysis
// n represents total runs of the model
// c represents number of runs resulting in unsafe failures
EB command,EB applied, c, n

INVARIANT
EB command ∈ BOOL ∧ EB applied ∈ BOOL ∧ c ∈ NAT ∧ n ∈ NAT

EXPECTATIONS
// Expected proportion of unsafe failures is always at most p max
real(0) ≤ real(n)× p max− real(c)

INITIALISATION
// Initially the brake is neither requested nor applied
EB command := FALSE || EB applied := FALSE || c := 0 || n := 0

B.2 pB Models 161

OPERATIONS

EB Request =̂ // The EB is requested
PRE
EB command = FALSE ∧ EB applied = FALSE

THEN
(EB command, c := TRUE , c+ 1) p us⊕
(EB command,EB applied := TRUE ,TRUE)

END;

main =̂ // Main operation: Either an EB request or safe failure occurs
PRE
EB command = FALSE ∧ EB applied = FALSE

THEN
(EB applied := TRUE p safe⊕ EB Request())
|| n := n+ 1

END

END

B.2.2 Option 2

// Version 2 based on discrete clock approach
// (What happens in the next time unit? Discrete approximation to timing aspects)

MACHINE EmergencyBrakeV 2()

CONSTANTS
// Probabilities of unsafe failure, safe failure and request events respectively
p us, p safe, p req

PROPERTIES
p us ∈ REAL ∧ p safe ∈ REAL ∧ p req ∈ REAL

VARIABLES
// c and time record historical data for analysis
// time represents the number of time units passed
// c represents number of runs resulting in unsafe failures
EB command,EB applied, c, time

INVARIANT
EB command ∈ BOOL ∧ EB applied ∈ BOOL ∧ c ∈ NAT ∧ time ∈ NAT

B.3 pB Expectation Analysis 162

EXPECTATIONS
// Expected rate of unsafe failures is always at most p max
real(0) ≤ real(time)× p max− real(c)

INITIALISATION
EB command := FALSE || EB applied := FALSE || c := 0 || time := 0

OPERATIONS

EB Request =̂ // The EB is requested
PRE
EB command = FALSE ∧ EB applied = FALSE

THEN
(EB command, c := TRUE , c+ 1) p us⊕
(EB command,EB applied := TRUE ,TRUE)

END;

main =̂ // Main operation: Either an EB request, a safe failure or nothing occurs
PRE
EB command = FALSE ∧ EB applied = FALSE

THEN
(EB applied := TRUE p safe⊕ (EB Request() p req⊕ SKIP))
|| time := time+ 1

END

END

B.3 pB Expectation Analysis

This section provides the analysis of the safety property of the emergency brake case
study in the pB models given above and discussed in Section 4.3. Recall (Section 4.1)
that the safety property states that “unsafe situation ≤ λmax/hour”. This property
was recorded in the expectations clause of the pB models above. This section gives the
formal proof that the pB models respect these expectations. The analysis is given in
turn for the two different pB models, starting with the model that ignores the timing
aspects of the case study, followed by the model that uses a time variable to approximate
the advancing of time.

B.3.1 Option 1

Recall (Section 4.3) that the expectation of the first pB model is as follows:

Inv =̂ n× p max− c .

First it is required to show that the initialisation establishes the expectation. This

B.3 pB Expectation Analysis 163

involves proving the following:

0 ≤ [Initialisation] Inv .

Consider the right hand side of the inequality:

[Initialisation] Inv
≡ definition of Initialisation

[EB command,EB applied, c, n := FALSE ,FALSE , 0, 0] Inv

≡ definition of Inv

[EB command,EB applied, c, n := FALSE ,FALSE , 0, 0] (n× p max− c)

≡ 0× p max− 0 simple substitutions
≡ 0 arithmetic

Thus the initialisation procedure establishes the initial lower bound of the expectation.
It is also required to show that the operations respect the expectation. Only the

main operation is examined for this because this is the only operation that is considered
to be external1. To show that the main operation respects the expectation, the following
needs to be proved:

Inv ≤ [main] Inv .

Consider the right hand side of this inequality:

[main] Inv
≡ definition of main (EB applied := TRUE p safe⊕ EB Request ())

||
n := n+ 1

 Inv
≡ definition of EB Request and Inv

EB applied := TRUE

p safe⊕ EB command, c := TRUE , c+ 1

p us⊕
EB command,EB applied := TRUE ,TRUE

||
n := n+ 1

(n× p max− c)

1The other operations are considered to be internal (they are called by main) and are only modelled
as separate operations for a clearer presentation.

B.3 pB Expectation Analysis 164

≡ parallel substitution with p safe⊕

 EB applied := TRUE
||
n := n+ 1

p safe⊕

 EB command, c := TRUE , c+ 1

p us⊕
EB command,EB applied := TRUE ,TRUE

||
n := n+ 1

(n× p max− c)

≡ probabilistic choice substitution p safe⊕

p safe × EB applied := TRUE
||
n := n+ 1

 (n× p max− c)

+ (1− p safe) ×

 EB command, c := TRUE , c+ 1

p us⊕
EB command,EB applied := TRUE ,TRUE

||
n := n+ 1

 (n× p max− c)

≡ parallel substitution with p us⊕

p safe × EB applied := TRUE
||
n := n+ 1

 (n× p max− c)

+ (1− p safe) ×

 EB command, c := TRUE , c+ 1
||
n := n+ 1

p us⊕ EB command,EB applied := TRUE ,TRUE
||
n := n+ 1

(n× p max− c)

B.3 pB Expectation Analysis 165

≡ probabilistic choice substitution p us⊕

p safe × EB applied := TRUE
||
n := n+ 1

 (n× p max− c)

+ (1− p safe)×

p us × EB command, c := TRUE , c+ 1
||
n := n+ 1

 (n× p max− c)

+ (1− p us)× EB command,EB applied := TRUE ,TRUE
||
n := n+ 1

 (n× p max− c)

≡ parallel substitution and simple substitution

p safe × ((n+ 1)× p max− c)

+ (1− p safe)×

(
p us × ((n+ 1)× p max− (c+ 1))

+ (1− p us)× ((n+ 1)× p max− c)

)

To maintain the expectation it is required that Inv ≤ [main] Inv, thus (from the above
substitutions) that:

(n× p max− c) ≤ p safe × ((n+ 1)× p max− c)

+ (1− p safe)×

(
p us × ((n+ 1)× p max− (c+ 1))

+ (1− p us)× ((n+ 1)× p max− c)

)
≡ arithmetic

(1− p safe)× p us ≤ p max

This concludes the analysis of the expectation for the first pB model, the inequality
found above was discussed in Section 4.3.

B.3.2 Option 2

Recall (Section 4.3) that the expectation of the second pB model is as follows:

Inv =̂ time× p max− c .

First it is required to show that the initialisation establishes the expectation. This
involves proving the following:

0 ≤ [Initialisation] Inv .

Consider the right hand side of the inequality:

B.3 pB Expectation Analysis 166

[Initialisation] Inv
≡ definition of Initialisation

[EB command,EB applied, c, time := FALSE ,FALSE , 0, 0] Inv
≡ definition of Inv

[EB command,EB applied, c, time := FALSE ,FALSE , 0, 0] (time× p max− c)
≡ 0× p max− 0 simple substitutions
≡ 0 arithmetic

Thus the initialisation procedure establishes the initial lower bound of the expectation.
It is also required to show that the operations respect the expectation. As with the

first pB model, only the main operation is examined for this because this is the only
operation that is considered to be external. To show that the main operation respects
the expectation, the following needs to be proved:

Inv ≤ [main] Inv .

Consider the right hand side of this inequality:

[main] Inv
≡ definition of main (EB applied := TRUE p safe⊕ (EB Request () p req⊕ skip))

||
time := time+ 1

 Inv
≡ definition of EB Request

EB applied := TRUE

p safe⊕

 EB command, c := TRUE , c+ 1

p us⊕
EB command,EB applied := TRUE ,TRUE

p req⊕

skip

||
time := time+ 1

Inv

B.3 pB Expectation Analysis 167

≡ parallel substitution with p safe⊕

 EB applied := TRUE
||
time := time+ 1

p safe⊕

 EB command, c := TRUE , c+ 1

p us⊕
EB command,EB applied := TRUE ,TRUE

p req⊕

skip

||
time := time+ 1

Inv

≡ probabilistic choice substitution p safe⊕

p safe × EB applied := TRUE
||
time := time+ 1

 Inv
+ (1− p safe) ×

 EB command, c := TRUE , c+ 1

p us⊕
EB command,EB applied := TRUE ,TRUE

p req⊕

skip

||
time := time+ 1

Inv

≡ parallel substitution with p req⊕

p safe × EB applied := TRUE
||
time := time+ 1

 Inv
+ (1− p safe) ×

 EB command, c := TRUE , c+ 1

p us⊕
EB command,EB applied := TRUE ,TRUE

||
time := time+ 1

p req⊕ skip

||
time := time+ 1

Inv

B.3 pB Expectation Analysis 168

≡ probabilistic choice substitution p req⊕

p safe × EB applied := TRUE
||
time := time+ 1

 Inv
+ (1− p safe)×

p req ×

 EB command, c := TRUE , c+ 1

p us⊕
EB command,EB applied := TRUE ,TRUE

||
time := time+ 1

 Inv

+ (1− p req)× skip

||
time := time+ 1

 Inv

≡ parallel substitution with p us⊕

p safe × EB applied := TRUE
||
time := time+ 1

 Inv
+ (1− p safe)×

p req ×

 EB command, c := TRUE , c+ 1
||
time := time+ 1

p us⊕ EB command,EB applied := TRUE ,TRUE
||
time := time+ 1

Inv

+ (1− p req)× skip

||
time := time+ 1

 Inv

B.3 pB Expectation Analysis 169

≡ probabilistic choice substitution p us⊕

p safe × EB applied := TRUE
||
time := time+ 1

 Inv
+ (1− p safe)×

p req ×

p us × EB command, c := TRUE , c+ 1
||
time := time+ 1

 Inv
+ (1− p us)× EB command,EB applied := TRUE ,TRUE

||
time := time+ 1

 Inv

+ (1− p req)× skip

||
time := time+ 1

 Inv

≡ parallel substitution, simple substitution and definition of Inv

p safe ×
((time+ 1)× p max− c)

+ (1− p safe)×
p req ×(

p us × ((time+ 1)× p max− (c+ 1))
+ (1− p us) × ((time+ 1)× p max− c)

)
+ (1− p req)×

((time+ 1)× p max− c)

To maintain the expectation it is required that Inv ≤ [main] Inv, thus (from the above
substitutions) that:

(time× p max− c) ≤ p safe × ((time+ 1)× p max− c)
+ (1− p safe)×

p req ×
p us×

((time+ 1)× p max− (c+ 1))
+ (1− p us)×

((time+ 1)× p max− c)

+ (1− p req)×

((time+ 1)× p max− c)

B.4 Event-B Models 170

≡ arithmetic

(1− p safe)× p req × p us ≤ p max

This concludes the analysis of the expectation for the second pB model, the inequality
found above was discussed in Section 4.3.

B.4 Event-B Models

This section provides the Event-B models of the emergency brake case study as discussed
in Section 4.4. First a model of the emergency brake is given in standard Event-B (with
no stochastic behaviour). Then two stochastic Event-B models are presented. The
first of the stochastic Event-B models uses the rate parameter to model the stochastic
behaviour, whilst the second has an explicit time variable that is updated according to
the exponential distribution. The analysis of the standard Event-B model is discussed
in Section 4.4, whilst the full analysis of the stochastic Event-B models is given in
Appendix B.5.

B.4.1 Standard Event-B

The standard Event-B model of the emergency brake (EB) models just the logical be-
haviour of the system, without any indication of its dependability attributes.

MACHINE EB

VARIABLES

EB applied % Whether the EB is applied or not

EB command % Whether the EB has been requested or not

INVARIANTS

inv1 : EB applied ∈ BOOL

inv2 : EB command ∈ BOOL

inv3 : EB command = TRUE =⇒ EB applied = TRUE
% Safety property: if the EB is requested, then it is applied.

EVENTS

Initialisation

begin

act1 : EB applied := FALSE

act2 : EB command := FALSE

end

B.4 Event-B Models 171

Event Unsafe Failure =̂ % EB is requested, but not applied properly

when

grd1 : EB applied = FALSE ∧ EB command = FALSE

then

act1 : EB command := TRUE

end

Event Safe Failure =̂ % EB is applied, but has not been requested

when

grd1 : EB applied = FALSE ∧ EB command = FALSE

then

act1 : EB applied := TRUE

end

Event EB Normal =̂ % EB is requested and applied properly

when

grd1 : EB applied = FALSE ∧ EB command = FALSE

then

act1 : EB applied := TRUE

act2 : EB command := TRUE

end

END

B.4.2 Stochastic Event-B option 1

The first stochastic Event-B model uses a rate parameter to update the time passed
before an event occurs implicitly (see Section 4.4). Fresh variables (c and n) track the
history for the analysis of the probabilistic choice statement. Note that the invariant
labelled exp1 is really an expectation, likewise the actions labelled rate update time
according to the exponential distribution (Event-B does not have a way of recording
these new constructs).

MACHINE pEBv1

VARIABLES

EB applied % Whether the EB is applied or not

EB command % Whether the EB has been requested or not

c % Records number of unsafe failures

n % Records number of EB requests

B.4 Event-B Models 172

INVARIANTS

inv1 : EB applied ∈ BOOL

inv2 : EB command ∈ BOOL

inv3 : c ∈ N

inv4 : n ∈ N

exp1 : 0 ≤ n × λmax − c × λreq

% Expectation recording the safety property: rate of unsafe failures is at most λmax.

EVENTS

Initialisation

begin

act1 : EB applied := FALSE

act2 : EB command := FALSE

act3 : c := 0

act4 : n := 0

end

Event Safe Failure =̂ % EB is applied, but has not been requested

when

grd1 : EB applied = FALSE ∧ EB command = FALSE

then

rate : λsafe

act1 : EB applied := TRUE

end

Event EB Request =̂ % EB is requested and is either applied successfully or fails

when

grd1 : EB applied = FALSE ∧ EB command = FALSE

then

rate : λreq

act1 : (EB command , c,n := TRUE , c + 1 ,n + 1) p⊕
(EB applied ,EB command ,n := TRUE ,TRUE ,n + 1)

end

END

B.4 Event-B Models 173

B.4.3 Stochastic Event-B option 2

The second stochastic Event-B model has an explicit time variable that is updated ac-
cording to the exponential distribution to model the timing of an event (see Section 4.4).
Fresh variable c tracks the history for the analysis of the probabilistic choice statement.
Note that the invariant labelled exp1 is really an expectation (Event-B does not have a
way of recording expectations).

MACHINE pEBv2

VARIABLES

EB applied % Whether the EB is applied or not

EB command % Whether the EB has been requested or not

c % Records number of unsafe failures

time % Records the amount of time that has passed

INVARIANTS

inv1 : EB applied ∈ BOOL

inv2 : EB command ∈ BOOL

inv3 : c ∈ N

inv4 : time ∈ REAL

exp1 : 0 ≤ time × λmax − c
% Expectation recording the safety property: rate of unsafe failures is at most λmax.

EVENTS

Initialisation

begin

act1 : EB applied := FALSE

act2 : EB command := FALSE

act3 : c := 0

act4 : time := 0 .0

end

Event Safe Failure =̂ % EB is applied, but has not been requested

when

grd1 : EB applied = FALSE ∧ EB command = FALSE

then

rate : λsafe

act1 : EB applied := TRUE

act2 : time := time + exp(λreq + λsafe)

end

B.5 Stochastic Event-B Expectation Analysis 174

Event EB Request =̂ % EB is requested and is either applied successfully or fails

when

grd1 : EB applied = FALSE ∧ EB command = FALSE

then

rate : λreq

act1 : (EB command , c := TRUE , c + 1) p⊕
(EB applied ,EB command := TRUE ,TRUE)

act2 : time := time + exp(λreq + λsafe)

end

END

B.5 Stochastic Event-B Expectation Analysis

This section provides the analysis of the safety property of the emergency brake case
study in the stochastic Event-B models given above and discussed in Section 4.4. Recall
(Section 4.1) that the safety property states that “unsafe situation ≤ λmax/hour”.
This property was recorded in a special invariant labelled exp1 in the stochastic Event-
B models above. This section gives the formal proof that the stochastic Event-B models
respect these expectations. The analysis is given in turn for the two different stochastic
Event-B models, starting with the model that implicitly models time through the rate
parameter, followed by the model that uses an explicit assignment to update time.

B.5.1 Option 1

Recall (Section 4.4) that the expectation of the first stochastic Event-B model is as
follows:

Inv =̂ n× λmax − c× λreq .

First it is required to show that the initialisation establishes the expectation. This
involves proving the following:

0 ≤ [Initialisation] Inv .

Consider the right hand side of the inequality:

[Initialisation] Inv
≡ definition of Initialisation

[EB command,EB applied, c, n := FALSE ,FALSE , 0, 0] Inv
≡ definition of Inv

[EB command,EB applied, c, n := FALSE ,FALSE , 0, 0] (n× λmax − c× λreq)

B.5 Stochastic Event-B Expectation Analysis 175

≡ 0× λmax − 0× λreq simple substitutions
≡ 0 arithmetic

Thus the initialisation event establishes the initial lower bound of the expectation.
It is also required to show that the events respect the expectation. Only the

EB Request event is examined here because this is the most interesting event (the
Safe Failure event trivially respects the expectation). To show that the EB Request

event respects the expectation, the following needs to be proved:

Inv ≤ [EB Request] Inv .

Consider the right hand side of this inequality:

[EB Request] Inv
≡ definition of EB Request and Inv EB command, c, n := TRUE , c+ 1, n+ 1

p⊕
EB command,EB applied, n := TRUE ,TRUE , n+ 1

 (n× λmax − c× λreq)

≡ probabilistic choice substitution p⊕

p ×
[EB command, c, n := TRUE , c+ 1, n+ 1] (n× λmax − c× λreq)

+ (1− p) ×
[EB command,EB applied, n := TRUE ,TRUE , n+ 1] (n× λmax − c× λreq)

≡ parallel substitution and simple substitution

p × ((n+ 1)× λmax − (c+ 1)× λreq)
+ (1− p) × ((n+ 1)× λmax − c× λreq)

To maintain the expectation it is required that Inv ≤ [main] Inv, thus (from the above
substitutions) it is required that:

(n× λmax − c× λreq) ≤ p × ((n+ 1)× λmax − (c+ 1)× λreq)
+ (1− p)× ((n+ 1)× λmax − c× λreq)

≡ arithmetic

p× λreq ≤ λmax

This concludes the analysis of the expectation for the first stochastic Event-B model,
the inequality found above was discussed in Section 4.4.

B.5.2 Option 2

Two expectations are analysed for option 2 as the first gives an interesting result as
discussed in Section 4.4.3.

Recall (Section 4.4) that the first expectation of interest (Formula 4.9) of the second
stochastic Event-B model is as follows:

B.5 Stochastic Event-B Expectation Analysis 176

Inv =̂ time× λmax − c .

First it is required to show that the initialisation establishes the expectation. This
involves proving the following:

0 ≤ [Initialisation] Inv .

Consider the right hand side of the inequality:

[Initialisation] Inv
≡ definition of Initialisation

[EB command,EB applied, c, time := FALSE ,FALSE , 0, 0] Inv
≡ definition of Inv

[EB command,EB applied, c, time := FALSE ,FALSE , 0, 0] (time× λmax − c)
≡ 0× λmax − 0 simple substitutions
≡ 0 arithmetic

Thus the initialisation event establishes the initial lower bound of the expectation.
It is also required to show that the events respect the expectation. Only the

EB Request event is examined here because this is the most interesting event (the
Safe Failure event trivially respects the expectation). To show that the EB Request

event respects the expectation, the following needs to be proved:

Inv ≤ [EB Request] Inv .

Consider the right hand side of this inequality:

[EB Request] Inv
≡ definition of EB Request and Inv

 EB command, c := TRUE , c+ 1

p⊕
EB command,EB applied := TRUE ,TRUE

||
time := time+ exp (λreq + λsafe)

 (time× λmax − c)

≡ parallel substitution with p⊕

 EB command, c := TRUE , c+ 1
||
time := time+ exp (λreq + λsafe)

p⊕ EB command,EB applied := TRUE ,TRUE

||
time := time+ exp (λreq + λsafe)

(time× λmax − c)

B.5 Stochastic Event-B Expectation Analysis 177

≡ probabilistic choice substitution p⊕

p × EB command, c := TRUE , c+ 1
||
time := time+ exp (λreq + λsafe)

 (time× λmax − c)

+ (1− p) × EB command,EB applied := TRUE ,TRUE
||
time := time+ exp (λreq + λsafe)

 (time× λmax − c)

≡ exponential, parallel and simple substitution

p ×
((
time+ 1

λreq+λsafe

)
× λmax − (c+ 1)

)
+ (1− p) ×

((
time+ 1

λreq+λsafe

)
× λmax − c

)
To maintain the expectation it is required that Inv ≤ [main] Inv, thus (from the above
substitutions) it is required that:

(time× λmax − c) ≤ p ×
((
time+ 1

λreq+λsafe

)
× λmax − (c+ 1)

)
+ (1− p)×

((
time+ 1

λreq+λsafe

)
× λmax − c

)
≡ arithmetic

p× (λreq + λsafe) ≤ λmax

This concludes the analysis of the first expectation (Formula 4.9) for the second stochas-
tic Event-B model. However, this provides a conservative estimate of the relationship
between the parameters (see Section 4.4.3), therefore a second expectation is also anal-
ysed.

Recall (Section 4.4) that the second expectation of interest (Formula 4.11) for the
second stochastic Event-B model is as follows:

Inv =̂ time× λmax −
λreq

λreq + λsafe
× c .

First it is required to show that the initialisation establishes the expectation. This
involves proving the following:

0 ≤ [Initialisation] Inv .

Consider the right hand side of the inequality:

[Initialisation] Inv
≡ definition of Initialisation

[EB command,EB applied, c, time := FALSE ,FALSE , 0, 0] Inv

B.5 Stochastic Event-B Expectation Analysis 178

≡ definition of Inv[
EB command,EB applied, c, time :=

FALSE ,FALSE , 0, 0

](
time× λmax − λreq

λreq+λsafe
× c
)

≡ 0× λmax − λreq

λreq+λsafe
× 0 simple substitutions

≡ 0 arithmetic

Thus the initialisation event establishes the initial lower bound of the expectation.
It is also required to show that the events respect the expectation. Only the

EB Request event is examined here because this is the most interesting event (the
Safe Failure event trivially respects the expectation). To show that the EB Request

event respects the expectation, the following needs to be proved:

Inv ≤ [EB Request] Inv .

Consider the right hand side of this inequality:

[EB Request] Inv
≡ definition of EB Request

 EB command, c := TRUE , c+ 1

p⊕
EB command,EB applied := TRUE ,TRUE

||
time := time+ exp (λreq + λsafe)

 Inv
≡ parallel substitution with p⊕

 EB command, c := TRUE , c+ 1
||
time := time+ exp (λreq + λsafe)

p⊕ EB command,EB applied := TRUE ,TRUE

||
time := time+ exp (λreq + λsafe)

Inv

≡ probabilistic choice substitution p⊕ and definition of Inv

p × EB command, c := TRUE , c+ 1
||
time := time+ exp (λreq + λsafe)

(time× λmax − λreq

λreq+λsafe
× c
)

+ (1− p) × EB command,EB applied := TRUE ,TRUE
||
time := time+ exp (λreq + λsafe)

(time× λmax − λreq

λreq+λsafe
× c
)

≡ exponential, parallel and simple substitution

p ×
((
time+ 1

λreq+λsafe

)
× λmax − λreq

λreq+λsafe
× (c+ 1)

)
+ (1− p) ×

((
time+ 1

λreq+λsafe

)
× λmax − λreq

λreq+λsafe
× c
)

B.5 Stochastic Event-B Expectation Analysis 179

To maintain the expectation it is required that Inv ≤ [main] Inv, thus (from the above
substitutions) it is required that:(

time× λmax − λreq

λreq+λsafe
× c
)
≤

p ×
((
time+ 1

λreq+λsafe

)
× λmax − λreq

λreq+λsafe
× (c+ 1)

)
+

(1− p)×
((
time+ 1

λreq+λsafe

)
× λmax − λreq

λreq+λsafe
× c
)

≡ arithmetic

p× λreq ≤ λmax

This concludes the analysis of the second expectation for the second stochastic Event-B
model, the inequality found above was discussed in Section 4.4.

Appendix C

Proving the Healthiness

Conditions in Deterministic sGCL

This appendix provides further details of the proof work required to show the healthiness
conditions in the deterministic version of sGCL. In particular, this appendix provides
the full proofs of continuity and linearity as these were only summarised in Section 6.3.1.

C.1 Continuity

The continuity of each of the program constructs is demonstrated. In some cases these
are trivially continuous, but others require a more complex argument. Recall (Defini-
tion 6.3) that continuity is defined as follows:

Definition. An expectation transformer wp.prog is boundedly continuous iff the follow-
ing holds

wp.prog. (tB) ≡ (tQ : B · wp.prog.Q) ,

where B is a ≤-directed and bounded subset of ES, such that tB exists.

Abortion is trivially continuous as shown below:

Lemma C.1. The program abort is continuous, i.e.

wp.abort. (tB) ≡ (tQ : B · wp.abort.Q) ,

where B is a ≤-directed and bounded subset of ES, such that tB exists.

Proof.

wp.abort. (tB)
≡ 0 wp definition

≡ t{0, 0, . . .} maximum of zeroes is zero

180

C.1 Continuity 181

≡ (tQ : B · wp.abort.Q) wp definition

Identity is also trivially continuous as shown below:

Lemma C.2. The program skip is continuous, i.e.

wp.skip. (tB) ≡ (tQ : B · wp.skip.Q) ,

where B is a ≤-directed and bounded subset of ES, such that tB exists.

Proof.

wp.skip. (tB)
≡ (tB) wp definition

≡ (tQ : B · wp.skip.Q) wp definition

Assignment is continuous because an assignment operation simply transforms the
current state to any other valid state. As the ordering of the expectations is defined for
any state, updating a state will not change the ordering of the expectations, and hence
the supremum will not be changed under assignment. A similar argument follows for
stochastic assignment, which is reinforced by the monotone convergence theorem [72] as
follows:

Lemma C.3. The program (x :⊕ µ) is continuous, i.e.

wp. (x :⊕ µ) . (tB) ≡ (tQ : B · wp. (x :⊕ µ) .Q) ,

where B is a ≤-directed and bounded subset of ES, such that tB exists.

Proof.

wp. (x :⊕ µ) . (tB)

≡
∫
µ

(tB) wp definition

≡
(
tQ : B ·

∫
µ
Q

)
monotone convergence theorem

≡ (tQ : B · wp. (x :⊕ µ) .Q) wp definition

The sequential composition of two continuous programs is trivially continuous as
follows:

Lemma C.4. The program prog1; prog2 is continuous when programs prog1 and prog2

are continuous, i.e.

C.1 Continuity 182

wp. (prog1; prog2) . (tB) ≡ (tQ : B · wp. (prog1; prog2) .Q) ,

where B is a ≤-directed and bounded subset of ES, such that tB exists.

Proof.

wp. (prog1; prog2) . (tB)
≡ wp.prog1. (wp.prog2. (tB)) wp definition

≡ wp.prog1. (tQ : B · wp.prog2.Q) prog2 continuous

≡ (tQ : B · wp.prog1. (wp.prog2.Q)) prog1 continuous

≡ (tQ : B · wp. (prog1; prog2) .Q) wp definition

Proving the continuity of probabilistic choice (and thus conditional choice) is also
fairly straightforward:

Lemma C.5. The program prog1 p⊕ prog2 is continuous when programs prog1 and
prog2 are continuous, i.e.

wp. (prog1 p⊕ prog2) . (tB) ≡ (tQ : B · wp. (prog1 p⊕ prog2) .Q) ,

where B is a ≤-directed and bounded subset of ES, such that tB exists.

Proof.

wp. (prog1 p⊕ prog2) . (tB)
≡ p ∗ wp.prog1. (tB) + (1− p) ∗ wp.prog2. (tB) wp definition

≡ p ∗ (tQ : B · wp.prog1.Q) + (1− p) ∗ wp.prog2. (tB) prog1 continuous

≡ p ∗ (tQ : B · wp.prog1.Q) + (1− p) ∗ (tQ : B · wp.prog2.Q) prog2 continuous

≡ (tQ : B · p ∗ wp.prog1.Q) + (tQ : B · (1− p) ∗ wp.prog2.Q) p not dependent on Q

≡ (tQ : B · p ∗ wp.prog1.Q+ (1− p) ∗ wp.prog2.Q) addition is continuous

≡ (tQ : B · wp. (prog1 p⊕ prog2) .Q) wp definition

For completeness the proof of the continuity of a finite while-loop (Lemma 6.4) is
repeated here:

Lemma. A finite loop do G→ body od is continuous when the program body is contin-
uous, i.e.

wp. (do G→ body od) . (tB) ≡ (tQ : B · wp. (do G→ body od) .Q) ,

where B is a ≤-directed and bounded subset of ES, such that tB exists.

Proof. The proof follows from unfolding the definition of the loop, based on the fact
that a finite loop terminates within n iterations for some finite n:

C.2 Linearity 183

wp. (do G→ body od) . (tB)
≡ unfolding (up to n iterations)

[¬G] ∗ (tB)
+ [G] ∗ wp.body. ([¬G] ∗ (tB))
+ [G] ∗ wp.body. ([G] ∗ wp.body. ([¬G] ∗ (tB)))
+ . . .

+ ([G] ∗ wp.body)n . ([¬G] ∗ (tB))
≡ G not dependent on Q

(tQ : B · [¬G] ∗Q)
+ [G] ∗ wp.body. (tQ : B · [¬G] ∗Q)
+ [G] ∗ wp.body. ([G] ∗ wp.body. (tQ : B · [¬G] ∗Q))
+ . . .

+ ([G] ∗ wp.body)n . (tQ : B · [¬G] ∗Q)
≡ body and sequential composition continuous, G not dependent on Q

(tQ : B · [¬G] ∗Q)
+ (tQ : B · [G] ∗ wp.body. ([¬G] ∗Q))
+ (tQ : B · [G] ∗ wp.body. ([G] ∗ wp.body. ([¬G] ∗Q)))
+ . . .

+ (tQ : B · ([G] ∗ wp.body)n . ([¬G] ∗Q))
≡ addition is continuoustQ : B ·

[¬G] ∗Q

+ [G] ∗ wp.body. ([¬G] ∗Q)
+ [G] ∗ wp.body. ([G] ∗ wp.body. ([¬G] ∗Q))
+ . . .

+ ([G] ∗ wp.body)n . ([¬G] ∗Q)

≡ (tQ : B · wp. (do G→ body od) .Q) folding (up to n iterations)

where ([G] ∗ wp.body)n represents n nested applications of [G] ∗ wp.body. For example,
([G] ∗ wp.body)2 .X is interpreted as [G] ∗ wp.body. ([G] ∗ wp.body.X).

Recall (Section 6.2) that only finite while loops are allowed in sGCL, therefore this is
sufficient.

C.2 Linearity

Each of the program constructs are considered individually to ensure that they are all
linear. Most of them are fairly trivially linear, however recursion requires more thought.
Recall (Section 6.3.1) that a transformer is linear iff

C.2 Linearity 184

wp.prog.(aα+ bβ) = a ∗ wp.prog.α+ b ∗ wp.prog.β ,

for expectations α, β and reals a, b.
Abortion is trivially linear as shown below:

Lemma C.6. The program abort is linear, i.e.

wp.abort. (aα+ bβ) = a ∗ wp.abort.α+ b ∗ wp.abort.β ,

for expectations α, β and reals a, b.

Proof.

wp.abort. (aα+ bβ)
≡ 0 wp definition

≡ 0 + 0 basic arithmetic

≡ a ∗ wp.abort.α+ b ∗ wp.abort.β basic arithmetic, wp definition

Identity is also trivially linear as shown below:

Lemma C.7. The program skip is linear, i.e.

wp.skip. (aα+ bβ) = a ∗ wp.skip.α+ b ∗ wp.skip.β ,

for expectations α, β and reals a, b.

Proof.

wp.skip. (aα+ bβ)
≡ aα+ bβ wp definition

≡ a ∗ wp.skip.α+ b ∗ wp.skip.β wp definition

Assignment according to some expression is linear as shown below:

Lemma C.8. The program (x := E) is linear, i.e.

wp. (x := E) . (aα+ bβ) = a ∗ wp. (x := E) .α+ b ∗ wp. (x := E) .β ,

for expectations α, β and reals a, b.

Proof.

wp. (x := E) . (aα+ bβ)
≡ (aα+ bβ) [x\E] wp definition

≡ (aα) [x\E] + (bβ) [x\E] substitution distributes over addition

C.2 Linearity 185

≡ a (α[x\E]) + b (β[x\E]) no free x in constants a, b

≡ a ∗ wp. (x := E) .α+ b ∗ wp. (x := E) .β wp definition

Assignment according to a continuous probability measure is linear as shown below:

Lemma C.9. The program (x :⊕ µ) is linear, i.e.

wp. (x :⊕ µ) . (aα+ bβ) = a ∗ wp. (x :⊕ µ) .α+ b ∗ wp. (x :⊕ µ) .β ,

for expectations α, β and reals a, b.

Proof.

wp. (x :⊕ µ) . (aα+ bβ)

≡
∫
µ

(aα+ bβ) wp definition

≡ a

∫
µ
α+ b

∫
µ
β linearity of Lebesgue integration

≡ a ∗ wp. (x :⊕ µ) .α+ b ∗ wp. (x :⊕ µ) .β wp definition

The sequential composition of two linear programs is linear as shown below:

Lemma C.10. The program (prog1; prog2) is linear, i.e.

wp. (prog1; prog2) . (aα+ bβ) = a ∗ wp. (prog1; prog2) .α+ b ∗ wp. (prog1; prog2) .β ,

for expectations α, β, reals a, b and linear programs prog1, prog2.

Proof.

wp. (prog1; prog2) . (aα+ bβ)
≡ wp.prog1. (wp.prog2. (aα+ bβ)) wp definition

≡ wp.prog1. (a ∗ wp.prog2.α+ b ∗ wp.prog2.β) prog2 linear

≡ a ∗ wp.prog1. (wp.prog2.α) + b ∗ wp.prog1. (wp.prog2.β) prog1 linear

≡ a ∗ wp. (prog1; prog2) .α+ b ∗ wp. (prog1; prog2) .β wp definition

The probabilistic choice of two linear programs is linear as shown below:

Lemma C.11. The program (prog1 p⊕ prog2) is linear, i.e.

wp. (prog1 p⊕ prog2) . (aα+ bβ) = a ∗ wp. (prog1 p⊕ prog2) .α
+ b ∗ wp. (prog1 p⊕ prog2) .β ,

for expectations α, β, reals a, b and linear programs prog1, prog2.

C.2 Linearity 186

Proof.

wp. (prog1 p⊕ prog2) . (aα+ bβ)
≡ p ∗ wp.prog1. (aα+ bβ) + (1− p) ∗ wp.prog2. (aα+ bβ) wp definition

≡ ap ∗ wp.prog1.α+ bp ∗ wp.prog1.β + (1− p) ∗ wp.prog2. (aα+ bβ) prog1 linear

≡ prog2 linear

ap ∗ wp.prog1.α+ bp ∗ wp.prog1.β +
a (1− p) ∗ wp.prog2.α+ b (1− p) ∗ wp.prog2.β

≡ simple algebra

a (p ∗ wp.prog1.α+ (1− p) ∗ wp.prog2.α) +
b (p ∗ wp.prog1.β + (1− p) ∗ wp.prog2.β)

≡ a ∗ wp. (prog1 p⊕ prog2) .α+ b ∗ wp. (prog1; prog2) .β wp definition

The conditional choice of two linear programs is also linear. The reasoning follows
from that of probabilistic choice as conditional choice can be thought of as a special case
of probabilistic choice where p = [G] for some measurable set G.

For completeness the proof that a finite while-loop is linear (Lemma 6.5) is repeated
here:

Lemma. A finite loop do G→ body od is linear when the program body is linear, i.e.

wp. (do G→ body od) . (aα+ bβ) = a ∗ wp. (do G→ body od) .α
+ b ∗ wp. (do G→ body od) .β ,

for expectations α, β, reals a, b and linear programs prog1, prog2.

Proof. The proof follows from unfolding the definition of the loop, based on the fact
that a finite loop terminates within n iterations for some finite n:

wp. (do G→ body od) . (aα+ bβ)
≡ unfolding (up to n iterations)

[¬G] ∗ (aα+ bβ)
+ [G] ∗ wp.body. ([¬G] ∗ (aα+ bβ))
+ [G] ∗ wp.body. ([G] ∗ wp.body. ([¬G] ∗ (aα+ bβ)))
+ . . .

+ ([G] ∗ wp.body)n . ([¬G] ∗ (aα+ bβ))

C.2 Linearity 187

≡ simple algebra

a ∗ [¬G] ∗ α+ b ∗ [¬G] ∗ β
+ [G] ∗ wp.body. (a ∗ [¬G] ∗ α+ b ∗ [¬G] ∗ β)
+ [G] ∗ wp.body. ([G] ∗ wp.body. (a ∗ [¬G] ∗ α+ b ∗ [¬G] ∗ β))
+ . . .

+ ([G] ∗ wp.body)n . (a ∗ [¬G] ∗ α+ b ∗ [¬G] ∗ β)
≡ body and sequential composition linear

a ∗ [¬G] ∗ α
+ b ∗ [¬G] ∗ β
+ a ∗ [G] ∗ wp.body. ([¬G] ∗ α)
+ b ∗ [G] ∗ wp.body. ([¬G] ∗ β)
+ a ∗ [G] ∗ wp.body. ([G] ∗ wp.body. ([¬G] ∗ α))
+ b ∗ [G] ∗ wp.body. ([G] ∗ wp.body. ([¬G] ∗ β))
+ . . .

+ a ∗ ([G] ∗ wp.body)n . ([¬G] ∗ α)
+ b ∗ ([G] ∗ wp.body)n . ([¬G] ∗ β)

≡ simple algebra

a ∗

[¬G] ∗ α

+ [G] ∗ wp.body. ([¬G] ∗ α)
+ [G] ∗ wp.body. ([G] ∗ wp.body. ([¬G] ∗ α))
+ . . .

+ ([G] ∗ wp.body)n . ([¬G] ∗ α)

+ b ∗

[¬G] ∗ β

+ [G] ∗ wp.body. ([¬G] ∗ β)
+ [G] ∗ wp.body. ([G] ∗ wp.body. ([¬G] ∗ β))
+ . . .

+ ([G] ∗ wp.body)n . ([¬G] ∗ β)

≡ folding (up to n iterations)

a ∗ wp. (do G→ body od) .α+ b ∗ wp. (do G→ body od) .β

where ([G] ∗ wp.body)n represents n nested applications of [G] ∗ wp.body. For example,
([G] ∗ wp.body)2 .X is interpreted as [G] ∗ wp.body. ([G] ∗ wp.body.X).

As with continuity, this is sufficient because recursion is restricted to finite while loops
in sGCL.

Appendix D

The Challenge of Proving

Consistency in a

Non-Deterministic sGCL

This appendix discusses in detail the issues in showing the consistency between the
transformer and relational semantics of a non-deterministic sGCL as described in Chap-
ter 7. It also includes an aside on the use of the Kantorovich metric with sub-probability
measures.

D.1 Consistency Proofs

In this section the challenge of proving the consistency of the relational and transformer
semantics is discussed. This involves two main steps: showing a 1 – 1 correspondence be-
tween the two semantics through mutual inverses wp and rp (Definitions 7.16 and 7.18);
and showing that all of the operations have equivalent definitions in both semantics.
The first of these is discussed in detail in this section and is split into two sub-tasks:
that of showing that wp is an injection, and likewise for rp. The second step has not
been explored in depth, as these proofs are dependant on how the issues arising from
the first step are resolved.

When considering the proofs that wp and rp are both injections, the approach ex-
amined is to approximate the continuous probability measures with appropriate discrete
equivalents, to enable re-use of the proofs provided for pGCL where possible. There-
fore, such an approximation (along with some useful properties of it) are described before
discussing the injection proofs.

Note that whilst some of the definitions and lemmas given here are only shown
for a one-dimensional state space, it is believed that the results will also hold for an
n-dimensional state space (with n finite).

188

D.1 Consistency Proofs 189

D.1.1 A discrete approximation for measures

A discrete approximation for measures is described, and some useful properties of it are
proved. It is intended that this provides the building blocks for proving that wp and rp
are injections. Note that (with the intention of wider applicability) these proofs have
been shown for the entire real space where possible. It is trivial to specialise them to
closed intervals of the form [a, b] as required for the injection proofs.

The ε-approximation of a measure µ is defined as follows:

Definition D.1. An ε-approximation, µε, of µ is defined for any ε > 0 as:

µε :=
∑
i

ai ∗ xi ,

where i ∈ Z, and for every interval

Ai := [i ∗ ε, (i+ 1) ε] ,

xi represents the point distribution at its midpoint
(
i+ 1

2

)
ε and ai = µ.Ai is a weight

according to µ.

The ε-approximation essentially divides the state space of the measure into intervals of
width ε and provides a discrete approximation for each using a point distribution that
is weighted according to the original measure.

Figure D.1 illustrates the ε-approximation for a truncated1 exponential distribution,
where ε takes the value 0.2 in this case. Note that the illustration is given for the
distribution function. This is because the density function of a point distribution is
infinitesimally narrow and tall, and therefore difficult to plot.

The measure and its approximation can be arbitrarily close

The first and crucial property of the ε-approximation is that ε can be chosen so that the
approximation is arbitrarily close (according to the Kantorovich metric) to the original
measure. More precisely it is shown that an ε-approximation µε is within ε distance
(under the Kantorovich metric) of the original measure µ. This is shown in Lemma D.2:

Lemma D.2. The ε-approximation of a measure µ is within ε of µ (according to the
Kantorovich metric), i.e.

K.µ.µε ≤ ε

where µε is as defined in Definition D.1.

Proof. Consider a single interval Ai as defined in Definition D.1, the greatest possible
(Kantorovich) distance between µ and µε needs to be determined over interval Ai. The

1The truncated exponential distribution is simply the exponential distribution cut off at some finite
value and re-scaled so that the total probability defined is still one.

D.1 Consistency Proofs 190

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Epsilon approximation cdf

x

F
(x

)

Figure D.1: The ε-approximation (solid) of a truncated exponential distribution
(dashed)

Kantorovich distance between µ and µε is by definition the area enclosed between the
curves of their respective distribution functions2. For any two arbitrary measures µ
and µε the maximal area between the two curves is simply the width of the interval, ε,
multiplied by the total probability within that interval, µ.Ai. However as µε is defined
to be the point distribution at the mid-point of the interval (which bisects the space)
and both µ and µε must be monotonically increasing, the maximal area between the
two graphs is halved giving ε

2 ∗ µ.Ai.
Now find the maximal Kantorovich distance between arbitrary µ and µε by summing

the maximal distances of all of the partitions:
2Note that this use of the definition of the Kantorovich metric for real numbers is valid here. This is

because, by definition, the total probability defined for a measure and its ε-approximation will always
be the same.

D.1 Consistency Proofs 191

sup {K.µ.µε | µ ∈ S̄}

≡
∑
i∈Z

ε

2
∗ µ.Ai by definition of µε and explanation above

≡
ε

2

∑
i∈Z

µ.Ai ε
2 not dependant on i

≤
ε

2
distinct partitions and µ.[0, 1] ≤ 1

< ε simple algebra

It is interesting to note that this approximation result applies to the infinite domain
because the total measure of the entire state space must always be no more than one,
no matter how big the domain is.

Integration over synchronised simple functions are equal

The next property of interest states that the Lebesgue integral of certain functions are
equivalent with respect to the measure and its ε-approximation. More specifically, for
some simple function f (see Section 5.1.2) whose constituent indicator functions operate
over the intervals Ai of the approximation µε, the integral of f over µε is the same as
that over µ. This is shown in Lemma D.3.

Lemma D.3. For ε-approximation µε of a probability measure µ,∫
S
f dµ =

∫
S
f dµε ,

where f.x =
∑

i aiIAi .x is a simple function with reals ai, indicator functions IAi .x, and
µε, Ai are as given in Definition D.1.

Proof. This is proved by showing that the difference between these two integrals is zero:∫
S
f dµ−

∫
S
f dµε

≡
∑
i

aiµ.Ai −
∑
i

aiµε.Ai Definition 5.4, Ai’s disjoint

≡
∑
i

aiµ.Ai −
∑
i

aiµ.Ai ∗ xi.Ai Definition D.1

≡
∑
i

aiµ.Ai −
∑
i

aiµ.Ai ∗ 1 by definition of s̄ (Definition 7.3), xi ∈ Ai

≡ 0 simple arithmetic

This property allows the ε-approximation to be used in situations where the equality
of the integrals of the measures over these kinds of simple functions is important, as
opposed to the equality of the measures themselves.

D.1 Consistency Proofs 192

The distance between two approximations is bounded

This property shows that for two measures, µ and µ′, that are separated by a Kantorovich
distance of d, the distance between their respective approximations µε and µ′ε is bounded
below by d−2ε. A similar argument can also be used to show that the approximations are
bounded above by d+2ε. Intuitively, this is the first step towards showing that a distance
between two measures leads to a distance between their respective approximations. The
lower bound of two approximations is proved in Lemma D.4.

Lemma D.4. For two measures µ and µ′ with Kantorovich distance K.µ.µ′ = d,

K.µε.µ
′
ε ≥ d− 2ε ,

where µε is as defined in Lemma D.2.

Proof. This is proved by using the (metric space) triangle inequality d.x.z ≤ d.x.y+d.y.z:

K.µε.µ
′
ε

≥ K.µ.µ′.− (K.µ.µε +K.µ′.µ′ε) triangle inequality and simple algebra

≥ d− 2ε K.µ.µ′ = d and Lemma D.2

Corollary. Using similar reasoning the following also holds:

K.µε.µ
′
ε ≤ d+ 2ε

Note that if ε is chosen to be d
3 , it trivially follows that K.µε.µ′ε > 0, for all d > 0. Also,

if d < 2ε then K.µε.µ
′
ε ≥ 0, as distance cannot be negative.

Compactness is preserved by the closure of a set of approximations

Compactness is an important property for proving the relationship between the trans-
former and relational semantics. This next property shows that taking the Kantorovich-
closure of a set of ε-approximations of a compact set of measures results in a compact
set. However, this proof only holds when the state space is restricted to measures over
closed intervals [a, b], because the set of all measures over any closed interval [a, b] is
compact [82]. This is shown in Lemma D.5.

Lemma D.5. For a compact set of measures C over a closed interval [a, b] for reals
a, b, the closure of the set of ε-approximations, Cε, of measures in C is also compact.
Here the ε-approximation of a measure is as given in Definition D.1 and compactness is
defined according to the Kantorovich metric.

D.1 Consistency Proofs 193

Proof. The proof uses the fact that a closed subset of a compact set is also compact [77,
Section 1.3]. Consider the set of all measures over [a, b] and call it KS. This is compact
under the Kantorovich metric because the interval [a, b] is compact [82]. Both C and Cε
are subsets of KS as the state space of the measures in C is restricted to [a, b], and the
ε-approximation of a measure does not change the values it ranges over. Examining Cε
the following holds (where Cl.X denotes the closure of set X) :

Cε ⊆ KS
=⇒ Cl.Cε ⊆ Cl.KS closing both sides

=⇒ Cl.Cε ⊆ KS KS is compact and thus closed

Therefore the closure of Cε is a subset of a compact set and as such is itself compact.

A difference between measures can be detected by its approximations

The final property that is shown for the approximations is that if there is some separation
between a compact set of measures C and a measure µ, this difference can be detected
by their respective ε-approximations, for some appropriate choice of ε. Specifically, that
for some set of measures C and a measure µ not in C, there exists some ε > 0 such that
µε is not in the closure of Cε. This is shown in Lemma D.6.

Lemma D.6. For a compact set of measures C and a measure µ /∈ C,

∃ε ∈ R+ · µε /∈ Cl.Cε ,

where Cl.X denotes the closure of X and the ε-approximation of a measure is as given
in Definition D.1.

Proof. If µ /∈ C then ∀c ∈ C ·K.µ.c > 0 as K.x.y = 0 =⇒ x = y. Define K.µ.C to be
inf {K.µ.c | c ∈ C}, the distance between C and µ, and c′ to be the measure in C such
that K.µ.c′ = K.µ.C. Assume K.µ.C = d for some d ∈ R+ (from the first statement d
must be greater than zero). By Lemma D.4 K.µε.c′ε ≥ d− 2ε, therefore select ε = d

3 to
be a witness so that K.µε.c′ε ≥ d − 2

3d > 0 as d > 0. As c′ is the closest measure to µ,
the distance between all other c ∈ C must be strictly greater than d− 2

3d and thus also
greater than zero. Therefore, ε = d

3 =⇒ K.µε.Cl.Cε > 0 =⇒ µε /∈ Cl.Cε. Note that
this also follows for any ε < d

2 .

D.1.2 The challenge of showing that wp is an injection

Showing that the relational to transformer retraction wp is an injection is the first step
in demonstrating a 1–1 relationship between the two semantics. However, the proof is
particularly challenging. The existence of a separating hyperplane between a compact
set of measures and a further distinct measure needs to be shown. In pGCL the use of

D.1 Consistency Proofs 194

a geometric result, called the separating hyperplane lemma (Lemma E.1), can be used
almost directly by converting discrete distributions into Euclidean space. Unfortunately,
continuous measures can not be represented in Euclidean space in the same way, so more
work is required to make use of the geometric result.

Two proof strategies are explored below. The first strategy gets close to a complete
proof of the wp-injection, but is blocked by an issue with transferring the compactness
arguments from the continuous space to the discrete approximation in Euclidean space.
The second strategy looks like a promising resolution to this problem but requires further
work to prove all of the lemmas.

First proof strategy

It is proposed to approximate continuous probability measures using the ε-approximation
described above (Section D.1.1). Using this approach, the proof that wp is an injection
is outlined below (Lemma D.7), before discussing the issues that occur. The proof that
wp is an injection is based on that given by McIver et al. for pGCL [61, Lemma 5.7.2],
and takes the contrapositive as outlined below:

Lemma D.7. For any r ∈ HS,

rp. (wp.r) = r .

Proof. For arbitrary µ ∈ S̄:

µ /∈ rp. (wp.r) .s
iff µ /∈

{
µ : S̄ |

(
∀β : ES · wp.r.β.s ≤

∫
µ β
)}

Definition 7.18

iff
(
∃β : ES · wp.r.β.s >

∫
µ β
)

simple logic

iff
(
∃β : ES ·

(
uµ′ : r.s ·

∫
µ′ β
)
>
∫
µ β
)

Definition 7.16

iff
(
∃β : ES, c : R ·

(
∀µ′ : r.s ·

∫
µ′ β > c

)
∧
∫
µ β < c

)
min A > x implies all a ∈ A > x

iff µ /∈ r.s †

The justification of the if indicated by † can be shown using the separating hyperplane
lemma (Lemma E.1). This requires the conversion of measures into Euclidean space.
Then the compact set C is taken to be r.s, the point p is simply µ and the separating
hyperplane S obtained provides the required β.

For continuous probability measures the conversion to Euclidean space is achieved
by taking the ε-approximations of the measures involved. Then each point distribution
is considered to be an axis, with its weight as the coordinate for that axis. The value of ε
is chosen so that separation of the measures can be detected by their ε-approximations.
Define the (Kantorovich) distance between µ and r.s as d3. Set ε to d

3 , this ensures that
µε /∈ Cl.(r.s)ε by Lemma D.6.

3Note that the distance d must be greater than zero because µ /∈ r.s.

D.1 Consistency Proofs 195

The separating hyperplane lemma can then be applied to the set Cl.(r.s)ε with point
µε instead. However, there are still two issues to resolve before this can be achieved. The
first of these is that the separating hyperplane lemma provides a set of coefficients ai and
a constant c that describe a plane S, not an expectation. However, these coefficients can
be used to create the simple function β =

∑
i aiIAi where the Ai’s are the corresponding

intervals of the ε-approximation representing the axes in Euclidean space. The c goes
into the equation directly. The integral of the measures with respect to such a β is
equivalent to the integral of their ε-approximations with respect to β by Lemma D.3.
This means that the β found for the ε-approximations applies to the original measures
as well.

The second issue is unfortunately more challenging. The separating hyperplane
lemma requires a compact set of points. If the measures are only defined over compact
intervals, it can be shown that Cl.(r.s)ε is compact with respect to the Kantorovich metric
by Lemma D.5. However, once the approximations are converted to Euclidean space
it is required to show that this representation is compact with respect to the Euclidean
metric. This is not a trivial result to show, and is explored in more detail below.

The main issue in proving that wp is an injection is showing that for a set of ε-
approximations, compactness according to the Kantorovich metric implies compactness
according to the Euclidean metric. It is fairly trivial to show that a limit of a set of
ε-approximations according to the Euclidean space metric is also a limit according to
the Kantorovich metric. This is outlined below in Lemma D.8.

Lemma D.8. A Euclidean limit of a set of ε-approximations Cε represented in Euclidean
space (as described in Lemma D.7) is also a Kantorovich limit of Cε.

Proof. An ε-approximation µε of a measure µ is of the form

∑
i

ai ∗ xi ,

In Euclidean space, each xi represents an axis and the ai value is the coordinate
for that axis. To find the Euclidean limit of a set of ε-approximations requires finding
the limit of each of the ai’s. Therefore, define a∗i as the limit of each sequence of ai’s,
{ai1, ai2, ..., }. The limits are then put back into an ε-approximation to give ν as follows

ν =
∑
i

a∗i ∗ xi .

Define also a Kantorovich limit µ of Cε that is of the same form as an ε-approximation,

µ =
∑
i

aiµ ∗ xi .

D.1 Consistency Proofs 196

The Kantorovich distance between µ and ν (assuming that the values of the xi’s and
the total of the weights for each are the same) is

K.µ.ν =
∑
i≥2

(xi − xi−1)

∣∣∣∣∣∣
i−1∑
j=1

ajµ − a∗j

∣∣∣∣∣∣
 = ε

∑
i≥2

∣∣∣∣∣∣
i−1∑
j=1

ajµ − a∗j

∣∣∣∣∣∣
 ,

which is exactly zero when aiµ = a∗i for all i, i.e. µ = ν when the weights are identical.
Therefore a Euclidean limit of a set of ε-approximations is also a Kantorovich limit.

However, the inverse is much more challenging to show, the problem is being sure
that the closure of a set of ε-approximations only adds measures where the weights of
the point distributions differ, not their positions.

One idea that was explored for inferring closure under the Euclidean metric from
closure under the Kantorovich metric was to go via an intermediate metric space. It
was intended that the intermediate metric space could be described in a similar way to
the Kantorovich metric, but also be closely related to the Euclidean metric space. The
“maximum” metric4 looks like a promising intermediate metric space at first glance. It
is defined as the maximum difference along any coordinate dimension [15, Chapter 10]:

Definition D.9. The maximum distance between two points x and y is defined as

M.x.y := maxi (|xi − yi|) ,

where xi, yi are the i-coordinates of x and y respectively.

The maximum distance can be defined between two ε-approximations as follows:

Definition D.10. The maximum distance between two ε-approximations µε and µ′ε is
defined as

M.µε.µ
′
ε := sup

{∣∣∣∣∣
∫
µε

g −
∫
µ′ε

g

∣∣∣∣∣ · g = {[xi]}

}
,

where xi represents the location of the point distributions in the ε-approximations.

Note the similarity between Definitions 5.11 and D.10. The body of the expression is
identical, only the restriction differs. Therefore if g can be shown to be a subset of f ,
it can be observed that M.µε.µ

′
ε ≤ K.µε.µ

′
ε for any µε, µ

′
ε. Such a relationship would

enable the conclusion that limits under the Kantorovich metric are also limits under the
maximum metric. Unfortunately, the sets of functions f and g are mutually exclusive.
The set g only includes indicator functions, whilst the set f only includes 1-Lipschitz

4Also known as the Chebyshev metric, the L∞ metric and the chessboard metric. The latter of
these names comes from the fact that in two-dimensional space the maximum distance is the same as
calculating the minimum number of moves required for a king in the game of chess to move from one
square to another.

D.1 Consistency Proofs 197

functions. The 1-Lipschitz functions by definition have a maximum gradient everywhere
of one, but indicator functions have infinite gradient in places. Therefore, there is not
even any overlap between these two sets.

A potential resolution to this problem is discussed in the second proof strategy below.
This uses an alternative metric space to bridge the gap between the Kantorovich and
Euclidean metrics. It looks like a promising direction, but further work is required to
prove all of the required lemmas it generates.

The second proof strategy

The second strategy considered for the wp injection proof uses the Manhattan metric as
a bridge between the Kantorovich and Euclidean metric spaces, instead of the maximum
metric [64]. It also requires a slightly different basis for the state space of measures than
was given in Chapter 6 and a further version of the Kantorovich metric. This section
describes the lemmas that need to be proved for this strategy to work. The full proof
of these lemmas is beyond the scope of this thesis.

First the state space S needs to be redefined. The new state space (call it S′) is still
a metric space containing closed intervals [a, b] for reals a and b. However, the distance
is no longer standard Euclidean distance. A scaled Euclidean distance,

d.x.y :=
|x− y|
b− a

,

is used instead, making the metric space one-bounded. This means that the Kantorovich
metric over the space S′ also has the range [0, 1]. Note that this state space change has
a minimal impact on the overall semantics of sGCL5.

The definition of the Kantorovich metric over one-bounded metric spaces can be
specialised [82] as follows:

Definition D.11. Given any two Borel probability measures µ and ν on a one-bounded,
metric space (S′, d), the Kantorovich distance between µ and ν is defined by

K.µ.ν := sup
{∣∣∣∣∫

S′
f dµ−

∫
S′
f dν

∣∣∣∣ · f ∈ S′ −→1 [0, 1]
}
,

where f ∈ S′ −→
1

[0, 1] denotes the set of 1-Lipschitz functions S′ → [0, 1] so that
∀x, y · |f(x)− f(y)| ≤ d(x, y).

Based on Definition D.11, define KS′ to be the metric space of Borel sub-probability
measures on S′ with the Kantorovich metric. This space is by definition compact and
one-bounded [82].

The ε-approximation of a measure µ as given in Definition D.1 may be written either
as µε or approx.ε.µ where appropriate. Recall that this provides a means of describing

5Only the scaling of the Kantorovich metric would be affected in the non-deterministic version of
sGCL.

D.1 Consistency Proofs 198

a measure as a point in Euclidean space where each approximation interval is an axis
and the measure of that interval is the coordinate value for that axis.

Finally the Manhattan metric between two ε-approximations is defined as follows:

Definition D.12. The Manhattan distance between two ε-approximations µε and µ′ε is
defined as

Mh.µε.µ
′
ε :=

∑
xi

∣∣µε.xi − µ′ε.xi∣∣ ,
where xi represents the location of the point distributions in the ε-approximations.

The fact that the Manhattan metric is topologically equivalent to the Euclidean metric in
the space of the ε-approximations [64] assists in the following lemmas. These aim to show
that key properties are preserved when converting the measures from the Kantorovich
metric space to the Euclidean metric space. The first (Lemma D.13) requires that non-
emptiness, convexity and up-closure are preserved in the transformation between metric
spaces:

Lemma D.13. If set Z of measures in KS′ is non-empty, up-closed, convex and com-
pact, then

Zε := image. (approx.ε) .Z

is non-empty, convex and up-closed in Euclidean space, where

image.f.Z := {f.z · z : Z}

for function f and set Z.

The proof of this and the subsequent lemma are beyond the scope of this thesis. The sec-
ond (Lemma D.14) requires that non-emptiness, convexity and up-closure are preserved
by Manhattan-closure. This allows the Manhattan-closure to be taken of the Euclidean
representation of the ε-approximations without losing these important properties.

Lemma D.14. The Manhattan-closure of a non-empty, convex and up-closed set of
points in [0, 1]

b−a
ε is also non-empty, convex and up-closed.

Note that the space [0, 1]
b−a
ε is the space of points of ε-approximations represented in

Euclidean space.
Based on these two lemmas it can be shown that using the Manhattan-closure and

ε-approximation preserves the key properties of sets of measures as follows:

Lemma D.15. If set Z of measures in KS′ is non-empty, up-closed, convex and com-
pact, and

Zε := image. (approx.ε) .Z

D.1 Consistency Proofs 199

where image.f.Z := {f.z · z : Z} for function f and set Z, then the Manhattan-closure

MhCl.Zε

is non-empty, up-closed, convex and compact in the Euclidean topology.

Proof. Follows directly from Lemmas D.13 and D.14, and the explicit Manhattan-closure
of Zε.

Lemma D.15 resolves the closure issue that was encountered in the first proof strategy
by delaying the direct closure until the measures are represented in Euclidean space.
However, this means that the lemma stating the preservation of a detectable distance
between measures through the ε-approximation (Lemma D.6) is no longer sufficient. A
new lemma is required to deal with this issue as given below:

Lemma D.16. Let µε and µ′ε be two ε-approximations of measures µ, µ′ ∈ KS′ respec-
tively such that

K.µε.µ
′
ε ≥ d ,

for some d > 0, then

Mh.µε.µ
′
ε ≥ d

also holds.

Proof.

K.µε.µ
′
ε

≡ sup
{∣∣∣∣∫

S′
f dµε −

∫
S′
f dµ′ε

∣∣∣∣ · f ∈ S′ −→1 [0, 1]
}

Definition D.11

≡ Lebesgue integration, Definition D.1

sup

{∣∣∣∣∣∑
xi

(
f.xi ∗

(
µε.xi − µ′εxi

))∣∣∣∣∣ · f ∈ S′ −→1 [0, 1]

}

≤ sup

{∑
xi

∣∣µε.xi − µ′εxi∣∣ · f ∈ S′ −→
1

[0, 1]

}
algebra, range of f is [0, 1]

≡
∑
xi

∣∣µε.xi − µ′εxi∣∣ not dependent on f

≡ Mh.µε.µ
′
ε Definition D.12

Corollary. For measure µ not in Z, a non-empty, up-closed, convex and compact set
of measures in KS′, if ε is chosen such that for some d > 0

∀µ′ε ∈ Zε ·K.µε.µ′ε ≥ d ,

D.1 Consistency Proofs 200

where Zε = image. (approx.ε) .Z then

∀µ′ε ∈ Zε ·Mh.µε.µ
′
ε ≥ d ,

and so µε can also not be a member of the Manhattan-closure MhCl.Zε. This follows
directly from the above proof.

The above, Lemma D.16, shows that the distinction between measures is preserved in
the conversion from the Kantorovich metric space to the Euclidean metric space via the
ε-approximation, as long as a suitable choice of ε is chosen as per Lemma D.7. Using
this and the compactness that follows from Lemma D.15, the wp-injection proof can
be completed. However, Lemmas D.13 and D.14 have been left without proof. This is
beyond the scope of the thesis, although it is anticipated that these can be proven and
thus that the whole wp-injection proof can be discharged.

D.1.3 The challenge of showing that rp is an injection

The next proof to explore is the inverse relationship, that rp is also an injection. Due
to the complexity of this proof, the two directions wp.(rp.t) w t and wp.(rp.t) v t are
considered separately. The former of these can be trivially shown based on the equivalent
proof in pGCL [61, Lemma 5.7.3] as follows:

Lemma D.17. For any t ∈ TS, if rp.t is defined then

wp. (rp.t) w t .

Proof. This follows directly from Definitions 7.16 and 7.18 for any β ∈ ES and s ∈ S:

wp. (rp.t) .β.s ≥ t.β.s
iff

(
uµ : rp.t.s ·

∫
µ β
)
≥ t.β.s Definition 7.16, rp.t defined

iff
(
∀µ : rp.t.s ·

∫
µ β ≥ t.β.s

)
iff

(
∀µ : S̄ ·

(
∀β′ : ES · t.β′.s ≤

∫
µ β
′
)

=⇒
∫
µ β ≥ t.β.s

)
Definition 7.18

iff true

However, the other direction is more complex and has to be restricted to the subset of
transformers that are sublinear and continuous. Recall (Definition 7.1)that sublinearity
is defined as:

Definition. An expectation transformer t ∈ TS is sublinear iff for all β1, β2 ∈ ES and
c, c1, c2 ∈ R≥ the following holds

c1 (t.β1) + c2 (t.β2)	 c ≤ t. (c1β1 + c2β2 	 c) .

D.1 Consistency Proofs 201

where x	 y means (x− y) t 0.

and continuity is defined (Definition 6.3) as:

Definition. An expectation transformer t ∈ TS is boundedly continuous iff the following
holds

t. (tB) ≡ (tβ : B · t.β) ,

where B is a ≤-directed and bounded subset of ES, such that tB exists.

The proof that wp.(rp.t) v t in pGCL [61, Lemma 5.7.4] is based on another geomet-
ric result called Farkas’ lemma (see Lemma E.3). Therefore the proposed approach to
proving this in sGCL is to convert the continuous measures into discrete ones once more
using the ε-approximation (Definition D.1) again. However, once again there are issues
with showing compactness. The proof is outlined and discussed below in Lemma D.18.

Lemma D.18. If t ∈ TS is sublinear and continuous and rp.t is defined, then

wp. (rp.t) v t .

Proof. Using the contrapositive approach to this proof, suppose that rp.t is defined but
wp. (rp.t) 6v t. Then for some s ∈ S and β ∈ ES

wp.(rp.t).β.s > t.β.s ,

whence Definition 7.16(
uµ : rp.t.s ·

∫
µ β
)
> t.β.s

=⇒
(
∀µ : rp.t.s ·

∫
µ β > t.β.s

)
iff

(
∀µ : S̄ ·

(
∀β′ : ES · t.β′.s ≤

∫
µ β
′
)

=⇒
∫
µ β > t.β.s

)
Definition 7.18

iff
(
∩β′ : ES ·

{
µ : S̄|t.β′.s ≤

∫
µ β
′
})
⊆
{
µ : S̄|

∫
µ β > t.β.s

}
iff for arbitrary sets A,B write A ⊂ B as A ∩BC = ∅(

∩β′ : ES ·
{
µ : S̄|t.β′.s ≤

∫
µ β
′
})
∩
{
µ : S̄|β ≤

∫
µ t.β.s

}
= ∅

iff simple algebra, call this line †(
∩β′ : ES ·

{
µ : S̄|t.β′.s ≤

∫
µ β
′
})

∩
{
µ : S̄| − t.β.s ≤

∫
µ(−β)

}
∩
{
µ : S̄| − 1 ≤

∫
µ(-1)

}
= ∅

The last line of the above, †, aims to provide a format that can easily be adapted for
use with Farkas’ lemma (Lemma E.3). However, before this can happen the following is
required:

D.1 Consistency Proofs 202

1. the measures and expectations need to be represented in Euclidean space RN

2. the sets in † need to be shown to be compact
3. a suitable finite set of the measures in † needs to be chosen

Then, together with the finite intersection lemma6 and Farkas’ lemma the proof proceeds
as per pGCL [61, Lemma 5.7.4].

The completion of this proof is unresolved because the interaction between these
steps cause issues as discussed below.

To achieve the first requirement the idea is to use the ε-approximation and restrict our
attention to measures that are of the format of an ε-approximation for some appropriate
value of ε. This is possible because removing elements from the sets in † will not make
the intersection non-empty. The choice of ε depends on β and β′. It needs to be small
enough to represent all β, β′ accurately as a simple function with intervals of width ε.
Recall (Section 5.1) that Lebesgue integration itself works by using a suitable simple
function approximation. Therefore the simple function used to approximate β and β′

will use intervals at least as small7 as those used in the Lebesgue integration of β and
β′ (so the value of the integrals remain unchanged).

For the third requirement, the appropriate subsets are those determined by restrict-
ing β′ to the indicator functions on the intervals of ε-width that are used in approximat-
ing β. Note that to ensure that this set is finite, it is required that all of the measures
are only defined over closed intervals of the reals. Together with the first requirement,
this converts the problem into an analogous representation to that used for the proof in
pGCL.

Finally the finite intersection lemma requires compact sets so it is required to show
that all of the sets in † are compact. Unfortunately, it is problematic to show that the
sets in the first two lines of † are closed under the Kantorovich metric. This essentially
requires that {

µ ∈ S̄|a ≤
∫
µ
g

}
,

for some real a and function g. Assume that there is some Cauchy sequence (under
Kantorovich) in the above, µ0, µ1, To be closed it is required that the limit µ∗ is also
included, i.e. that ∣∣∣∣∫

µi

g −
∫
µ∗
g

∣∣∣∣→ 0 =⇒ K.µi.µ
∗ → 0 .

At first glance this looks fine, as there are obvious similarities between the right hand
6The finite intersection lemma states that a collection of closed subsets of a compact set has empty

intersection only if some finite sub-collection of it does [72, 61].
7At least as small because some of the functions will require smaller intervals than others. The largest

possible value of ε that accurately represents all functions will be used for all approximations.

D.2 A Note on the Use of the Kantorovich Metric with Sub-Probability Measures 203

side and the Kantorovich metric (Definition 5.11). The issue is, that this only works
for functions that satisfy the Lipschitz semi-norm (have a maximum gradient of one
everywhere). The indicator functions that are needed for the third requirement do not
satisfy this (they have infinite gradient in places).

The completion of this proof is unresolved. Alternative strategies need to be ex-
plored, but that is beyond the scope of this thesis. The intention here was just to
show the challenge involved in proving consistency for a language containing continu-
ous probability and demonic non-determinism. However, other strategies may include:
using a different way of representing measures in Euclidean space; or an alternative to
the Kantorovich metric space for comparing measures.

D.2 A Note on the Use of the Kantorovich Metric with

Sub-Probability Measures

In this section, an aside on the interaction between the Kantorovich metric and sub-
probability (where the total probability assigned may be less than one) is discussed.

There is nothing inherently incompatible between the Kantorovich metric and sub-
probability. However, the duality stated in Definition 5.12 (repeated here for conve-
nience):

Definition. Given any two Borel probability measures µ and ν on separable metric
space (S, d), the metric L is defined by

L.µ.ν := inf
{∫

S×S
d.x.y dγ.x.y · γ ∈ Γ.µ.ν

}
,

where Γ.µ.ν is the set of all probability measures on S × S with marginal measures
µ and ν. The probability measures µ and ν must satisfy

∫
S d.x.z ∗ µ.x < ∞ and∫

S d.x.z ∗ ν.x <∞ for all z ∈ S respectively. Note that
∫
S×S is used as a shorthand to

mean the double integral
∫
S

∫
S .

breaks down when sub-probability is allowed. This is because it relies on the joint
measure Γ.µ.ν. It is not possible for a joint measure to have marginals where the total
probability defined for each differs (such probability cannot be created or destroyed in
deriving the marginals!).

The definition of the Kantorovich metric for measures over the real numbers (Defi-
nition 5.13) also does not hold for measures where the total probability defined differs.

Therefore these two alternative formulations of the Kantorovich metric must be used
with care, and avoided where possible. These complications motivated the comment in
Lemma D.8, that the weights total of the two measures (µ and ν) had to be the same for
their convergence under the Kantorovich metric. That lemma relied on the definition of
the Kantorovich metric for real numbers, therefore caution was required to prevent the

D.2 A Note on the Use of the Kantorovich Metric with Sub-Probability Measures 204

comparison of two measures of differing total probability.
The base definition of the Kantorovich metric (Definition 5.11) still holds for sub-

probability, however, as does van Breugels version of it (Definition D.11) for one-bounded
metric spaces. Therefore, the intention is merely to highlight that care must be taken
when using the Kantorovich metric with sub-probability. This may mean that the most
intuitive definition of the Kantorovich metric cannot be used for a given problem.

Appendix E

Supplementary Lemmas

This appendix provides some supplementary lemmas from textbooks that are used in
proving the consistency of the two semantics of sGCL.

The separating hyperplane lemma is taken from standard linear algebra textbooks
[56]. The version presented here is taken from McIver and Morgan’s book [61].

Lemma E.1. Let C be a convex and Cauchy-closed subset of RN , and p a point in RN

that does not lie in C. Then there is a separating hyperplane S with p on one side of it
and all of C on the other.

Proof. The reader is referred to linear algebra textbooks [56, p.16] for the proof.

McIver and Morgan [61] also define a second version of the separating hyperplane
lemma for infinite state spaces as follows:

Lemma E.2. Let C be a convex subset of RS that is compact (hence closed) in the
product ES of the Euclidean topologies over its constituent projections R. If some p
does not lie in C, then there is a separating hyperplane with p on one side of it and all
of C on the other.

Proof. The reader is referred to McIver and Morgan’s book [61, Lemma B.5.3] for the
proof.

Another important geometric lemma presented by McIver and Morgan [61, Lemma
B.5.2] is Farkas’ lemma:

Lemma E.3. Let A be and M ×N matrix, x and N × 1 column-vector and r an M × 1
column-vector, and suppose that A and r are so that the system of equations

A · x ≥ r

has no solution in x, where · denotes matrix multiplication. Then there is a 1×M
row-vector C of non-negative values such that

205

206

C ·A = 0 but C · r > 0 .

Proof. The proof can be found in texts on linear programming, for example Schrijver’s
book [76, Corollary 7.1e].

Appendix F

DESTECS Patterns

This appendix provides the two patterns from the DESTECS pattern library [13] to
which the monitoring voter pattern described in Chapter 8 is most closely related.
Note that some details specific to the DESTECS project have been omitted from these
descriptions.

F.1 Voter Pattern

Intent

To produce a single sensor reading from multiple (redundant or diverse) sensor inputs.

Motivation

Where sensors can fail, multiple sensors can be introduced as a way to achieve de-
pendability. This can be done through replication (using copies of the same sensor) or
diversity (using different sensors). In order to gain a single value from various inputs, a
voter can be used. A simple voter could take the mean of the incoming values, or use a
majority vote to ignore erroneous readings.

Structure

A class and object diagram for this pattern are given in Figure F.1. In this pattern,
a Voter class is introduced that implements the sensor interface (ISensorReal). The
voter class also aggregates one or more sensors. By implementing the sensor interface,
a voter object can be passed transparently to the controller (such that the controller
does not need to be altered) and provides a single value from the multiple inputs. The
voter pattern can be combined with the strategy pattern [29] by describing the voting
algorithm as an interface and providing different implementations of this interface to
explore alternative voting routines.

The object diagram in Figure F.1 shows that the controller holds a reference to

207

F.2 Monitor 208

Figure F.1: Voter pattern (class and object diagram)

the voter object, which then aggregates (in this case) three other sensor objects (which
represent distinct data sources). When the controller reads its sensor object, the voter
decides on the value that the controller receives.

Related Patterns

Filter pattern [13]; strategy pattern [29].

F.2 Monitor

Intent

A monitor (or watchdog) is a small, verifiable component that runs as separate process.
It monitors actions of the controller (or other components) and protects from unsafe
situations by intervening and instructing the controller to stop the unsafe action.

Motivation

The monitor is modelled as an object that holds a reference to the controller and runs as
a separate process on a different CPU. The monitor then checks the actions of the con-
troller and intervenes in some way — for example, by calling an operation on controller
that puts it in a safe mode. The monitor could also hold references to other objects to
monitor them as required, they typically its scope is limited to keep it small (as with a

F.2 Monitor 209

kernel).

Structure

A class and object diagram for this pattern are given in Figure F.2. In this pattern, a
Monitor class is created that holds a reference to the controller. The Controller class
provides an operation that the monitor can call if some fault occurs (in this case, the
controller will go into a safe mode).

Figure F.2: Monitor pattern (class and object diagram)

The object diagram in Figure F.2 shows that the monitor object holds a reference
to the controller object and runs on a separate CPU. It can then put the controller into
a safe mode if a fault is detected.

Related Patterns

Kernel pattern [13].

Bibliography

[1] Samson Abramsky and Achim Jung. Domain theory, pages 1–168. Oxford Univer-
sity Press, Oxford, UK, 1994.

[2] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, New York, NY, USA, 1996.

[3] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, May 2010.

[4] S. Andova. Time and probability in process algebra. In Proceedings of the 8th Inter-
national Conference on Algebraic Methodology and Software Technology (AMAST
’00), volume 1816 of LNCS, pages 323–338, London, UK, UK, 2000. Springer-
Verlag.

[5] Z.H. Andrews. Towards a stochastic Event-B. In Supp. Volume of 2009 Workshop
on Quantitative Formal Methods: Theory and Applications, 2009.

[6] Z.H. Andrews, A. McIver, L. Meinicke, and C. Morgan. Probabilistic aspects of
flash filestores. In R. Joshi, T. Margaria, P. Müller, D. Naumann, and H. Yang,
editors, Int. Conf. on Verified Software: Theories, Tools and Experiments 2010,
Workshop Proceedings, 2010.

[7] Robert B. Ash and Catherine Doléans-Dade. Probability and measure theory. Aca-
demic Press, 2000.

[8] A. Avizienis. The N-version approach to fault-tolerant systems. IEEE Transactions
on Software Engineering, SE-11(12):1491–1501, Dec. 1985.

[9] A. Avizienis, J.-C. Laprie, B. Randell, and C.E. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Transactions on Dependable
and Secure Computing, 1(1):11–33, 2004.

[10] R.J. Back. Refinement Calculus II: Parallel and reactive programs. In J. W. de-
Bakker, W. P. deRoever, and G. Rozenberg, editors, Stepwise Refinement of Dis-
tributed Systems, volume 430 of LNCS, pages 67–93, Mook, The Netherlands, May
1989. Springer-Verlag.

210

BIBLIOGRAPHY 211

[11] R.J. Back and J. Wright. Refinement Calculus: A Systematic Introduction. Grad-
uate Texts in Computer Science. Springer, 1998.

[12] R.P. Boas and H.P. Boas. A Primer of Real Functions. The Carus mathematical
monographs. Mathematical Association of America, 1996.

[13] Jan F. Broenink, John Fitzgerald, Carl Gamble, Yunyun Ni, Ken Pierce, and
Xiaochen Zhang. Methodological guidelines 2. Deliverable D2.2, DESTECS
(www.destecs.org), January 2012.

[14] Andrew Butterfield, Leo Freitas, and Jim Woodcock. Mechanising a formal model
of flash memory. Sci. Comput. Program., 74(4):219–237, 2009.

[15] C.D. Cantrell. Modern mathematical methods for physicists and engineers. Cam-
bridge University Press, 2000.

[16] E.M. Clarke and J.M. Wing. Formal methods: State of the art and future directions.
ACM Computing Surveys, 28:626–643, 1996.

[17] A.C. Coombes, L.M. Barroca, J.S. Fitzgerald, J.A. McDermid, A. Saeed, and
L. Spencer. Formal specification of an aerospace system: the attitude monitor. In
M.G. Hinchey and J.P. Bowen, editors, Applications of Formal Methods, chapter 13,
pages 307–332. Prentice-Hall International Series in Computer Science, 1995.

[18] R.J. Corin and J.I. den Hartog. A probabilistic Hoare-style logic for game-based
cryptographic proofs. In M. Bugliesi, B. Preneel, and V. Sassone, editors, ICALP
2006 track C, Venice, Italy, volume 4052 of Lecture Notes in Computer Science,
pages 252–263, Berlin, July 2006. Springer-Verlag.

[19] K. Damchoom and M. Butler. Applying event and machine decomposition to a
flash-based filestore in Event-B. In SBMF 2009, volume 5902 of LNCS, pages 134–
152. Springer, 2009.

[20] Yuxin Deng and Wenjie Du. The kantorovich metric in computer science: A brief
survey. Electron. Notes Theor. Comput. Sci., 253:73–82, November 2009.

[21] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs,
N.J. :, 1976.

[22] Ernst-Erich Doberkat. Eilenberg–moore algebras for stochastic relations. Inf. Com-
put., 204:1756–1781, December 2006.

[23] R. M. Dudley. Real Analysis and Probability. Cambridge University Press, 2002.

[24] Richard Durrett. Probability: Theory and Examples (Probability: Theory & Exam-
ples). Duxbury Press, 3 edition, mar 2004.

BIBLIOGRAPHY 212

[25] Abbas Edalat. Domain theory and integration. Theor. Comput. Sci., 151(1):163–
193, 1995.

[26] J. Falampin. Pilot deployment in transportation. Deliverable (D16), DEPLOY
(www.deploy-project.eu), September 2009.

[27] J.S. Fitzgerald, P.G. Larsen, P. Mukherjee, N. Plat, and M. Verhoef. Validated
Designs For Object-Oriented Systems. Springer-Verlag, 2005.

[28] Eran Gal and Sivan Toledo. Algorithms and data structures for flash memories.
ACM Comput. Surv., 37(2):138–163, 2005.

[29] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, 1
edition, 1994.

[30] Alison L. Gibbs and Francis Edward Su. On choosing and bounding probability
metrics. International Statistical Review, 70:419–435, 2002.

[31] Michèle Giry. A categorical approach to probability theory. In Lect. Notes Maths,
volume 915, pages 68–85. Springer-Verlag, Berlin, 1981.

[32] M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL: a theorem proving
environment for higher order logic. Cambridge University Press, 1993.

[33] S. Hallerstede and T.S. Hoang. Qualitative probabilistic modelling in Event-B.
In Proc. 6th International Conference on Integrated Formal Methods (IFM 2007),
volume 4591 of LNCS, pages 293–312, 2007.

[34] H. Hansson and B. Jonsson. A calculus for communicating systems with time
and probabilities. In Proc. 11th IEEE Real-Time Systems Symp. IEEE Computer
Society Press, December 1990.

[35] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6:102–111, 1994.

[36] Osman Hasan, Naeem Abbasi, Behzad Akbarpour, Sofiène Tahar, and Reza Ak-
barpour. Formal reasoning about expectation properties for continuous random
variables. In FM ’09: Proceedings of the 2nd World Congress on Formal Methods,
pages 435–450, Berlin, Heidelberg, 2009. Springer-Verlag.

[37] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, New York, NY, USA, 1996.

[38] T.S. Hoang. The Development of a Probabilistic B-Method and a Supporting Toolkit.
PhD thesis, School of Computer Science and Engineering, The University of New
South Wales, 2005.

BIBLIOGRAPHY 213

[39] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12:576–80, October 1969.

[40] A. Hoefler, J.M. Higman, T. Harp, and P.J. Kuhn. Statistical modeling of the
program/erase cycling acceleration of low temperature data retention in floating
gate nonvolatile memories. In Reliability Physics Symposium Proceedings, 2002.
40th Annual, pages 21–25, 2002.

[41] Joe Hurd, Annabelle McIver, and Carroll Morgan. Probabilistic guarded commands
mechanized in hol. Electron. Notes Theor. Comput. Sci., 112:95–111, January 2005.

[42] A. Iliasov and A. Romanovsky. Refinement patterns for fault tolerant systems.
Dependable Computing Conference, 2008. EDCC 2008. Seventh European, pages
167–176, May 2008.

[43] He Jifeng, K. Seidel, and A. McIver. Probabilistic models for the guarded command
language. Sci. Comput. Program., 28:171–192, April 1997.

[44] C.B. Jones. Data reification. In J. McDermid, editor, The Theory and Practice of
Refinement. Butterworths, 1989.

[45] C.B. Jones. Systematic Software Development using VDM (2nd edition). Prentice-
Hall, Upper Saddle River, NJ 07458, USA, 1990.

[46] C.B. Jones. The early search for tractable ways of reasoning about programs. IEEE
Ann. Hist. Comput., 25(2):26–49, 2003.

[47] C.B. Jones, I.J. Hayes, and M.A. Jackson. Specifying systems that connect to the
physical world. Technical Report 964, Newcastle University, School of Computing
Science, May 2006.

[48] Rajeev Joshi and Gerard J. Holzmann. A mini challenge: build a verifiable filesys-
tem. Form. Asp. Comput., 19(2):269–272, 2007.

[49] Eunsuk Kang and Daniel Jackson. Formal modeling and analysis of a flash filesys-
tem in Alloy. In ABZ ’08: Proceedings of the 1st international conference on Ab-
stract State Machines, B and Z, pages 294–308, Berlin, Heidelberg, 2008. Springer-
Verlag.

[50] D. Kartson, G. Balbo, S. Donatelli, G. Franceschinis, and G. Conte. Modelling with
Generalized Stochastic Petri Nets. John Wiley & Sons, Inc., New York, NY, USA,
1994.

[51] J.-P. Katoen, M. Khattri, and I. S. Zapreev. A Markov Reward Model Checker.
In Quantitative Evaluation of Systems (QEST), pages 243–244, Los Alamos, CA,
USA, 2005. IEEE Computer Society.

BIBLIOGRAPHY 214

[52] J.-P. Katoen, I.S. Zapreev, E.M. Hahn, H. Hermanns, and D.N. Jansen. The Ins
and Outs of The Probabilistic Model Checker MRMC. In Quantitative Evaluation
of Systems (QEST), pages 167–176. IEEE Computer Society, 2009.

[53] D. Kozen. Semantics of probabilistic programs. J. Comput. Syst. Sci., 22(3):328–
350, 1981.

[54] D. Kozen. A probabilistic PDL. J. Comput. Syst. Sci., 30(2):162–178, 1985.

[55] E. Kreyszig. Advanced Engineering Mathematics. Wiley, 8 edition, 1999.

[56] Harold W. Kuhn. Lectures on the Theory of Games. Princeton University Press,
illustrated edition edition, Jan 2003.

[57] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model
checker. In T. Field, P. Harrison, J. Bradley, and U. Harder, editors, Proc. 12th
International Conference on Modelling Techniques and Tools for Computer Perfor-
mance Evaluation (TOOLS’02), volume 2324 of LNCS, pages 200–204. Springer,
April 2002.

[58] J.C. Laprie, J. Arlat, C. Bounes, and K. Kanoun. Definition and analysis of
hardware- and software-fault-tolerant architectures. IEEE Computer, 23(7):39–51,
July 1990.

[59] P.A. Lee and T. Anderson. Fault Tolerance, Principles and Practice. Springer-
Verlag, 1990.

[60] B. Littlewood, P. Popov, and L. Strigini. Assessing the reliability of diverse
fault-tolerant software-based systems. In SAFECOMP International Conference
on Computer Safety, Reliability and Security No19, Rotterdam , PAYS-BAS, vol-
ume 40, pages 781–796, 2002.

[61] A. McIver and C. Morgan. Abstraction, Refinement And Proof For Probabilistic
Systems (Monographs in Computer Science). Springer, 2004.

[62] A. McIver, C. Morgan, and E. Troubitsyna. The probabilistic steam boiler: a
case study in probabilistic data refinement. In Proceedings of the International
Refinement Workshop and Formal Methods Pacific, Canberra, 1998.

[63] A. K. McIver and C. Morgan. Partial correctness for probabilistic demonic pro-
grams. Theor. Comput. Sci., 266(1-2):513–541, 2001.

[64] L. Meinicke. Personal communication, 2011.

[65] L. Meinicke and I.J. Hayes. Algebraic reasoning for probabilistic action systems
and while-loops. Acta Informatica, 45(5):321–382, 2008.

BIBLIOGRAPHY 215

[66] Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93:55–92, July
1991.

[67] C. Morgan. The generalised substitution language extended to probabilistic pro-
grams. In Proc. B’98: The 2nd International B Conference, volume 1393 of LNCS,
Montpelier, April 1998.

[68] C. Morgan, T.S. Hoang, and J.-R. Abrial. The challenge of probabilistic Event
B - extended abstract. In Proc. 4th International Conference of B and Z Users
(ZB’05), pages 162–171, 2005.

[69] C. Morgan, A.K. McIver, K. Seidel, and J. W. Sanders. Refinement-oriented prob-
ability for CSP. Formal Aspects of Computing, 8(6):617–647, Nov 1996.

[70] K. Pierce, J. Fitzgerald, and C. Gamble. Modelling faults and fault tolerance
mechanisms in a paper pinch co-model. In ERCIM/EWICS/Cyberphysical Systems
Workshop at SAFECOMP 2011, Naples, 2011. Also School of Computing Science,
Newcastle University, Technical Report Series 1280.

[71] John A. Rice. Mathematical Statistics and Data Analysis. Duxbury Press, 2001.

[72] Halsey Royden. Real Analysis (3rd Edition). Prentice Hall, feb 1988.

[73] A.E. Rugina, K. Kanoun, and M. Kaâniche. AADL-based dependability modelling.
Technical Report LAAS Research Report 06029, LAAS-CNRS, March 2006.

[74] W.H. Sanders and J.F. Meyer. Stochastic activity networks: Formal definitions
and concepts. In Lectures on Formal Methods and Performance Analysis: first
EEF/Euro summer school on trends in computer science, pages 315–343, New York,
NY, USA, 2002. Springer-Verlag New York, Inc.

[75] Andreas Schierl, Gerhard Schellhorn, Dominik Haneberg, and Wolfgang Reif. Ab-
stract specification of the UBIFS file system for flash memory. In FM ’09: Pro-
ceedings of the 2nd World Congress on Formal Methods, pages 190–206, Berlin,
Heidelberg, 2009. Springer-Verlag.

[76] Alexander Schrijver. Theory of Linear and Integer Programming. Wiley, June 1998.

[77] I.M. Singer and J.A. Thorpe. Lecture notes on elementary topology and geometry.
Undergraduate texts in mathematics. Springer-Verlag, 1967.

[78] Anton Tarasyuk, Elena Troubitsyna, and Linas Laibinis. From formal specification
in Event-B to probabilistic reliability assessment. In Proceedings of the 2010 Third
International Conference on Dependability, DEPEND ’10, pages 24–31, Washing-
ton, DC, USA, 2010. IEEE Computer Society.

BIBLIOGRAPHY 216

[79] Anton Tarasyuk, Elena Troubitsyna, and Linas Laibinis. Towards probabilistic
modelling in Event-B. In Proceedings of the 8th international conference on Inte-
grated formal methods, IFM’10, pages 275–289, Berlin, Heidelberg, 2010. Springer-
Verlag.

[80] E. Troubitsyna. Stepwise Development of Dependable Systems. PhD thesis, Åbo
Akademi University, 2000.

[81] Elena A. Troubitsyna. Reliability assessment through probabilistic refinement.
Nordic J. of Computing, 6:320–342, September 1999.

[82] Franck van Breugel. The metric monad for probabilistic nondeterminism. Draft
available at http://www.cse.yorku.ca/franck/research/drafts/monad.pdf, April
2005.

[83] Cédric Villani. Optimal Transport: Old and New. Grundlehren der mathematischen
Wissenschaften. Springer, 1 edition, Nov 2008.

[84] N. White. Probabilistic specification and refinement. Master’s thesis, Keble College,
Oxford, 1996.

[85] Jim Woodcock and Jim Davies. Using Z: specification, refinement, and proof.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[86] David Woodhouse. JFFS: The Journalling Flash File System. In Proceedings Ottawa
Linux Symposium, 2001.

