384 research outputs found

    A model for the analysis of security policies in service function chains

    Full text link
    Two emerging architectural paradigms, i.e., Software Defined Networking (SDN) and Network Function Virtualization (NFV), enable the deployment and management of Service Function Chains (SFCs). A SFC is an ordered sequence of abstract Service Functions (SFs), e.g., firewalls, VPN-gateways,traffic monitors, that packets have to traverse in the route from source to destination. While this appealing solution offers significant advantages in terms of flexibility, it also introduces new challenges such as the correct configuration and ordering of SFs in the chain to satisfy overall security requirements. This paper presents a formal model conceived to enable the verification of correct policy enforcements in SFCs. Software tools based on the model can then be designed to cope with unwanted network behaviors (e.g., security flaws) deriving from incorrect interactions of SFs in the same SFC

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Towards Model Checking Real-World Software-Defined Networks (version with appendix)

    Full text link
    In software-defined networks (SDN), a controller program is in charge of deploying diverse network functionality across a large number of switches, but this comes at a great risk: deploying buggy controller code could result in network and service disruption and security loopholes. The automatic detection of bugs or, even better, verification of their absence is thus most desirable, yet the size of the network and the complexity of the controller makes this a challenging undertaking. In this paper we propose MOCS, a highly expressive, optimised SDN model that allows capturing subtle real-world bugs, in a reasonable amount of time. This is achieved by (1) analysing the model for possible partial order reductions, (2) statically pre-computing packet equivalence classes and (3) indexing packets and rules that exist in the model. We demonstrate its superiority compared to the state of the art in terms of expressivity, by providing examples of realistic bugs that a prototype implementation of MOCS in UPPAAL caught, and performance/scalability, by running examples on various sizes of network topologies, highlighting the importance of our abstractions and optimisations

    ANCHOR: logically-centralized security for Software-Defined Networks

    Get PDF
    While the centralization of SDN brought advantages such as a faster pace of innovation, it also disrupted some of the natural defenses of traditional architectures against different threats. The literature on SDN has mostly been concerned with the functional side, despite some specific works concerning non-functional properties like 'security' or 'dependability'. Though addressing the latter in an ad-hoc, piecemeal way, may work, it will most likely lead to efficiency and effectiveness problems. We claim that the enforcement of non-functional properties as a pillar of SDN robustness calls for a systemic approach. As a general concept, we propose ANCHOR, a subsystem architecture that promotes the logical centralization of non-functional properties. To show the effectiveness of the concept, we focus on 'security' in this paper: we identify the current security gaps in SDNs and we populate the architecture middleware with the appropriate security mechanisms, in a global and consistent manner. Essential security mechanisms provided by anchor include reliable entropy and resilient pseudo-random generators, and protocols for secure registration and association of SDN devices. We claim and justify in the paper that centralizing such mechanisms is key for their effectiveness, by allowing us to: define and enforce global policies for those properties; reduce the complexity of controllers and forwarding devices; ensure higher levels of robustness for critical services; foster interoperability of the non-functional property enforcement mechanisms; and promote the security and resilience of the architecture itself. We discuss design and implementation aspects, and we prove and evaluate our algorithms and mechanisms, including the formalisation of the main protocols and the verification of their core security properties using the Tamarin prover.Comment: 42 pages, 4 figures, 3 tables, 5 algorithms, 139 reference

    The Challenges in SDN/ML Based Network Security : A Survey

    Full text link
    Machine Learning is gaining popularity in the network security domain as many more network-enabled devices get connected, as malicious activities become stealthier, and as new technologies like Software Defined Networking (SDN) emerge. Sitting at the application layer and communicating with the control layer, machine learning based SDN security models exercise a huge influence on the routing/switching of the entire SDN. Compromising the models is consequently a very desirable goal. Previous surveys have been done on either adversarial machine learning or the general vulnerabilities of SDNs but not both. Through examination of the latest ML-based SDN security applications and a good look at ML/SDN specific vulnerabilities accompanied by common attack methods on ML, this paper serves as a unique survey, making a case for more secure development processes of ML-based SDN security applications.Comment: 8 pages. arXiv admin note: substantial text overlap with arXiv:1705.0056

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    SDN-Actors:Modeling and Verification of SDN Programs

    Get PDF
    Software-Defined Networking (SDN) is a recent networking paradigm that has become increasingly popular in the last decade. It gives unprecedented control over the global behavior of the network and provides a new opportunity for formal methods. Much work has appeared in the last few years on providing bridges between SDN and verification. This paper advances this research line and provides a link between SDN and traditional work on formal methods for verification of distributed software—actor-based modelling. We show how SDN programs can be seamlessly modelled using actors, and thus existing advanced model checking techniques developed for actors can be directly applied to verify a range of properties of SDN networks, including consistency of flow tables, violation of safety policies, and forwarding loops.Depto. de Sistemas Informáticos y ComputaciónFac. de InformáticaTRUEpu

    Verification and Configuration of Software-based Networks

    Get PDF
    The innovative trends of Network Function Virtualization (NFV) and Software Defined Networking (SDN) have posed never experienced opportunities in productive environments, like data centers. While NFV decouples software implementation of the network functions (e.g., DPI and NAT) from their physical counterparts, SDN is in charge of dynamically changing those functions to create network paths. One new opportunity of such Software-based networks is to make the network service-provisioning models more flexible, by enabling users to build their own service graphs: users can select the Virtual Network Functions (VNFs) to use and can specify how packets have to be processed and forwarded in their networks. In particular, this PhD thesis spans mostly topics related to the verification and configuration of service graphs. For what concerns the challenges of network verification, our aim is to explore strategies that overcome the limitations of traditional techniques, which generally exploit complex modelling approaches and takes considerable verification times. Thus we envision for verification techniques that are based on non-complex modelling approaches in order to be much more efficient than existing proposals. Under these conditions, such novel approaches may work at run-time and, in particular, may be performed before deploying the service graphs, in order to avoid unexpected network behaviours and detect errors as early as possible. Another requirement is that verification should take a reasonable amount of time from a VNF Orchestrator point of view, with fair processing resources (e.g. CPU, memory and so on). This is because we are in the context of flexible services, where the reconfiguration of network functions can be frequently triggered, both in case of user request and in case of management events. The first contribution of this thesis lays on the service graphs specification by means of forwarding policies (i.e, a high-level specification of how packet flows are forwarded). While the majority of the SDN verification tools operate on OpenFlow configurations, we have defined a formal model to detect a set of anomalies in forwarding policies (i.e., erroneous specifications that may cause misleading network conditions and states). The key factors that distinguish our work from existing approaches are both an early detection of policies anomalies (i.e., before translating such policies into OpenFlow entries), in order to speed up the fixing phase, without even starting service deployment, and a scalable approach that achieves verification times in the order of milliseconds for medium- large- sized networks. Another advancement in network verification has been the possibility to verify networks including stateful VNFs, which are functions that may dynamically change the forwarding path of a traffic flow according to their local algorithms and states (e.g., IDSs). Our second contribution is thus a verification approach that models the network and the involved (possibly stateful) VNFs as a set of FOL formulas. Those formulas are passed to the off-the-shelf SMT (Satisfiability Modulo Theory) solver Z3 in order to verify some reachability-based properties. In particular, the proposed solution has been implemented in a tool released under the AGPLv3 license, named VeriGraph, which takes the functional configurations of all deployed VNFs (e.g., filtering rules on firewalls) into account to check the network. The adopted approach achieves verification times in the order of milliseconds, which is compliant with the timing limitations needed by a VNF Orchestrator. Finally, for what concerns the configuration of VNFs, service graph deployment should include a strategy to deploy VNF configurations in order to fix bugs in case of verification failures. Here, we have to face several challenges like the different ways a network function may require for being configured (REST API, CLI, etc...) and the configuration semantic that depends on the function itself (e.g., router parameters are clearly different from firewall ones). We conclude this thesis by proposing a model-based configuration approach, which means defining a representation of the main configuration parameters of a VNF. This VNF model is then automatically processed by further software modules in the VNF architecture to translate the configuration parameters into a particular format required by a VNF and to deliver the produced configuration into the VNF following one of the configuration strategies (e.g., REST, configuration file, etc.) already supported by the function. The achieved results of this last work, w.r.t. the current state of the art, are the exploitation of a model-driven approach that achieves a higher flexibility and the insertion of non-VNF-specific software modules to avoid changes in the VNF implementation
    • …
    corecore