22 research outputs found

    The Orbital Space Environment and Space Situational Awareness Domain Ontology – Towards an International Information System for Space Data

    Get PDF
    The orbital space environment is home to natural and artificial satellites, debris, and space weather phenomena. As the population of orbital objects grows so do the potential hazards to astronauts, space infrastructure and spaceflight capability. Orbital debris, in particular, is a universal concern. This and other hazards can be minimized by improving global space situational awareness (SSA). By sharing more data and increasing observational coverage of the space environment we stand to achieve that goal, thereby making spaceflight safer and expanding our knowledge of near-Earth space. To facilitate data-sharing interoperability among distinct orbital debris and space object catalogs, and SSA information systems, I proposed ontology in (Rovetto, 2015) and (Rovetto and Kelso, 2016). I continue this effort toward formal representations and models of the overall domain that may serve to improve peaceful SSA and increase our scientific knowledge. This paper explains the project concept introduced in those publications, summarizing efforts to date as well as the research field of ontology development and engineering. I describe concepts for an ontological framework for the orbital space environment, near-Earth space environment and SSA domain. An ontological framework is conceived as a part of a potential international information system. The purpose of such a system is to consolidate, analyze and reason over various sources and types of orbital and SSA data toward the mutually beneficial goals of safer space navigation and scientific research. Recent internationals findings on the limitations of orbital data, in addition to existing publications on collaborative SSA, demonstrate both the overlap with this project and the need for data-sharing and integration

    Guidelines for writing definitions in ontologies

    Get PDF
    Ontologies are being used increasingly to promote the reusability of scientific information by allowing heterogeneous data to be integrated under a common, normalized representation. Definitions play a central role in the use of ontologies both by humans and by computers. Textual definitions allow ontologists and data curators to understand the intended meaning of ontology terms and to use these terms in a consistent fashion across contexts. Logical definitions allow machines to check the integrity of ontologies and reason over data annotated with ontology terms to make inferences that promote knowledge discovery. Therefore, it is important not only to include in ontologies multiple types of definitions in both formal and in natural languages, but also to ensure that these definitions meet good quality standards so they are useful. While tools such as Protégé can assist in creating well-formed logical definitions, producing good definitions in a natural language is still to a large extent a matter of human ingenuity supported at best by just a small number of general principles. For lack of more precise guidelines, definition authors are often left to their own personal devices. This paper aims to fill this gap by providing the ontology community with a set of principles and conventions to assist in definition writing, editing, and validation, by drawing on existing definition writing principles and guidelines in lexicography, terminology, and logic

    Amnestic Forgery: an Ontology of Conceptual Metaphors

    Full text link
    This paper presents Amnestic Forgery, an ontology for metaphor semantics, based on MetaNet, which is inspired by the theory of Conceptual Metaphor. Amnestic Forgery reuses and extends the Framester schema, as an ideal ontology design framework to deal with both semiotic and referential aspects of frames, roles, mappings, and eventually blending. The description of the resource is supplied by a discussion of its applications, with examples taken from metaphor generation, and the referential problems of metaphoric mappings. Both schema and data are available from the Framester SPARQL endpoint

    Image Schemas and Conceptual Dependency Primitives: A Comparison

    Get PDF
    A major challenge in natural language understanding research in artificial intelligence (AI) has been and still is the grounding of symbols in a representation that allows for rich semantic interpretation, inference, and deduction. Across cognitive linguistics and other disciplines, a number of principled methods for meaning representation of natural language have been proposed that aim to emulate capacities of human cognition. However, little cross-fertilization among those methods has taken place. A joint effort of human-level meaning representation from AI research and from cognitive linguistics holds the potential of contributing new insights to this profound challenge. To this end, this paper presents a first comparison of image schemas to an AI meaning representation system called Conceptual Dependency (CD). Restricting our study to the domain of physical and spatial conceptual primitives, we find connections and mappings from a set of action primitives in CD to a remarkably similar set of image schemas. We also discuss important implications of this connection, from formalizing image schemas to improving meaning representation systems in AI

    Blending under deconstruction

    Get PDF
    n/

    Towards a Cognitive Semantics of Type

    Get PDF
    Types are a crucial concept in conceptual modelling, logic, and knowledge representation as they are an ubiquitous device to un- derstand and formalise the classification of objects. We propose a logical treatment of types based on a cognitively inspired modelling that ac- counts for the amount of information that is actually available to a cer- tain agent in the task of classification. We develop a predicative modal logic whose semantics is based on conceptual spaces that model the ac- tual information that a cognitive agent has about objects, types, and the classification of an object under a certain type. In particular, we ac- count for possible failures in the classification, for the lack of sufficient information, and for some aspects related to vagueness
    corecore