
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Verification and Configuration of Software-based Networks / Spinoso, Serena. - (2017).
Original

Verification and Configuration of Software-based Networks

Publisher:

Published
DOI:10.6092/polito/porto/2676611

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2676611 since: 2017-07-17T10:39:46Z

Politecnico di Torino

Doctoral Dissertation

Doctoral Program in Computer and Control Engineering (29thcycle)

Verification and Configuration of
Software-based Networks

By

Serena Spinoso

Supervisor(s):
Prof. Riccardo Sisto

Doctoral Examination Committee:
Dr. Luca Durante, Referee, IEIIT-CNR
Prof. Adlen Ksentini, Referee, Eurecom
Prof. Eduardo Jacob, University of the Basque Country
Prof. Antonio Lioy, Politecnico di Torino
Prof. Bartolomeo Montrucchio, Politecnico di Torino

Politecnico di Torino

2017

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Serena Spinoso
2017

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

A te, papà.
Grazie di tutto.

Acknowledgements

I was never good at expressing my feelings and gratitude neither verbally nor in
writing, but I’m trying to do it here because I would like to sincerely thank those
people who have accompanied me in this trip that has been my PhD.

First of all, I would like to show my gratitude to my supervisor, Prof. Riccardo Sisto,
who has driven and helped me in the last three years with kindness and availability,
giving me so many opportunities.

I would like to thank also all the people that I met at the Networking Group, with
a special mention for Ivano, Matteo, Marco, Roberto, Amedeo and Francesco that
have made this experience much more enjoyable and gratifying.

Last but not least, I want to show my appreciation to my family, which has always
supported and endured me (and unfortunately for them, they will have to continue to
do it), especially Fulvio, without whom I would not be here, writing the acknowled-
gements for this thesis.

Thanks,
Serena

Abstract

The innovative trends of Network Function Virtualization (NFV) and Software
Defined Networking (SDN) have posed never experienced opportunities in productive
environments, like data centers. While NFV decouples software implementation
of the network functions (e.g., DPI and NAT) from their physical counterparts,
SDN is in charge of dynamically changing those functions to create network paths.
One new opportunity of such Software-based networks is to make the network
service-provisioning models more flexible, by enabling users to build their own
service graphs: users can select the Virtual Network Functions (VNFs) to use and
can specify how packets have to be processed and forwarded in their networks.
In particular, this PhD thesis spans mostly topics related to the verification and
configuration of service graphs.

For what concerns the challenges of network verification, our aim is to explore
strategies that overcome the limitations of traditional techniques, which generally
exploit complex modelling approaches and takes considerable verification times.

Thus we envision for verification techniques that are based on non-complex mo-
delling approaches in order to be much more efficient than existing proposals. Under
these conditions, such novel approaches may work at run-time and, in particular,
may be performed before deploying the service graphs, in order to avoid unexpected
network behaviours and detect errors as early as possible.

Another requirement is that verification should take a reasonable amount of time
from a VNF Orchestrator point of view, with fair processing resources (e.g. CPU,
memory and so on). This is because we are in the context of flexible services, where
the reconfiguration of network functions can be frequently triggered, both in case of
user request and in case of management events.

The first contribution of this thesis lays on the service graphs specification by
means of forwarding policies (i.e, a high-level specification of how packet flows are

x

forwarded). While the majority of the SDN verification tools operate on OpenFlow
configurations, we have defined a formal model to detect a set of anomalies in
forwarding policies (i.e., erroneous specifications that may cause misleading network
conditions and states). The key factors that distinguish our work from existing
approaches are both an early detection of policies anomalies (i.e., before translating
such policies into OpenFlow entries), in order to speed up the fixing phase, without
even starting service deployment, and a scalable approach that achieves verification
times in the order of milliseconds for medium- large- sized networks.

Another advancement in network verification has been the possibility to verify
networks including stateful VNFs, which are functions that may dynamically change
the forwarding path of a traffic flow according to their local algorithms and states
(e.g., IDSs). Our second contribution is thus a verification approach that models the
network and the involved (possibly stateful) VNFs as a set of FOL formulas. Those
formulas are passed to the off-the-shelf SMT (Satisfiability Modulo Theory) solver
Z3 in order to verify some reachability-based properties. In particular, the proposed
solution has been implemented in a tool released under the AGPLv3 license, named
VeriGraph, which takes the functional configurations of all deployed VNFs (e.g.,
filtering rules on firewalls) into account to check the network. The adopted approach
achieves verification times in the order of milliseconds, which is compliant with the
timing limitations needed by a VNF Orchestrator.

Finally, for what concerns the configuration of VNFs, service graph deployment
should include a strategy to deploy VNF configurations in order to fix bugs in case of
verification failures. Here, we have to face several challenges like the different ways
a network function may require for being configured (REST API, CLI, etc...) and the
configuration semantic that depends on the function itself (e.g., router parameters
are clearly different from firewall ones).

We conclude this thesis by proposing a model-based configuration approach,
which means defining a representation of the main configuration parameters of a
VNF. This VNF model is then automatically processed by further software modules
in the VNF architecture to translate the configuration parameters into a particular
format required by a VNF and to deliver the produced configuration into the VNF
following one of the configuration strategies (e.g., REST, configuration file, etc.)
already supported by the function. The achieved results of this last work, w.r.t. the
current state of the art, are the exploitation of a model-driven approach that achieves

xi

a higher flexibility and the insertion of non-VNF-specific software modules to avoid
changes in the VNF implementation.

Contents

List of Figures xv

List of Tables xvii

List of Listings xvii

1 Introduction 1

2 Detecting Anomalies in Service Function Chains 5

2.1 Problem statement and contributions 6

2.2 The approach . 9

2.2.1 Forwarding policy model 10

2.2.2 Comparison operators for anomaly specification 13

2.2.3 Anomaly model . 18

2.3 Anomalies Classification . 20

2.4 Implementation and evaluation . 28

2.5 Related Work . 33

3 Checking Reachability in Service Graphs 37

3.1 Problem statement and contributions 38

3.2 The SP-DevOps concept . 40

3.3 The approach . 43

Contents xiii

3.3.1 VNFs models . 45

3.4 Implementation and evaluation . 47

3.4.1 Preliminary results . 48

3.4.2 VeriGraph . 50

3.4.3 UNIFY pre-deployment verification: use case 52

3.5 Future works: scalability issues . 55

4 A Proposal for Seamless Configuration of VNFs 59

4.1 Problem statement and contributions 60

4.2 Related work . 62

4.2.1 Agent-Based Configuration Approach 63

4.2.2 Protocol-Based Configuration Approach 63

4.2.3 Model-based configuration approaches 64

4.2.4 Other Approaches . 65

4.3 Objectives and Challenges . 66

4.4 The approach . 69

4.4.1 Architecture overview . 69

4.4.2 Configuration translators 72

4.4.3 Configuration gateways . 75

4.5 Implementation and evaluation . 76

4.5.1 Object Model . 76

4.5.2 Translation rules . 78

4.5.3 Access parameters . 80

4.5.4 ConfigTransl2File Prototype 83

4.5.5 Validation . 85

4.5.6 Testing results . 86

xiv Contents

5 Conclusion 91

References 95

List of Figures

2.1 Topology example. 13

2.2 Hierarchy of anomaly classes. 20

2.3 Use case: a possible campus network topology. 29

2.4 Verification time evaluated with a growing number of forwarding rules. 31

2.5 Verification time evaluated with a growing percentage of forwarding
rules that satisfy an anomaly. 32

2.6 Verification time evaluated with a growing number of anomalies. . . 33

3.1 SP-DevOps cycle for UNIFY service creation. 41

3.2 Web cache model. 46

3.3 NAT model. 47

3.4 An example of Network Function-Forwarding Graph. 48

3.5 Formal verification of a service graph with stateful VNFs. 49

3.6 VeriGraph design architecture. 52

3.7 Network Function-Forwarding Graph use case. 53

3.8 Formula for modelling packets receiving and sending. 56

3.9 ACL firewall model in Skolemized form. 57

4.1 Interaction between different actors. 70

4.2 Possible configuration-oriented CM architectures. 71

4.3 Overview of a CM architecture for configuring VNFs. 74

xvi List of Figures

4.4 Detailed overview of the enhancements in CM architecture. 83

4.5 Elapsed time for generating Vyatta Core and Bind9 configuration
files, with 95% confidential intervals. 87

4.6 Bind9 use case: reduction of configuration complexity. 88

4.7 Vyatta use case: reduction of configuration complexity. 89

List of Tables

2.1 Pre-defined set of anomalies. 30

2.2 Custom set of anomalies. 30

3.1 Verification times achieved by VeriGraph with a bad network confi-
gurations. 54

3.2 Verification times achieved by VeriGraph with a correct network
configurations. 54

Listings

4.1 XML Schema language example: an excerpt of a router VNF des-
cription. 77

4.2 YANG language example: an excerpt of a router VNF description. . 79
4.3 Excerpt of access parameter object model. 81
4.4 Possible content of an access parameter OM instance. 82
4.5 An excerpt of the Bind9 YANG description file. 84
4.6 Excerpt of the generated Bind9 configuration file. 85
4.7 Excerpt of the Vyatta configuration file. 86

Chapter 1

Introduction

The innovative trends of Network Function Virtualization (NFV) and Software
Defined Networking (SDN) have posed never experienced opportunities in productive
environments, like data centers.

NFV1 aims at decoupling software implementation of the network functions, like
routers, firewalls, Deep Packet Inspections and others, from their physical counter-
parts. This means that network functions are transferred from dedicated hardware
appliances to software-based applications, named Virtual Network Functions (VNFs),
running on commercial off-the-shelf (COTS) equipment. Thanks to this paradigm,
VNFs can be instantiated in various locations such as data centers, network nodes,
and end-user premises as the network requires.

SDN2 [1], instead, separates the control plane from the data plane, which means
that network devices have to simply forward traffic while the control logic is cen-
tralized in a single software program, named Controller. This separation has made
the network more programmable and easy to manage: providers have to instruct a
single software model to manage the whole network and to apply the desired network
behaviour. In particular, the SDN Controller can be programmed to instantiate net-
work paths where packets are forwarded through an ordered set of network functions
before being delivered to the final destination. Such network paths are known in the
literature as Service Function Chains (SFCs) [2].

1http://www.etsi.org/technologies-clusters/technologies/nfv
2https://www.opennetworking.org/sdn-resources/sdn-definition

http://www.etsi.org/technologies-clusters/technologies/nfv
https://www.opennetworking.org/sdn-resources/sdn-definition

2 Introduction

Such paradigms are part of the recent trend named Softwarization, which is
having a significant impact on the way network service are deployed and managed
by providers. The Softwarization of the network has forsaken the usual service
provisioning model that was strictly intertwined with the physical network topology
and based on the typical switching and bridging solution, in favour of new chain-
based models.

Recent research activities, in fact, have enabled tenants to define multiple SFCs
that could be also overlapped, creating a sort of forwarding graph where traffic can
follow different paths according to network functions configuration and packets
content. Thus, this novel chain-based network service enables users to build their
own networks (named service graphs). During the service graph specification phase,
the final users can select the VNFs to use and can specify how packets have to be
processed and forwarded in the graph.

From the provider perspective, the deployment of a service graph needs a NFV
architecture and many components to manage the VNF instance, the resource as-
signment and the whole service lifecycle. One of the main components of this
architecture is the VNF Orchestrator, which is responsible for the management of
the network service lifecycle and of the global resources.

In the context of the Software-based networks (i.e., NFV/SDN-based), several
research problems can be addressed like the optimization of VNF placement, the
enforcement of security-related constraints in the service graph, or the enforcement
of bandwidth constraints. However, this PhD thesis spans mostly topics related to
the verification of Software-based networks and their configuration.

In particular, we will consider the context of flexible network services, where the
reconfiguration of the involved VNFs can be frequently triggered, both in case of
user request and in case of management events. Under these conditions, on one side,
mechanisms for verification and properties checking are needed because providers
need a high level of assurance of the network service correctness, before deploying
it; on the other side, providers should also take care of implementing a seamless
strategy to deploy VNF configurations in order to complete the service request and/or
eventually to fix bugs in case of verification fails.

In order to improve the state of the art in these directions, we present in this
dissertation our contributions to the network verification and configuration. In
particular, the remainder of this thesis is organized as follows:

3

• Chapter 2 presents a solution of early-verification. We aim to check the
presence of anomalies and faults in the user’s request expressed in form of
forwarding policies, which are an high-level specification of traffic forwarding
translated into low-level configurations to install in the SDN network. This
work exploits a formal model to represent the forwarding policy and to check
a set of anomalies before configuring the network;

• Chapter 3, instead, proposes a way to model both stateless and stateful VNFs
(i.e. network functions that forward packets based on both packet content and
traffic history). This approach has been implemented in an open source tool
that allows to check the satisfaction of reachability-based invariants in service
graph requests and to stop the graph deployment in case of verification failure;

• The last part of this dissertation (Chapter 4) focuses on the configuration of
Software-based networks by proposing an effective solution for installing
configuration parameters into VNFs (e.g., blacklists into DNS filters) with a
model-based approach;

• Chapter 5 finally concludes this thesis by presenting possible improvements of
our contributions to the state of the art.

Chapter 2

Detecting Anomalies in Service
Function Chains

In this thesis, we mean verification as the process used to check the correctness of
computer systems before putting them into use. Besides, the verification process
can have a formal approach, i.e. it may rely on formal methods and mathematical
reasoning to perform its goal. In particular, formal verification has been applied firstly
to check the correctness of hardware and it is now increasingly used in the software
development process. In this dissertation, we are interested in the application of
formal verification in the networking field and how the literature has addressed the
problem in order to improve the state of the art with novel proposals.

There has been much work on checking network protocols and their implemen-
tations, but until recently almost none on verifying a given network configuration.
Recently, indeed, many approaches and tools have been applied to verify if the
current or proposed configuration obeys various important invariants defined by the
provider in order to guarantee that the network will operate correctly. Examples of
such invariants are absence of routing loops or black holes, network node reachability,
satisfaction of security-related policies (e.g., node isolation and traversal) and others.

In this thesis, we mostly focus on those mechanisms for verification and property
checking applied in the context of SDN/NFV-based networks. With respect to this
topic, the majority of the proposed verification tools and approaches operate on
network configurations represented by the forwarding tables installed into the routers
and switches. Moreover, the forwarding decisions of a SDN-controlled router/switch

6 Detecting Anomalies in Service Function Chains

are commonly dictated by OpenFlow, the standard implementation of the SDN
paradigm [3].

Current SDN-oriented tools verify if some invariants hold by checking only
the low-level configurations (e.g. OpenFlow) of the SDN switches, causing a late
detection of errors and faults in the service graph requests. Due to the high agility,
flexibility and programmability of Telecommunications infrastructures, providers
need novel verification approaches that, on one side, overcome the limitations of
traditional model checking techniques, which may fall in out of memory and time in
case of complex scenarios, and, on the other side, speed up the fixing phase in case
of verification failures. In order to improve the state of the art in these directions, we
present in this chapter a scalable solution to verify Software-based networks before
they are configured.

2.1 Problem statement and contributions

We recall that the Service Function Chaining (SFC) concept [4] consists in instantia-
ting an ordered sequence of network functions, and consequently steering a particular
portion of packets (e.g., the ones of a particular user) through the deployed chain.
This new paradigm has improved the network services offered to end-users, who can
express how their own traffic should be processed inside the network. However SFC
services have also introduced additional complexity and many challenges in flow
management.

SDN has provided the means to address such challenges and to reduce the
complexity of managing networks. In this context, OpenFlow is the first SDN
standard, which expresses routing state as a set of <match,action> entries in
FlowTables, named flow entries. When a network switch receives a packet with
headers matching the match entry, that packet is subject to the specified action (e.g.,
“forward to a specific port”, “drop packet”, etc.), otherwise it is forwarded
towards the SDN Controller. The Controller, then, will install the appropriate flow
entry in the network to manage that packet.

A proposed strategy to simplify SFC instantiation is to enable SDN/OpenFlow
Controllers to configure the network directly by means of forwarding policies. By

2.1 Problem statement and contributions 7

forwarding policy we refer to a network policy [1] that specifies how traffic should
traverse the instantiated chains in a high-level and abstract way.

In literature, many policy-oriented languages have been proposed to program
SDN networks. Generally such languages provide high-level constructs for defining
how packets must be classified and forwarded. Examples are Merlin [5] and Fat-
Tire [6]. After the definition phase, a forwarding policy is translated into the most
suitable set of low-level rules, like flow entries in OpenFlow FlowTables [3]. The
SDN Controller will install the translated flow entries into the network switches in
order to instantiate the desired service chains.

Of course, errors and ambiguity in policy specifications can lead to faulty network
configurations. For example, a forwarding policy could generate conflicting flow
entries in OpenFlow switches. Let us consider the case of a switch FlowTable
containing two conflicting entries that manage the same traffic flow, but that assign
this flow different actions like “drop” and “flood”. Even tough OpenFlow adopts a
resolution strategy based on priorities among flow entries, the higher-priority entry
may not be the desired one for managing that traffic flow. At run-time, faults in
network configuration may be present in managing traffic flows with opposite actions
to the entries which should take precedence in the FlowTable.

Our contribution mainly aims at preventing these problems by defining a formal
model that enables specification and verification of forwarding policies. Using
this approach, a precise and unambiguous meaning is given to a forwarding policy
specification, and it is possible to automatically detect anomalies in forwarding
policy specifications (e.g., due to human errors made by network administrators,
service providers, tenants, etc.).

Note that we just consider errors in forwarding policies and we do not address
the possible errors in the translation algorithm that generates OpenFlow flow entries
from policies. Since policy translation is performed automatically, we rely on the
correctness of this process and leave its verification out of scope.

Differently from our proposal, which focuses on checking forwarding policies
themselves, so far literature has mainly addressed the verification of OpenFlow flow
entries, thus working on the output of the forwarding policy translation process
rather than on its input. More precisely, the existing proposals (e.g., VeriFlow [7]
and FlowChecker [8]) mainly focus on detecting the presence of conflicts among
flow entries, which consists in checking the violation of some network invariants or

8 Detecting Anomalies in Service Function Chains

checking when a traffic flow is enabled (or disabled) by a new flow entry, while the
previous FlowTable entries disabled (or enabled) that flow.

One key factor that distinguishes our work from these approaches is early de-
tection of forwarding policies, which means performing a verification step before
translating such policies into OpenFlow entries. The verification process has to be
executed before the Controller configures the network, i.e providers will run the
verification either within or on a layer above the Controller. Early detection can
speed up the fixing of problems. This verification, in fact, can already be performed
during the policy specification phase. Early-detection of a number of anomalies
allows one to immediately fix the detected anomalies, without even starting the
deployment phase. In this way it is possible also to avoid the waste of computational
resources spent for translating anomalous forwarding policies.

Of course, the translation tools based on the policy-oriented specification langua-
ges already mentioned [5, 6] perform some integrity check before translating a policy
specification into OpenFlow entries, but these languages miss a formal underlying
model and these preliminary checks have not been the object of publications so far.

One new contribution of our work is thus the definition of a formal model that
allows the automatic detection of a set of anomalies in forwarding policies. By
anomaly we mean an erroneous specification of forwarding policies, which may
cause misleading network conditions and states1. For example, anomalies can
be related to violation of administrator-defined requirements, but also conflicting
forwarding specifications. An example of an administrator-defined constraint can be
related to the network function ordering within a service chain, while an example of
conflicting forwarding specification is when two policy rules specify different chains
to be traversed by the same packet flow. These rules could lead to the generation and
installation of conflictual OpenFlow flow entries in network switches.

Furthermore, the proposed model supports high flexibility in defining the anoma-
lies to be checked. This is achieved by defining a set of operators that let one precisely
and unambiguously specify the anomalies to be checked. The supported operators
have been in part inspired by the previous works on conflict analysis performed in

1Errors in network forwarding may be still present after the early-detection of anomalies in
forwarding policies, due to wrong configuration installed into the network functions involved in the
network (e.g., wrong filtering rules installed in firewalls). To detect and solve this kind of errors, an
administrator needs to use other approaches, like the other verification approach presented in this
thesis (Chapter 3).

2.2 The approach 9

other policy domains (e.g., OpenFlow [9] and traffic filtering [10]). The anomalies
specified by means of these operators are automatically translated into formulas in
First Order Logic (FOL) that are finally fed to the verifier along with the policy to
be checked. The flexibility introduced by this approach allows administrators to
define their custom anomalies but, at the same time, it is possible to create a set of
pre-defined anomalies, specified using the same formalism, corresponding to general
mistakes to be avoided in any network.

We also propose a hierarchy of classes of anomalies that can arise in a forwarding
policy. Such hierarchy considers both those anomalies that may lead to the OpenFlow
conflicts already presented in literature, and it includes also new classes of anomalies,
proper of the forwarding policy domain, that can be detected thanks to our model.

The rest of the chapter is organized as follows: the proposed model is presented
in details in Section 2.2 where we describe the structure of a forwarding policy and
the supported operators for describing anomalies; Section 2.3 presents the main
classes of anomalies the model allows one to detect. We have also implemented
an anomaly detection process, in order to evaluate the time required to verify a
network policy (Section 2.4). Finally, Sections 2.5 concludes the chapter presenting
the current state of the art.

2.2 The approach

In this section, we present the formal model proposed for verifying forwarding
policies. First, we present the model of a forwarding policy, which is a set of rules
(namely forwarding rules or simply rules) that manage several traffic flows. Then, we
present the comparison operators that can be used for building anomaly specifications.
Such operators enable pairwise comparisons between the elements that compose a
forwarding rule or that belong to different rules. Finally we introduce the anomaly
model, which is a FOL formula that involves a set of pairwise comparisons. In the
next section we identify a possible classification of anomalies, in order to better
clarify the new classes of anomalies detected thanks to the proposed model. We
also describe how the anomalies of the different classes are specified and how their
formulas are built.

10 Detecting Anomalies in Service Function Chains

2.2.1 Forwarding policy model

In our model, the flow management of a network is specified through a forwarding
policy (RF). A policy is a set of forwarding rules, each one putting in relation traffic
flows with the SFCs those flows can traverse at run-time. A generic forwarding rule
r in a forwarding policy (r ∈ RF) has the following structure:

r = (M ,C), r ∈ RF (2.1)

where:

(i) M is the traffic flow managed by the rule, which belongs to the set of all
possible flows in a network (M ⊆M);

(ii) C is the set of SFCs that M can potentially traverse at run-time and it is part
of the whole set of chains instantiated in the network (C ⊆ C).

In our model we suppose that a flow M does not traverse necessarily all the
configured chains at run-time. In a real network scenario, packet forwarding, in
fact, depends also on function configuration and state, thus a flow can be forwarded
to zero, one, many or all of the allowed chains. An example is when web traffic
traverses a load-balancer, which selects only one outgoing path, based on its internal
algorithm and state. Another example is a mirroring function in which case the same
traffic flow follows different chains.

The proposed model does not consider rule priorities as instead it has been done
in the OpenFlow domain ([9], [11]). This is because we are working at a higher
abstraction level, where we loose the notion of order among forwarding rules. It
is only when a forwarding policy is translated into OpenFlow flow entries that we
need a priority in FlowTables. Another reason for omitting priorities is also that
forwarding rules should be specified to manage non-overlapped traffic flows. When
this condition is violated, we have an anomaly in the policy according to our model.

A flow M is modelled by referring to a set of OpenFlow fields N , named
network fields. In detail, a network field n is an element of N (n ∈ N) and N is

2.2 The approach 11

currently defined as follows2:

N = {eth_src,eth_dst,eth_type,vlan_id,

ip_src, ip_dst, ip_proto, port_src, port_dst}
(2.2)

Each network field has a type, i.e. the set of values that can be taken by the
field. If the type of a network field n is a totally ordered set, when defining a flow
M , it is possible to specify that M includes the packets for which n takes either
a single value or a range of values, based on the granularity we want to use in
specifying M . For example, in a flow specification we can use ip_dst = 8.8.8.0/24
or port_dst = [80,100], because the types of IP address and port number fields
are ordered sets of values, but if we prefer we can also use single values (e.g.,
ip_dst = 8.8.8.151 or port_dst = 80).

In general, in order to identify a particular flow, a value (or range of values) v
has to be specified for each supported network field n. The packets that belong to the
flow are those whose network fields match the specified values. As a special case, it
is possible to use the special value * for a network field n, which means that n can
take any value according to its type. Hence, a flow M is formally defined by a list
of equalities, one for each network field:

M = (eth_src = veth_src, eth_dst = veth_dst , eth_type = veth_type,

vlan_id = vvlan_id, ip_src = vip_src, ip_dst = vip_dst ,

ip_proto = vip_proto, port_src = vport_src, port_dst = vport_dst)

(2.3)

As specified in (2.1), a forwarding rule also includes the service chains (i.e.,
SFCs) C that can be traversed by the flow M . In detail, C is the set of chains c
enforced by a rule, which is, in turn, a sub-set of all possible chains C:

C = {c1,c2...,cn}, ck ∈ C ⊆ C (2.4)

Each chain ck ∈C is represented in our model as an ordered sequence of network
functions ck = [f 1k , f 2k , ..., f mk]. Each function f wk in a chain ck is one of the

2This set of fields can be extended as needed.

12 Detecting Anomalies in Service Function Chains

functions present in the network and it is modelled by the pair:

f wk =< f _idwk , f _typewk > (2.5)

where f _idwk is the function identifier and f _typewk is the type of the function,
which necessarily has to belong to the VNF catalogue (F) offered by the operator3.
Thus we model a network chain as:

ck =[< f _id1k , f _type1k >,...,< f _idmk , f _typemk >], f _typewk ∈ F (2.6)

To summarize, a forwarding rule r is modelled as follows:

r = (M ,C) = ((eth_src = veth_src, eth_dst = veth_dst ,

eth_type = veth_type,vlan_id = vvlan_id, ip_src = vip_src,

ip_dst = vip_dst , ip_proto = vip_proto, port_src = vport_src,

port_dst = vport_dst), {[< f _id11 , f _type11 >,...] , ... })

(2.7)

As an example of forwarding rule, let us consider to have to manage the web
traffic from a client with address 130.192.225.116 to a web server in the network
scenario depicted in Figure 2.1. We can specify this traffic can traverse two possible
chains with the following forwarding rule:

r = ((eth_src = ∗, eth_dst = ∗, eth_type = 0x0800,

vlan_id = ∗, ip_src = 130.192.225.116, ip_dst = 8.8.8.0/24,

ip_proto = 0x06, port_src = ∗, port_dst = 80),

{[< host_a,H >,< lb_a,LB >,< ids_a, IDS >,< f w,FW >,

< lb_b,LB >,< server_a,S >], [< host_a,H >,< lb_a,LB >,

< ids_b, IDS >,< f w,FW >,< lb_b,LB >,< server_a,S >]})

In the proposed formalism, we explicitly indicate hosts in the SFC specification.
This is because we consider the hosts as part of the service chain. However, many

3From now on, we use abbreviations in the formulas to indicate the type of network function
involved in the network chains. In particular, we use these abbreviations in the next examples: H
(End Host), WS (Web Server), FW (firewall), NAT (network address translator), DPI (deep packet
inspection), MN (monitor), LB (load-balancer), SPAM (anti-spam), CACHE (web-cache), IDS
(intrusion detection system), VPN (virtual private network) and L7_FW (layer 7 firewall).

2.2 The approach 13

lb_a

ids_a

ids_b

fw lb_b

Web
Servers

ws_a

End
Hosts

h_a

SUBNET
130.192.225.0/24

SUBNET
8.8.8.0/24

Fig. 2.1 Topology example.

formalisms to define SFCs in different manners are possible, for example by inclu-
ding host identification in the traffic specification (M). Thus, we leave this aspect
and its effects on the verification approach as future improvements of our model.

From now on, we indicate the elements of a forwarding rule ri as follows:

(i) Mi and Ci are respectively the flow and the SFCs managed in rule ri;

(ii) nh
i is the h-th network field in ri and vh

i is its value specification;

(iii) ck
i specifies the k-th chain in the i-th rule;

(iv) f wk
i is the w-th function in ck

i .

We use this notation in case we are referring to different forwarding rules (e.g.,
ri and r j), while in case we are indicating a single rule, we do not use any index
as subscript to indicate the rule itself r and its elements (M , C , and their network
fields, values and chains).

2.2.2 Comparison operators for anomaly specification

In order to enable the specification of anomalies, the model offers a set of relational
operators. These operators enable the specification of pairwise comparisons (x ∈X),
each one involving network fields and SFCs belonging to the same or to different
rules. Formally, these comparisons are predicates that let us finally identify sets of

14 Detecting Anomalies in Service Function Chains

matching forwarding rules. More precisely, if x is a comparison that involves fields
and SFCs belonging to the same generic rule r, x can be regarded as a function of r
which returns the result (true or false) of the comparison evaluated on r. Moreover,
x identifies the set of rules r such that x(r) is true. If instead x involves fields and
SFCs belonging to two different rules ri, r j, x can be regarded as a function of two
variables ri, r j which returns the result (true or false) of the comparison evaluated on
ri and r j. Moreover, x in this case identifies the set of pairs of rules (ri,r j) such that
x(ri,r j) is true.

The set of operators offered in this model was inspired by the previous works
presented in literature and in particular, we have considered two proposals of conflict
analysis: one regarding firewall rules (i.e., a filtering policy domain [10]) and the
second one in the context of OpenFlow rules [9].

Since those proposals are applied to different policy domains, we have adapted
the sets of operators proposed in those works in order to enable the verification of for-
warding rules. In particular, we exploited the existing network field-related operators
to establish the relationships between traffic flows. Moreover, we introduced SFC
comparisons, and other newly defined operators in order to enable the specification
of a wider set of anomalies.

Network field operators

The set of supported operators to compare network fields includes:

• equivalence (=): two fields are equivalent if the value(s) they can take (in the
flows of the rules they belong to) are the same, even though they are different
fields (e.g., if M includes port_src = 80 and port_dst = 80, then, for rule
r, which includes M , we have port_src = port_dst). In case the fields are
specified to take ranges of values in a flow, they are equal if the set of values
they can take in their flow is the same. Of course, equivalence can also be
applied to fields belonging to the flows of different rules;

• majority (>): this operator can be applied to fields that are specified to take
single numeric values. In this case, a network field is grater than another
one or than a specific value, when their values have this relation (e.g., if
port_src = 70001, port_src > 65535 is true);

2.2 The approach 15

• dominance (≻): this operator can be applied to fields that can take ranges of
values. In particular, a field dominates another one when it can take all the
values that can be taken by the second field (e.g., if port_srci = [1024,2048]
and port_src j = [1024,1500], then port_srci ≻ port_src j);

• correlation (∼): this operator can be applied to fields that can take ranges of
values. Two fields are correlated if they share some values but none dominates
the other (e.g., if port_srci = [1024,1500] and port_src j = [0,1100], then
port_srci ∼ port_src j).

• disjointness (⊥): two network fields are disjoint if they do not share any
value (e.g., if port_srci = [1000,1024] and port_src j = [1100,8080], then
port_srci ⊥ port_src j).

The model also offers the negative form of the aforementioned operators, like
non-disjointness (̸⊥ - two fields are either equal, correlated or one dominates the
other) and non-equivalence (̸= - two fields can be correlated, disjoint or one can
dominate the other).

Moreover, combinations of operators are allowed. This is the case of equivalence
or dominance (≽ - i.e., a network field is equivalent to or dominates another one),
equivalence or correlation (≃ - i.e., a network field is equivalent or correlated to
another one) and equivalence or majority (≥ - i.e., a network field is equivalent or
grater than another field).

SFC operators

As already mentioned, here we define new operators, in order to enable comparisons
that involve SFCs. First, we introduce the following notation to represent ordered
sequences (i.e., SFCs) and unordered sets of network functions:

• ordered sequence ([]): this notation was already introduced for the specifi-
cation of SFCs inside forwarding rules. It is also used to represent ordered
sequences of network functions in an anomaly specification. Via the wildcard
character *, the proposed model supports the specification of unidentified
functions, i.e. functions for which only the type is specified, not the iden-
tity. For example, a chain composed of a NAT followed by a firewall can be
specified generically as [< ∗,NAT >,< ∗,FW >];

16 Detecting Anomalies in Service Function Chains

• set ({}): this notation can be used to specify unordered collections of functi-
ons. For example, a chain including an application firewall and a DPI, non
necessarily in this order, can be specified as {< ∗,L7_FW >,< ∗,DPI >}.

For what concerns the comparison between SFCs that can belong to the same
forwarding rule or to different rules, we extend the current literature by enabling
pairwise comparisons between: (i) two chains of either the same or different rules;
(ii) a chain and an ordered sequence of functions (i.e., a chain not managed by a
forwarding rule); (iii) chain and a set of functions. In some cases, the same operators
can be used for different types of comparisons, the exact meaning of the comparison
being determined by the types of the compared elements. In case of comparison
between two chains (of the same or of different rules - e.g., ck and cl) or a chain and
an ordered sequence (e.g., ck and [f 1, f 2, ..]), the following operators can be used:

• equivalence (=): two chains are equivalent if they are the same ordered
sequence of network functions (e.g., if ck = [f 1, f 2] and cl = [f 1, f 2], then
ck = cl);

• dominance (≻): a chain dominates another one when it contains the second
chain as a subsequence and the two chains are not equivalent (e.g., if ck =

[f 1, f 2, f 3] and cl = [f 2, f 3], then ck ≻ cl);

• correlation (∼): two chains are correlated if none dominates the other, but
they share an ordered sub-chain (e.g., if ck = [f 1, f 2, f 3] and cl = [f 4, f 2, f 3],
then ck ∼ cl);

• disjointness (⊥): two chains are disjoint if they do not have any sub-chain in
common (e.g., if ck = [f 1, f 2, f 3] and cl = [f 4], then ck ⊥ cl).

The comparison between a chain and an unordered set of functions (i.e., ck and
{ f 1, f 2, ...}), instead, can involve the following operators:

• correlation (∼): a chain is correlated to a set of functions if it contains some
of those functions (e.g., ck = [f 1, f 2, f 3]∼ { f 4, f 2, f 3});

• disjointness (⊥): a chain and a set of functions are disjoint if they do not
share any function (e.g., ck = [< spam,SPAM >,< f w,FW >,< d pi,DPI >
]⊥ {< mn,MN >});

2.2 The approach 17

• inclusion (⊂): a set of non-ordered network functions is included into a chain
if all of its functions are part of the chain (e.g., if ck = [< spam,SPAM >,<

nat,NAT >,< f w,FW >], then {< nat,NAT >} ⊂ ck).

It is interesting to note that in some particular cases, the inclusion and dominance
operators take the same meaning. Let us consider, for example, that one wants to
specify the condition that a network function f belongs to a chain c. This condition
can be expressed either by the comparison { f} ⊂ c or by c ≻ [f]. However, it is
better to have different operators, in order to cover a richer set of anomalies and keep
expressions as simple as possible. For example, if the model would support only the
dominance operator, an administrator could specify that m functions f 1, f 2,..., f m,
not necessarily in this order, belong to a SFC, by specifying

c ≻ [f 1]∧ c ≻ [f 2]∧∧ c ≻ [f m]

Supporting also the inclusion operator (⊂), we then make the formula syntax less
complex and less likely to be mistaken:

{ f 1, f 2, ..., f m} ⊂ c

For SFC comparisons too, the model offers the negative forms of the aforemen-
tioned operators (e.g., non-correlation (̸∼), non-dominance (̸≻), etc.), and some
combinations of operators (i.e., equivalence or dominance (≽), equivalence or cor-
relation (≃) and inclusion or equivalence (⊆)). Note that the meaning of these
additional operators changes based on the type of the operands, as specified previ-
ously.

In order to further enlarge the expressive power, we define also another new
operator that lets us specify comparisons related to the position of a function within
a service chain:

• π(f ,c) returns the position of network function f within chain c, if { f} ⊆ c,
or 0 otherwise. Let us consider for example c = [< nat,NAT >,< f w,FW >].
The NAT position inside c is π(< nat,NAT >,c) = 1.

Finally, the model also allows to check the membership of a chain ck within a set
of chains Ci:

18 Detecting Anomalies in Service Function Chains

• membership (∈): this boolean operator returns true if a chain ck belongs
to the set of chains Ci of the forwarding rule ri and false otherwise. For
example, let us consider ck = [< spam,SPAM >,< f w,FW >,< d pi,DPI >]

and C = {[< nat,NAT >,< f w,FW >], [< spam,SPAM >,< f w,FW >,<

d pi,DPI >]}, then c ∈ C is true. The model supports also the negative form
of this operator (i.e, ̸∈).

2.2.3 Anomaly model

Forwarding anomalies, or simply anomalies, represent erroneous and undesired
network conditions that a network administrator wants to detect and eliminate in a
forwarding policy, in order to guarantee a correct traffic forwarding. The set of all
anomalies is denoted A.

More precisely, an anomaly a ∈ A represents a single network condition that an
administrator wants to avoid. Formally, it is a predicate defined on one or more rules.
For example, if r is a variable that represents a rule, an anomaly can be formally
represented by a function a(r) that returns the boolean true if the anomaly is present
in the single rule r and false otherwise. Similarly, if ri and r j are two rules, an
anomaly can be defined as a function a(ri,r j) that returns the boolean true if the
anomaly is present in the pair of rules (ri,r j). A policy RF is anomaly-free if ∀a ∈A
we have a(r) = f alse ∀r ∈ RF or a(ri,r j) = f alse ∀(ri,r j) ∈ RF×RF, according to
the arity of a.

In detail, an anomaly is formally specified by a set of Horn clauses [12] that
involve pairwise comparisons. Each Horn clause is a conjunction of positive com-
parisons xi on rule fields and chains, which implies the presence of the anomaly in
a single rule or in a pair of rules. Hence, the structure of Horn clauses that define
anomalies is as follows:

x1 ∧ x2 ∧ ...∧ xq → a(r), a ∈ A

x1 ∧ x2 ∧ ...∧ xq → a(ri,r j), a ∈ A
(2.8)

In practice, the intersection of the sets of rules identified by the comparisons that
occur in the left hand side of the formula is the set of rules in which the anomaly is
present.

2.2 The approach 19

In order to be flexible enough, the model supports also existential (∃) and uni-
versal (∀) quantification over SFCs in the left hand side of the Horn clauses, which
enables the possibility to specify that some comparisons have to be satisfied by at
least one or by all the SFCs of a forwarding rule. In this model, when we quantify
universally on pairs of chains, we are considering implicitly pairs of different chains.
For example, in case we check the correlation among the SFCs in a forwarding rule,
we can specify ck

i ∼ cl
i, ∀ck

i ,c
l
i ∈ Ci to check only pairs of different chains, without

indicating explicitly that k ̸= l.

An example of anomaly that refers to pairs of rules and that uses universal
quantification is the rule duplication anomaly, which occurs when a policy includes
two identical rules. This anomaly can be specified as the anomaly that is true when
the pairwise equivalence between all the elements of two rules (ri and r j), including
all the SFCs, is satisfied:

eth_srci = eth_src j ∧ eth_dsti = eth_dst j ∧ eth_typei = eth_type j ∧
vlan_idi = vlan_id j ∧ ip_srci = ip_src j ∧ ip_dsti = ip_dst j ∧
ip_protoi = ip_proto j ∧ port_srci = port_src j ∧ port_dsti = port_dst j ∧
ck

i ∈ C j,∀ck
i ∈ Ci ∧ cl

j ∈ Ci,∀cl
j ∈ C j → Duplication(ri,r j)

(2.9)

Another example of anomaly can be defined with reference to Figure 2.1. A
network administrator who wants to make sure all web traffic traverses a firewall can
define a custom anomaly triggered if web traffic may not traverse a firewall. This
anomaly, which involves a single rule, can be expressed by means of the following
formula:

eth_src = ∗ ∧ eth_dst = ∗ ∧ eth_type = 0x0800 ∧ vlan_id = ∗ ∧
ip_src = 130.192.225.116 ∧ ip_dst = 8.8.8.0/24 ∧ ip_proto = 0x06 ∧
port_src = ∗ ∧ port_dst = 80 ∧ {< ∗,FW >} ̸⊂ ck ,

∀ck ∈ C → webNoFirewall(r)

(2.10)

In the next section, we present a proposal of anomaly classification, which
highlights the hierarchy of anomalies the model can express. For each class iden-
tified (depicted also in Figure 2.2), an anomaly takes a specific form, based on the
comparisons x used to express the anomaly.

20 Detecting Anomalies in Service Function Chains

Single-Field

Pair-Field
Flow-Error

Node Traversal
Node Ordering

Chain Constraint

Chaining-Error

Intra-Rule

Sub-Optimiaztion
Conflicting

Inter-Rule

Forwarding
Anomalies

Fig. 2.2 Hierarchy of anomaly classes.

2.3 Anomalies Classification

Forwarding anomalies are divided into several classes, based on the kind of pairwise
comparisons x involved in the Horn clauses that express them.

The classification we are proposing is based mostly on the object of comparison
rather than on the comparison operator occurring in the formula. For this reason,
in the following formulas that we use for defining the classification we leave the
operator unspecified and we indicate it generically by the ⋆ symbol. In other words,
the proposed classification distinguishes anomalies according to the kind of operands
of comparisons. In particular, we distinguish anomalies whose comparison operators
involve:

(i) a network field and a specific value (n ⋆ v);

(ii) network fields either in the same (nh ⋆ ng) or in different rules (nh
i ⋆ng

j);

(iii) chains of the same forwarding rule (ck ⋆ cl);

(iv) a chain and a sequence (c ⋆ [f 1, f 2, ..., f m]) or a chain and an unordered set
of functions (c ⋆ { f 1, f 2, ..., f m});

Figure 2.2 shows the proposed anomaly classification. Note that the leaf ano-
malies of the hierarchy shown in Figure 2.2 are not exhaustive, but they just cover
the most important cases. More classes can be added to the hierarchy. Firstly the
hierarchy splits anomalies into two macro-classes:

2.3 Anomalies Classification 21

(i) Intra-Rule anomalies, arising within a single forwarding rule and involving
errors on network field or chain specifications;

(ii) Inter-Rule anomalies, involving pairwise comparisons on network fields or
SFCs of different forwarding rules.

Intra-Rule anomalies are further divided into two sub-classes, concerning the
flow- or chain-related parts of the forwarding rule model (i.e., the Flow and Chaining
classes). Note that the leaf anomalies of the hierarchy shown in Figure 2.2 are not
exhaustive, but they just cover the most important cases. More classes can be added
to the hierarchy.

The Flow-Error class contains the anomalies that have been identified in litera-
ture [11] as the errors derived from a bad definition of the flow M . This first class
includes two sub-classes:

(i) Single-Field anomalies check the correctness of single network fields in a
forwarding rule;

(ii) Pair-Field anomalies verify the relationships among different network fields
within a forwarding rule.

The Chaining class includes the new types of anomalies specific for the forwar-
ding policy domain. The anomalies of this class, in fact, can be specified thanks to
the new set of chain-related operators, defined in Section 2.2.2.

The Chaining class is further divided into three sub-classes:

(i) Node Traversal includes the violations of requirements related to the traversal
of a set of VNFs by a traffic flow;

(ii) Node Ordering anomalies are related to the violation of ordering constraints
of a set of VNFs that makes up a chain;

(iii) Chain Constraint anomalies occur when the set of chains traversed by a traffic
flow violates some administrator-defined invariants.

Finally, the proposed anomaly classification includes Inter-Rule anomalies. The
literature locates under this class two types of anomalies:

22 Detecting Anomalies in Service Function Chains

(i) Sub-Optimization anomalies correspond to conditions in which the forwarding
rules will be translated into flow entries that under-optimize the available
resources in network nodes (e.g., memory consumption in switches);

(ii) Conflicting anomalies correspond to the presence of rules that would lead to
the creation of conflictual flow entries.

The leaf classes of the hierarchy are described in more detail in the next subsecti-
ons. This classification could be further refined by introducing additional classes.
Note, in fact, that the proposed classification does not include those anomalies that
are combinations of the presented classes. Of course, the model is able to treat
and detect also this kind of anomalies. However, we preferred to do not consider
this further classes in order to encourage administrators to build simple anomalies.
The specification of complex anomalies can bring administrators to overlook some
possible cases of anomaly and leave undetected the corresponding forwarding rules.
The use of simple anomalies will thus imply that a forwarding rule may trigger even
more than one anomaly.

Single-Field anomalies

The anomalies in this class are those that involve only comparisons between single
network fields and specific values. Thus, following the generic anomaly structure
defined in (2.8), a comparison x that composes a single field anomaly is expressed
as:

x = n ⋆ v (2.11)

We recall also that n and v are respectively a generic network field and a generic
value (or range of values) it can take in a forwarding rule r, while ⋆ stands for one of
the operators defined in Section 2.2.2.

Examples of anomalies of this class are the ones triggered when port numbers
are grater than their maximum values. Such kind of anomalies belong to the set of
pre-defined anomalies, since they are mistaken policy specifications in every network
topology. They can be expressed by the following formulas:

port_src > 65535 → BadPortSrc(r) (2.12)

2.3 Anomalies Classification 23

port_dst > 65535 → BadPortDst(r) (2.13)

Field-Pair anomalies

Another sub-class of Flow anomalies is the Field-Pair class. A Field-Pair anomaly is
one that contains only pairwise comparisons of different network fields belonging to
the same forwarding rule, like source and destination IP. Thus a generic Field-Pair
anomaly is one expressed by means of comparisons that take the following form:

x = nh ⋆ ng (2.14)

An example of Field-Pair anomaly is when source and destination IP addresses are
the same, which is specified by means of the following formula:

ip_src = ip_dst → BadI pAddress(r) (2.15)

Of course, this is another example of anomaly included in the pre-defined set of
anomalies supported by our model.

Node Traversal anomalies

These anomalies are those that arise when a traffic flow can (or cannot) traverse one
or more network functions. Hence, such anomalies are expressed by comparing
network fields with specific values and chains with ordered or non-ordered sets of
functions. The forms of comparisons in these anomalies are:

x = n ⋆ v

x = c ⋆ [f 1, f 2, ..., f m]

x = c ⋆ { f 1, f 2, ..., f m}

where c is a generic chain specifier which can be existentially or universally quan-
tified. In order to identify when a custom anomaly like “Web traffic does not

pass through an IDS” is triggered in a case scenario like the network shown in
Figure 2.1, we can use the following anomaly belonging to this class:

eth_src = ∗ ∧ eth_dst = ∗ ∧ eth_type = 0x0800 ∧

24 Detecting Anomalies in Service Function Chains

vlan_id = ∗ ∧ ip_src = 130.192.225.0/24 ∧
ip_dst = 8.8.8.0/24 ∧ ip_proto = 0x06 ∧
port_src = ∗ ∧ port_dst = 80 ∧
ck ̸≻ [< ∗, IDS >], ∀ck ∈ C → NoWeb2IDS(r)

Node Ordering anomalies

This class contains anomalies that are violations of ordering constraints on the
functions traversed by a flow. Such constraints can be expressed in terms of the
position of the w-th network function within a chain c (i.e., π(f w,c)) and they may
be required to hold for at least one or for all the chains of the forwarding rules that
manage that flow. Of course, in order to express the flow for which the constraint
is checked, network field comparisons can be used. Hence these anomalies are
specified by formulas including the following comparisons:

x = n ⋆ v

x = π(f w,c) ⋆ π(f q,c) with f w, f q ∈ c

An example is when we want to ensure that a NAT is always configured to process
traffic before a firewall. This means that we have to detect the anomalous situation
when a NAT is located after a firewall in the SFC topology, which can be done by
the following anomaly definition based on the position operator:

eth_src =∗ ∧ eth_dst =∗ ∧ eth_type =∗ ∧ vlan_id =∗ ∧
ip_src =∗ ∧ ip_dst =∗ ∧ ip_proto =∗ ∧ port_src =∗ ∧
port_dst =∗ ∧ π(< ∗,NAT >,c) > π(< ∗,FW >,c),

∃c ∈ C → NatA f terFW (r)

(2.16)

Chain Constraint anomalies

This category includes anomalies aimed at detecting conditions that apply to all the
chains defined where the anomaly is triggered by comparing such chains between
each other (e.g., all the chains in a forwarding rule are equal). Thus such anomalies
contain comparisons between SFCs (ck ⋆ cw) that belong to the same forwarding rule

2.3 Anomalies Classification 25

and network fields comparisons to identify the flow (n ⋆ v or nh ⋆ ng):

x = n ⋆ v

x = nh ⋆ ng

x = ck ⋆ cl

Let us consider that a web traffic is balanced on two chains (Figure 2.1) and it must
be processed either by the same (i.e., equivalent chains) or by a similar set of network
functions (i.e., correlated or dominated chains) in the two chains. This means that
the two chains must not be disjoint and we can detect this anomalous situation by
means of the following anomaly definition:

eth_src = ∗ ∧ eth_dst = ∗ ∧ eth_type = 0x0800 ∧
vlan_id = ∗ ∧ ip_src = 130.192.225.116 ∧ ip_dst = 8.8.8.0/24 ∧
ip_proto = 0x06 ∧ port_src = ∗ ∧ port_dst = 80 ∧
ck ⊥ cl, ∀ck,cl ∈ C → Dis jointChains(r)

Sub-Optimization anomalies

Such anomalies detect if more forwarding rules enforce the same set of SFCs.
Hence, we locate under this category those anomalies that aim at detecting under-
optimizations of the policy specification and thus situations where more forwarding
rules can be substituted by a single rule. In order to detect such anomalies, it is
necessary to discover the forwarding rules that have the same sets of chains. Hence
the anomalies in this class include the following comparisons:

x = nh
i ⋆ ng

j

x = ck
i ∈ C j,∀ck

i ∈ Ci ∧ cl
j ∈ Ci,∀cl

j ∈ C j

Under this class, we include the duplication anomaly defined in (2.9). Another
example is the following anomaly, where we detect those forwarding rules that refer
to completely disjoint traffic flows but that enforce the same set of SFCs:

eth_srci ̸= eth_src j ∧ eth_dsti ̸= eth_src j ∧ eth_typei ̸= eth_type j ∧

26 Detecting Anomalies in Service Function Chains

vlan_idi ̸= vlan_id j ∧ ip_srci ⊥ ip_src j ∧ ip_dsti ⊥ ip_dst j ∧
ip_protoi ̸= ip_proto j ∧ port_srci ⊥ port_src j ∧ port_dsti ⊥ port_dst j ∧
ck

i ∈ C j,∀ck
i ∈ Ci ∧ cl

j ∈ Ci, ∀cl
j ∈ C j → SubOptimizedFlows(ri,r j)

Conflicting anomalies

In our model, conflicts arise when two forwarding rules manage the same traffic
flow but they do not specify the same sets of chains. If the two rules are installed
into the network, inconsistencies in the traffic forwarding can be generated at run-
time. Hence the formula for detecting this kind of anomaly includes the following
comparisons:

x = nh
i ⋆ ng

j

x = ck
i ∈ C j,∀ck

i ∈ Ci

x = ck
i ̸∈ C j,∀ck

i ∈ Ci

x = ck
i ∈ C j,∃ck

i ∈ Ci

x = ck
i ̸∈ C j,∃ck

i ∈ Ci

(2.17)

The comparisons x that compose a conflicting anomaly have been selected so
as to enable the specification of different types of relationships between two sets of
chains. An example of relationship is the case in which two sets Ci and C j contain
the same SFCs or also when Ci contains all the chains of C j as subset. Another case
is when Ci and C j do not have any chain in common. This means that the policy
contains two forwarding rules that forward the same traffic flow to different sets of
SFCs. This kind of conflictual anomaly can be detected by the following formula:

eth_srci = eth_src j ∧ eth_dsti = eth_dst j ∧
eth_typei = eth_type j ∧ vlan_idi = vlan_id j ∧
eth_typei = eth_type j ∧ vlan_idi = vlan_id j ∧
ip_srci = ip_src j ∧ ip_dsti = ip_dst j ∧
ip_protoi = ip_proto j ∧ port_srci = port_src j ∧
port_dsti = port_dst j ∧ ck

i ̸∈ C j, ∀ck
i ∈ Ci ∧

cl
j ̸∈ Ci, ∀cl

j ∈ C j → Dis jointChains(ri,r j)

(2.18)

2.3 Anomalies Classification 27

Note that some cases of “conflicting” forwarding rules according to the anomaly
model (2.17) may not be considered by the administrators as conflicting anomalies.
This is because this kind of anomalies depends on the network topology and on what
the administrator considers erroneous for her network. Let us consider the case of
two forwarding rules ri and r j to forward the traffic between the end-host h_a and
the web server ws_a:

ri = ((eth_src = ∗,eth_dst = ∗, eth_type = ∗,vlan_id = ∗,
ip_src = 130.192.225.11, ip_dst = 8.8.8.113, ip_proto = 0x06,

port_src = ∗, port_dst = ∗),{[< h_a,H >,< vpn_a,V PN >,

< f w,FW >,< ws_a,WS >], [< h_a,H >,< vpn_b,V PN >,

< d pi,DPI >,< f w,FW >,< ws_a,WS >]})

r j = ((eth_src = ∗,eth_dst = ∗, eth_type = ∗,vlan_id = ∗,
ip_src = 130.192.225.11, ip_dst = 8.8.8.113, ip_proto = 0x06,

port_src = ∗, port_dst = ∗),{[< h_a,H >,< vpn_a,V PN >,

< f w,FW >,< ws_a,WS >], [< h_a,H >,< vpn_b,V PN >,

< d pi,DPI >,< f w,FW >,< wsa,WS >], [< h_a,H >,

< vpn_a,V PN >,< mn,MN >,< ws_a,WS >]})

In this example, r j contains an additional SFC with respect to ri, but this kind
of policy specification (even if it is ambiguous and non-optimized) may not be an
anomaly because, for example, each of those chains contains a VPN functionality
and the administrator does not want to be advertised in such cases.

In this model, we consider as pre-defined conflictual anomaly only the case when
the two forwarding rules do not have any SFC in common, as defined in (2.18). All
the other possible conflictual anomalies have to be specified by the administrators
and are classified as custom anomalies (Table 2.2). An example of administrator-
defined conflicting anomaly could be the case of a traffic flow that is managed by
two forwarding rules that enforce “correlated” sets of SFCs (i.e., the two sets share

28 Detecting Anomalies in Service Function Chains

some SFCs but they are not the same):

eth_srci = eth_src j ∧ eth_dsti = eth_dst j ∧
eth_typei = eth_type j ∧ vlan_idi = vlan_id j ∧
ip_srci = ip_src j ∧ ip_dsti = ip_dst j ∧
ip_protoi = ip_proto j ∧ port_srci = port_src j ∧
port_dsti = port_dst j ∧ ∃ck

i ∈ Ci,ck
i ̸∈ C j∧

∃cy
i ∈ Ci,c

y
i ∈ C j ∧∃cl

j ∈ C j,cl
j ̸∈ Ci

∃cp
j ∈ C j, cp

j ∈ Ci → CorrelatedChains(ri,r j)

(2.19)

2.4 Implementation and evaluation

In order to show the usefulness of the model proposed, we have implemented
the proposed verification approach and tested it under a use-case topology, which
represents a realistic campus network scenario. Our prototype implementation can
work along with any SDN Controller that supports the network policy specification
(e.g by means of policy-oriented languages or with other techniques). A possible
future enhancement is to implement a verification module either integrated into an
existing SDN Controller or located a layer above it.

Figure 2.3 shows our use-case, where each end-host (the use case includes about
300 hosts) generates several types of traffic flows (i.e., HTTP, POP3 and SMTP
towards the internal servers and the Internet) that are processed by a number of
network functions (in the magnitude of 10).

A Java-based prototype of the verification approach has been implemented,
exploiting, as verification engine, the Drools tool. Drools is a Production Rule
System [13], which is an expert system that uses a rule-based approach for reasoning.
In particular, Drools processes an acquired knowledge into a knowledge base (i.e.
Production Rules or simply Drools rules hereafter) to infer conclusions which result
in actions. A Production Rule is a piece of knowledge that triggers an action when
its condition is matched over the acquired knowledge. In our implementation, the
acquired knowledge about the network scenario is implemented as Java objects,
while an anomaly is represented by a Drools rule, where the triggered action implies
the detection of the anomaly itself.

2.4 Implementation and evaluation 29

application
firewall

paket
filter

vpn
gateway

gateway

Internet

routermonitor IDS

NAT

End Hosts

router

web cache
anti spam

load balancer

Web Servers

load balancer

Mail Servers

Departments

Fig. 2.3 Use case: a possible campus network topology.

The main purposes of this experimental evaluation were: (i) identifying the main
factors that influence the time taken by this verification process and (ii) evaluating
verification time as a function of the influential factors. In order to do this, we have
performed our test scenarios on an Intel i7-4600U@2.10GHz workstation with 8 GB
of RAM.

A set of forwarding rules has been automatically generated to represent a use-
case as depicted in Figure 2.3. In particular, we have initialized each network field
of the forwarding rule with a range of values when possible (e.g. port number or IP
addresses), otherwise with exact values. In order to progressively increase the size of
the forwarding rule set, the number of traffic flows has been increased, by considering
wider and wider ranges of port number and traffic types and more subnets and hosts

30 Detecting Anomalies in Service Function Chains

Table 2.1 Pre-defined set of anomalies.

Class Anomaly Formula

Single-Field

bad port_src specification see (2.12)

bad port_dst specification see (2.13)

bad vlan_id specification vlan_id < 1∧ vland_id > 4094 → BadV lanId(r)

bad eth_type specification eth_type ̸= {0x0800,0x0806,0x8100}→ BadEthType(r)

bad ip_proto specification ip_proto ̸= {0x01,0x06,0x11}→ BadI pProto(r)

Pair-Field
equal source and destination IP addresses see (2.15)

equal source and destination Ethernet addresses eth_src = eth_dst → BadEthernetAddress(r)

Sub-Optimization bad src port specification see (2.9)

Conflicting a single flow is forwarded to different chains see (2.18)

Table 2.2 Custom set of anomalies.

Class Anomaly Formula

Node Traversal

web traffic does not traverse a web-cache eth_type = 0x0800 ∧ ip_src = 130.192.225.116 ∧
ip_dst = 8.8.8.0/24 ∧ ip_proto = 0x06 ∧
port_dst = 80 ∧ ck ̸≻ [< ∗,CACHE >],
∀ck ∈ C → WebNot2Cache(r)

mail traffic does not traverse an anti-spam eth_type = 0x0800 ∧ ip_src = 130.192.225.244 ∧
ip_dst = 8.8.8.0/24 ∧ ip_proto = 0x06 ∧
port_dst = 25 ∧ ck ̸≻ [< ∗,SPAM >],
∀ck ∈ C → MailNot2Spam(r)

web traffic traverses an anti-spam eth_type = 0x0800 ∧ ip_src = 130.192.225.116 ∧
ip_dst = 8.8.8.0/24 ∧ ip_proto = 0x06 ∧
port_dst = 80 ∧ ck ≻ [< ∗,SPAM >],
∀ck ∈ C → Web2Spam(r)

mail traffic traverses a web-cache eth_type = 0x0800 ∧ ip_src = 130.192.225.244 ∧
ip_dst = 8.8.8.0/24 ∧ ip_proto = 0x06 ∧
port_dst = 25 ∧ ck ̸≻ [< ∗,CACHE >],
∀ck ∈ C → Mail2Cache(r)

internet traffic does not pass through a L7 firewall eth_type = 0x0800 ∧ ip_src = 8.8.8.0/24 ∧
ip_proto = 0x06 ∧ port_dst = 80 ∧ ck ̸≻ [< ∗,L7_FW >],
∀ck ∈ C → InternetNot2Firewall(r)

Node Ordering A firewall is not located after a NAT function see (2.16)
but before it

Chain Constraint Internet traffic is not eth_type = 0x0800 ∧ ip_src = 130.192.225.116
forwarded to correlated chains ∧ip_dst = 8.8.8.0/24 ∧ ip_proto = 0x06 ∧

port_dst = 80 ∧ ck ̸∼ cl,
∀ck,cl ∈ C → InternetNoCorrelatedChains(r)

Conflicting a single flow is forwarded to different chains see (2.19)

per department (Figure 2.3). In this way, we have been able to test the scalability of
the verification process.

For what concerns the set of anomalies checked at each test-run, we have consi-
dered both those anomalies the model supports by default (i.e., the pre-defined set
that includes 16 anomalies) and custom anomalies, specific for the tested network
scenario. In detail, our forwarding rule set has been generated in such a way to
trigger at least one anomaly for each class presented in Section 2.3. The whole

2.4 Implementation and evaluation 31

100 200 300 400 500 600 700 800 900 1,000
0

100

200

300

400

Number of forwarding rules

V
er

ifi
ca

tio
n

Ti
m

e
[m

s]

10% of anomalies
20% of anomalies
50% of anomalies
80% of anomalies

Fig. 2.4 Verification time evaluated with a growing number of forwarding rules.

set of anomalies that has been checked in our network scenarios is summarized in
Tables 2.1 and 2.2, where, for each anomaly, we present a possible formula that
detects that anomaly for a specific flow.

Moreover, in the automatic generation process, we have set a threshold on the
percentage of forwarding rules (with respect to the total rule set) that trigger an
anomaly. Figure 2.4 shows that, for each rule set-size, we have evaluated the elapsed
time in case of 10%, 20%, 50% and 80% of “anomalous” rules.

The obtained results indicate that the elapsed time to complete the verification
scenario grows linearly with the number of forwarding rules. This is highlighted in
the four test scenarios. The measured times have been averaged on 100 test-runs and
have a magnitude of 340ms in the worst case (the solid line in Figure 2.4).

In order to check if the verification time depends also on the percentage of
forwarding rules that trigger an anomaly, we have performed another type of test
(Figure 2.5). Keeping constant the number of forwarding rules, we have evaluated
the verification time by growing the percentage of anomalies from 0% to 100%.
Under these conditions, we have verified four test scenarios shown in Figure 2.5,
where the number of forwarding rules has been set at 100, 300, 500, 700 and 1000
rules.

32 Detecting Anomalies in Service Function Chains

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

% of anomalous forwarding rules

V
er

ifi
ca

tio
n

Ti
m

e
[m

s]

100 forwarding rules
300 forwarding rules
500 forwarding rules
700 forwarding rules

1000 forwarding rules

Fig. 2.5 Verification time evaluated with a growing percentage of forwarding rules that satisfy
an anomaly.

Also in this second case, we have evaluated the verification time 100 times for
each size of the rules set. As we can note from the achieved results (Figure 2.5), the
percentage of forwarding rules that bring to an anomaly has a major influence on
verification time when the rule set size grows. This can be confirmed by comparing
the trend in case of 100 forwarding rules, where the elapsed time is quite constant,
and in case of 1000 rules, which arises rapidly with the increment of the anomaly
percentage.

The achieved results are also confirmed in an additional test case (Figure 2.6),
where we have evaluated the verification time in case of a growing number of
“anomalous” rules in different sized rule-sets (i.e., 100, 300, 500, 700 and 1000
forwarding rules). Also in this test-scenario, it is evident that the performance of our
verification module is influenced by both the number of forwarding rules and the
percentage of these that trigger an anomaly.

Moreover, we can also note that the verification time is ranged between 350ms, in
the worst case with 1000 forwarding rules and 80% of “anomalous” rules (Figure 2.4),
and 400ms, when each of the 1000 forwarding rules trigger an anomaly (i.e., the
solid lines in Figure 2.5 and Figures 2.6).

2.5 Related Work 33

0 100 200 300 400 500 600 700 800 900 1,000
0

50

100

150

200

250

300

350

400

Number of anomalous forwarding rules

V
er

ifi
ca

tio
n

Ti
m

e
[m

s]

100 forwarding rules
300 forwarding rules
500 forwarding rules
700 forwarding rules
1000 forwarding rules

Fig. 2.6 Verification time evaluated with a growing number of anomalies.

The achieved results show that our verification approach takes a time in the
order of hundreds of milliseconds in the case of a real-sized network with a growing
number of traffic flows, so that it is reasonable to use our approach in a real network
scenario.

2.5 Related Work

In this section, we provide an overview of the main works presented in the literature
that have completed our background to improve the state of the art about the detection
of anomalies in service function chains defined as forwarding policies.

We started with the most relevant proposals related to SDN verification. As we
already mentioned, differently from our work on early-verification of forwarding
policies, this part of the literature is mainly related to OpenFlow networks, where it
checks the presence of conflicts in FlowTables and the violation of network invariants
(e.g black holes and forwarding loops).

Current literature on SDN verification generally adopts two approaches: either
off-line or real-time verification [14]. The first-generation of OpenFlow-oriented

34 Detecting Anomalies in Service Function Chains

verification tools worked off-line, which means they take a snapshot of the global
network behaviour (i.e., by collecting the forwarding entries installed into the network
switches) and check whether some basic invariants hold. A first example of off-line
tool is NICE [15], which checks the presence of network invariants by combining
model checking and symbolic execution approaches. Similarly, Anteater [16] verifies
such invariants by expressing switch configurations as boolean satisfiability (SAT)
problem instances. Another example is also NetPlumber [17], which relies on the
HSA (Header Space Analysis) [18] that allows for static checking of the OpenFlow
rules of a whole network to detect forwarding loops and leakage problems, by
exploiting Network Transfer Functions.

The second approach (i.e. real-time) was to locate the verification tool as a
layer between the SDN Controller and network switches in order to check at run-
time the violation of some invariants. This is the case of VeriFlow [7], which
dynamically checks the absence of forwarding loops and black holes is satisfied
at each OpenFlow rule insertion. Another example of real-time verification tool is
FlowChecker [8], which is also able to simulate different components during the test
execution. Since the network behaviour is dictated by the user’s configuration and in
case of misconfiguration the whole network lead into an unsafe state, FlowChecker
helps to detect security attacks by checking periodically the authenticity of the
configuration parameters selected by the user.

Locating a layer between the SDN Controller and the network switches means
that the amount of network traffic to check could be very big and could effect in a
negative way the network performance. However, for what concerns the purposes
of this thesis, the main weakness of such OpenFlow-oriented tools is that they can
check only some components in the network (i.e., network switches). This implies
that SDN-oriented tools verify if some invariants hold by checking only the flow
entries in SDN switches (regardless of whether such tools work at run-time or not),
causing a late detection of errors and faults in the service graph requests.

Moreover, recent works proposed policy-based strategies for instructing SDN/O-
penFlow Controllers on how traffic flows should be forwarded into the network. The
Controller will install the consequent flow entries in network switches to enforce the
forwarding policies.

Under this umbrella, there are Merlin [19], a unified framework for enabling
administrators to define forwarding policies with bandwidth constraints, and Fat-

2.5 Related Work 35

Tire [6], a NetCore-based language to describe SFCs and specify fault-tolerance
requirements.

For what concerns policy specification, our approach has some common points
with the Merlin and FatTire languages. Similarly to these two works, we have
classified traffic flows by means of network fields and we have specified SFCs, listing
the network functions involved into the chains. However, the existing proposals
such as Merlin and FatTire do not have an underlying formal model for detecting
anomalies. They include a form of verification, but it is not fully documented and, at
the best of our knowledge, it is not as intensive as we proposed. While we focus on
checking several classes of anomalies, also enabling administrators to define their
own anomalies, it seems that Merlin includes only the verification that any sub-policy
modification introduced by tenants does not violate the global policy set down by
the administrator. In particular, this verification consists in checking if the policy
modification includes the chains enforced in the original policy.

FatTire instead generates configurations that are correct-by-constructions, be-
cause it verifies the forwarding policies by normalizing them into a set of non-
overlapping atomic policies at compile phase. The non-overlapping policies will
then be exploited to create the final OpenFlow configurations.

Finally, we have proposed a unified forwarding policy abstraction to represent the
fundamental features of policy-oriented languages (i.e., classifying traffic flows and
steering packets), in order to avoid a verification model specific for each language.
This verification model can be integrated into any policy-oriented SDN Controller,
with the addition of a language-specific module to generate the unified verification
model from the high-level language. However we are mainly interested in presenting
the details of the verification model and its features, while the design of a translation
module is left as future work.

Chapter 3

Checking Reachability in Service
Graphs

From a provider point of view, the integration of a checking mechanism during the
deployment of a service graph is a step forward in the quality of the services offered
to the final users: checking the correctness of the service requests can reduce the risk
of unexpected network behaviour at run-time and can limit service downtime.

In order to integrate network verification in the process to deploy a service graph,
we recall providers need to face some challenges, like: (i) perform verification before
deploying the service graphs and, in case of failure, stop the graph instantiation;
(ii) check graph correctness in a reasonable amount of time from a VNF Orchestrator
point of view, with fair processing resources (e.g., CPU, memory, etc...). These
requirements are needed because we are in the context of flexible services, where
the reconfiguration of network can be frequently triggered, both in case of user
request and in case of management events. Thus a provider needs to detect errors and
faults in the service graph definition early, in order to speed up the fixing phase, and
quickly, in order to avoid to impact the quality of experience of the service offered
to the final users.

Even though a plethora of solutions has been presented in the literature (see
Section 2.5), such tools check only the configuration of SDN switches/routers,
overlooking other types of VNFs able to modify the forwarding behaviour of the

1This work is published in [20] and partially described in the PhD thesis of Matteo Virgilio [21],
who collaborated in the development of the approach.

38 Checking Reachability in Service Graphs

network at run-time. In particular, we refer to the presence of stateful network
functions (or also middleboxes) in the network, which forward packets based on both
the packet content and their internal algorithm and state, like a Network Address
Translator or a Deep Packet Inspection can do.

In order to improve the literature, we propose a way to model stateful midd-
leboxes2 involved in the network and their functional configurations (e.g., filte-
ring policy for a firewall) and a checking mechanism to verify the satisfaction of
reachability-based invariants in service graph requests.

3.1 Problem statement and contributions

Ultra broadband diffusion, progresses in Information Technologies (IT), tumbling
hardware costs and a wider and wider availability of open source software are
shaping the evolution of Telecommunications and ICT infrastructures. Thanks to
the already introduced concept of “Softwarization” of the network, it is argued that
future Telecommunications infrastructures are likely to become highly dynamic,
flexible and programmable production environments of ICT services.

Due to these reasons, we aim at investigating novel approaches of network
verification (i.e., the definition of methods and techniques to validate a particular
network configuration before deploying it) in line with the providers requirements.
We recall in fact that a verification process can be seen as an essential task in
environments where reconfiguration of services is expected to be triggered very
frequently, both in response to user requests and also in case of management events.
Misconfiguration of dynamic network middleboxes, violation of specified network
policies, or artificial insertion of malicious network functions are just examples of
cases that a complete solution must properly handle in order to preserve network
integrity and reliability. The adopted verification process thus must prefer scalable
and fast checking techniques instead of complex modeling approaches in order to
take reasonable verification time.

For this reason, one of our contributions goes in the direction of verifying
complex service graph through an intense modeling activity, targeted at the specific
middleboxes and the network as a whole. We also aim at integrating our verification

2In this thesis, we use the terms VNF, network function and middlebox interchangeably.

3.1 Problem statement and contributions 39

approach of into one of the existing SDN/NFV-based environments, i.e. the one
carried out within the EU FP7 UNIFY3 consortium, which sets out to integrate
modern cloud computing and networking technologies by considering the entire
network as a unified service production environment, spanning the vast networking
assets and data centers of telecom providers.

In order to reach a high level of agility for service innovation, UNIFY has one
focus on providing dynamic service programming and orchestration, deploying
logical service components, i.e. VNFs, across multiple network nodes. In particular,
UNIFY architecture follows SDN principles with a logically centralized control
and orchestration plane. Additionally, compute, storage and network abstractions
are combined into a joint programmatic interface referred to as Network Function
Forwarding Graph (NF-FG). An NF-FG is a low-level definition of a Service Graph,
which defines a selected mapping of VNFs and their forwarding overlay definition
into the virtualized resources presented by the underlying layer. From a verification
point of view, we did no matter of the virtual resource assignment. Thus, in this
thesis, we consider service graphs equivalent of their orchestration/infrastructure-
level description, i.e. NF-FGs.

Current OSS/BSS do not seem to cope with the requirements posed by this
evolution: in fact, the operations of future Telecommunications infrastructures will
involve the management and control of a myriad of software processes, rather than
closed physical nodes. Thus, another important goal of UNIFY is the design and
development of integrated operations and development capabilities under the name of
Service Provider-DevOps (SP-DevOps). In fact, DevOps paradigm, formerly develo-
ped for Data Centers (DCs), is getting momentum as a source of inspiration regarding
how to simplify and automate management processes for future Telecommunications
infrastructures.

As we have already mentioned, we are motivated by the observation that most
existing tools are OpenFlow-oriented, i.e. they mostly consider networks with a
controller which installs <match, action> rules on the switches. Alternatively
(and more generically but with the same fundamental limitations), they consider
networks with devices that only perform forwarding decisions according to the packet
header, i.e. without taking into account any additional traffic history information. We
recall that works as [7, 18, 22, 23] (Section 2.5) fall in this category and represent a

3www.fp7-unify.eu

www.fp7-unify.eu

40 Checking Reachability in Service Graphs

valuable efforts in this research area. Our contribution is intended to move a step
forward and overcome the above mentioned limitations by extending these works. In
this sense, one important reference is [24], which tackles exactly the same problem
and provides a scalable solution based on an off-the-shelf SMT solver.

We experiment with this approach and further develop it to meet our specific
requirements, also enriching the available VNF models catalog in order to satisfy the
demands for more and more complex service graphs and to validate the approach
with different kinds of VNFs. We specifically consider the UNIFY use cases, but
it is worth noticing how our work is much general and easily applicable to other
scenarios since it involves very common network functions.

The rest of the chapter is organized as follows. First, we introduce and clarify
how and to which extent the DevOps approach can be applied in a network operator
infrastructure (Section 3.2). After defining the processes needed to implement
this vision, we move on our current approach to formally verify complex and rapid
deployments of network function chains including a variety of middleboxes, deployed
to augment the set of in-network services the operator is able to offer to its final
customers (Section 3.3). In order to show our approach is feasible, we provide some
preliminary performance evaluation results based on the extension of the above
mentioned tool (Section 3.4).

3.2 The SP-DevOps concept

In order to cope with the high service velocity and increased dynamicity enabled by
current SDN/NFV-based environments (e.g. UNIFY), we consider a novel manage-
ment and operation paradigm for Service Providers, called Service Provider DevOps
(SP-DevOps), and how it has been applied by UNIFY.

SP-DevOps is based on the same major underlying principles as identified for
DevOps [25]: (i) Monitor and validate operational quality; (ii) Develop and test
against production-like systems; (iii) Deploy with repeatable, reliable processes; and
(iv) Amplify feedback loops.

While we acknowledge that DevOps has also a crucial cultural dimension (re-
flected barely by the feedback loop principle), UNIFY focused on technical aspects
associated to these principles, which reflect on processes and associated capabili-

3.2 The SP-DevOps concept 41

Fig. 3.1 SP-DevOps cycle for UNIFY service creation.

ties for integrated monitoring, verification, and testing software and programmable
infrastructure.

Even if significant parts of the telecommunication networks are foreseen to be vir-
tualized in the future, [26] identified important characteristics of telecommunication
networks that differ from traditional data centers, i.e.:

(i) higher spatial distribution, as telecom resources are spread over wide areas
due to coverage requirements;

(ii) lower levels of redundancy in access and aggregation networks compared to
the massive data centers of typical cloud computing companies;

(iii) stronger requirements on high availability and latency in according to standards
and customer expectations.

These characteristics pose new challenges for applying DevOps principles in
telecommunications environments [27]. SP-DevOps addresses them with a set of
technical processes supporting developer and operator roles in a virtualized telecom
network. Figure 3.1 illustrates the relation between the four SP-DevOps processes
and the developer/operator roles by means of a service creation lifecycle. The four
SP-DevOps processes follow the DevOps principles to meet specific challenges regar-
ding Observability and Troubleshooting (Principle: Monitor and validate operation

42 Checking Reachability in Service Graphs

quality); Verification (Principle: Deploy with repeatable, reliable processes); and
Development (Principle: Develop and test against production-like systems). Three
main roles are also involved in the processes: two Developer roles, where one is
associated to a classical operator role assembling the service graph for a particular
category of services (the Service Developer), and a second associated to the classical
equipment vendor role in actually programming a VNF (the VNF Developer). The
role of the Operator is to ensure that a set of performance indicators associated to
a service are met when the service is deployed on virtual infrastructure within the
domain of a telecom provider.

SP-DevOps might not be a new form of DevOps as such, but it must include soluti-
ons that are uniquely tailored for the characteristics of its environment. Consequently,
UNIFY proposed the SP-DevOps Toolkit as an instantiation of the SP-DevOps con-
cept [28]. The SP-DevOps Toolkit4 consists of a set of DevOps solutions that are
developed targeting specific research challenges identified in the UNIFY production
environment [27, 26]. Besides scalable and programmable infrastructure monito-
ring functions, the toolkit will also provide modules for deploy-time functional
verification of various abstraction levels of service definition, supporting the three
SP-DevOps roles.

As in any development process, identification of problems early in the service
or product lifecycle can significantly reduce times and costs spent on complicated
debugging and troubleshooting processes.

In this thesis, we focus on verification with respect to the service definitions and
configurations initiated by the Service Developer. Automated verification functions
operating during deploy-time on each layer of the orchestration and control architec-
ture, facilitate verification as part of each step in the deployment process, allowing
identification of problems early in the service lifecycle. We present in next sections
our verification approach, which has been released both as open-source tool and as
part of the SP-DevOps Toolkit developed within UNIFY.

4http://www.fp7-unify.eu/index.php/results.html#OpenSource

http://www.fp7-unify.eu/index.php/results.html#OpenSource

3.3 The approach 43

3.3 The approach

The SP-DevOps paradigm represents a significant opportunity for service providers
to implement more complex services in their networks and increase the agility by
which a new function (or a chain of) can be automatically configured and deployed
in their infrastructure. However, while the process of inserting and/or modifying
functions throughout the network can be automated with technologies similar to the
ones used for the Cloud Computing scenario [29], great importance has also to be
placed on the design and implementation of automatic tools that can verify a network
configuration on the fly, before it is deployed. To achieve this goal, we have to design
a verification approach that is not limited to OpenFlow networks and that overcomes
the limitations of existing tools (i.e. complex modelling approaches, considerable
verification time and resources).

An example of configuration we aim to check is tha case of an operator that may
want to ensure that a given traffic flow is permitted (or not permitted, due to a policy
constraint) from one node to another. Concerning this last aspect, our verification
process is currently based on a verification approach recently proposed in [24]. In
order to achieve high performance, this verification approach exploits Z3 [30], a state
of the art SMT solver, and translates network scenarios with multiple middleboxes
into sets of First Order Logic (FOL) formulas that are then analyzed by Z3. This
choice is motivated by the overall verification tool performance and scalability, which
would be hard to achieve with standard model checking based techniques. In fact,
the latter requires time and memory that usually increase exponentially with the
system complexity, while the SAT-based approach proposed in [24] seems to be less
prone to this problem.

The FOL formulas given to Z3 represent the network operating principles along
with the functional behavior of all the VNFs involved in the scenario being considered.
While [24] presents the general ideas of the proposed approach, not all the details are
fully developed, and not all the different situations that may arise when considering
different kinds of VNFs are considered.

Here, we present our preliminary work towards integrating the approach presen-
ted in [24] into a SP-DevOps context like the one of UNIFY. A considerable part of
this work has been about improving the modeling approach for developing models
of new VNFs that were not explicitly considered in [24] in order to be able to check

44 Checking Reachability in Service Graphs

more complex and realistic network scenarios, and making some first experiments
with such new models.
In our design, the formal verification task is split into multiple sub-tasks, so that
the whole process is simpler and faster. More precisely, at NF-FG deploy time,
or when the graphs undergo modifications in response to higher level events (e.g.,
administration events or user requests), the VNF chains composing the graph are
computed and then, for each of them, a formal model is generated, including the
model of all the involved VNFs.

The verification engine then processes the whole VNF chain model to check the
satisfiability of a given property and in case of failure it stops the deployment phase.
The verification process is applied for each chain that is included in the NF-FG,
which will be deployed only in case the verification process ends with a successful
result.

For what concerns the deployment of a service request, some of the required
steps are: (i) generation of low-level configurations (e.g. flow entries of OpenFlow
FlowTables) from the NF-FG specification and their deployment into the network
switches and routers to instantiate the desired service chains; (ii) selection of the
most suitable VNF instances to implement the requested service graph; (iii) VNF
deployment into the network and resource assignment; (iv) etc....

In this thesis, we do not consider to translate the VNF models adopted in the
verification approach into low-level configurations (e.g. OpenFlow rules), even
though it may be possible. This is because, in this case, the services offered to the
users may be limited to the capability of the Southbound protocol (e.g. OpenFlow)
to implement at run-time the behaviour of a new network function. However, we are
mainly interested in the verification aspects of a service graph and thus we do not
present all the steps required to complete its deployment and how they work.

In this chapter, we focus on reachability problems in service graphs, leaving
the verification of other network properties as possible future work. Furthermore,
since we are using abstract models of the real middleboxes, we assume that these
models are correctly defined. This means that we verify abstract models of the
real middleboxes, considering them as faithful representations of the real VNFs.
Verification of possible mismatch between a VNF model and its implementation is
out of scope for the current prototype.

3.3 The approach 45

3.3.1 VNFs models

The approach for modeling network function chains proposed in [24] has been
experimented by the authors with some middlebox types, such as stateless and
stateful firewalls.

When modelling scenarios that include VNFs that may alter packets (e.g., a
NAT), it is necessary to also consider the possibility for a target VNF to receive a
packet different from the one originally transmitted. This kind of situation regards a
significant set of middleboxes that is currently deployed in SP networks and that is
envisioned to be included in the NF-FG within the UNIFY project, e.g. NAT, VPN
gateway and so on.

One of our contributions to the state of the art was to revise the network con-
straints developed by the authors of [24], by introducing the possibility of verifying
reachability properties between two network nodes and intermediate VNFs that do
modify forwarded packet headers. We have also checked that verification works as
expected with these revisited constraints, by experimenting with the new middlebox
models that we developed. Thanks to these improvements, providers will be able to
check an enriched set of realistic network scenarios, improving the quality of service
offered to the final users.

The first VNF we consider is a simple web cache (reported in Figure 3.2). The
functional model consists of two interfaces connected respectively to the private
network, i.e., the one which contains the clients issuing HTTP requests, and the
external network.

Formula 3.2a states that a packet sent from the cache to a node belonging to the
external network, implies a previous packet, containing a HTTP request and received
from an internal node, which cannot be served by the cache (otherwise the request
would have not been forwarded towards the external network). Formula 3.2b states
that a packet sent from the cache to the internal network contains a HTTP RESPONSE

for an URL which was in cache when the request has been received. We also state
that the packet received from the internal network is a HTTP REQUEST and the target
URL is the same as the response. The final formula expresses a constraint that the
isInCache() function must respect. In particular, we state that a given URL (u0) is in
cache at time t0 if (and only if) a request packet was received at time t1 (where t1 < t0)

46 Checking Reachability in Service Graphs

(send(cache,n0, p0, t0)∧¬isInternal(n0)) =⇒ ¬isInCache(p0.url, t0)∧
p0.proto = HT T P_REQ∧∃(t1,n1) | (t1 < t0 ∧ isInternalNode(n1)∧
recv(n1,cache, p0, t1)),∀n0, p0, t0

(3.2a)

(send(cache,n0, p0, t0)∧ isInternal(n0)) =⇒ isInCache(p0.url, t0)∧
p0.proto = HT T P_RESP∧ p0.ip_src = p1.ip_dest∧
p0.ip_dest = p1.ip_src∧∃(p1, t1) | (t1 < t0∧
p1.protocol = HT T P_REQ∧ p1.url = p0.url∧
recv(n0,cache, p1, t1)),∀n0, p0, t0

(3.2b)

isInCache(u0, t0) =⇒ ∃(t1, t2, p1, p2,n1,n1) | (t1 < t2 ∧ t1 < t0∧
t2 < t0 ∧ recv(n1,cache, p1, t1)∧ recv(n2,cache, p2, t2)∧
p1.proto = HT T P_REQ∧ p1.url = u0 ∧ p2.proto = HT T P_RESP∧
p2.url = u0 ∧ isInternal(n2))∀u0, t0

(3.2c)

Fig. 3.2 Web cache model.

for that URL and a subsequent packet was received at time t2 (where t2 < t0∧ t2 > t1)
carrying the corresponding HTTP RESPONSE.

The second middlebox we modeled is the NAT function. The corresponding
model is reported in Figure 3.3. In order to model the NAT behaviour, a distinction
between the private and external network is needed. This separation is modeled by
using a boolean function (isPrivateAddress()) that returns true if a given IP address
belongs to the set of internal node addresses.

Analyzing the reported formulas, we start by considering an internal node which
initiates a communication with an external node (Formula 3.3a). In this case, the
NAT sends a packet (p0) to an external IP address, if and only if it has previously
received a packet (p1) from an internal node. The received and sent packets must be
equal for all fields, except for the ip_src, which must be equal to the NAT public IP
address.

On the other hand, the traffic in the opposite direction (from the external network
to the private) is modeled by the Formula 3.3b. In this case, we state that if the NAT
is sending a packet to an internal address, this packet (p0) must have an external
IP address as its source. Moreover, p0 must be preceded by another packet (p1 in
the formula), which is, in turn, received by the NAT and it is equal to p0 for all the

3.4 Implementation and evaluation 47

(send(nat,n0, p0, t0)∧¬isPrivateAddress(p0.ip_dest)) =⇒
p0.ip_src = ip_nat ∧∃(n1, p1, t1) | (t1 < t0 ∧ recv(n1,nat, p1, t1)∧
isPrivateAddress(p1.ip_src)∧ p1.origin = p0.origin∧
p1.ip_dest = p0.ip_dest ∧ p1.seq_no = p0.seq_no∧
p1.proto = p0.proto∧ p1.email_ f rom = p0.email_ f rom∧
p1.url = p0.url)∀n0, p0, t0

(3.3a)

(send(nat,n0, p0, t0)∧ isPrivateAddress(p0.ipdest)) =⇒
¬isPrivateAddress(p0.ip_src)∧∃(n1, p1, t1) | (t1 < t0∧
recv(n1,nat, p1, t1) ∧¬isPrivateAddress(p1.ip_src)∧
p1.ip_dest = ip_nat ∧ p1.ip_src = p0.ip_src∧
p1.origin = p0.origin∧ p1.seq_no = p0.seq_no∧
p1.proto = p0.proto∧ p1.email_ f rom = p0.email_ f rom∧
p1.url = p0.url) ∧∃(n2, p2, t2) | (t2 < t1 ∧ recv(n2,nat, p2, t2)∧
isPrivateAddress(p2.ip_src) ∧ p2.ip_dest = p1.ip_src∧
p2.ip_dest = p0.ip_src∧ p2.ip_src = p0.ip_dest),∀n0, p0, t0

(3.3b)

Fig. 3.3 NAT model.

other fields. It is worth noting that, generally, a communication between internal and
external nodes cannot be started by the external node in presence of a NAT. As a
consequence, this condition is expressed in the Formula 3.3b by imposing that p1

must be preceded by another packet p2, sent to the NAT from an internal node.

3.4 Implementation and evaluation

In this section, we present further details on how we have implemented and tested the
verification approach presented previously. Encouraged by our preliminary results
(Section 3.4.1), we further develop our prototype in a service-oriented architecture
that enables providers to perform a full verification process (Section 3.4.2). The last
part of this section will present further results of how our tool works integrated in a
provider environment as the UNIFY architecture (Section 3.4.3).

48 Checking Reachability in Service Graphs

NAT ACL
firewall

Anti-
spam

Web
Cache

Web
Client

Mail
Client

Web
Server

Mail
Server

NF-FG

Web Client – Web Cache – NAT – ACL firewall – Web Server

Chain A

Mail Client – Anti-spam – NAT – ACL firewall – Mail Server

Chain B

Fig. 3.4 An example of Network Function-Forwarding Graph.

3.4.1 Preliminary results

In order to check if the new developed models and the overall approach fulfil the
aforementioned verification constraints (i.e. reasonable times and resource usage),
we consider the NF-FG5 shown in Figure 3.4 as a use case.

In our reference graph, four end-hosts (two clients and two servers) can generate
either HTTP or POP3 and also SMTP traffic, which is processed by different middle-
boxes when traversing the graph. Moreover, some of those network functions may
require a different configuration. Specifically, the NAT must be configured in order
to know which hosts belong to the private network (as the web cache) and which
IP address must be used as masquerading address; the firewall must be provided
with a set of ACL entries that specify which couples of nodes are authorized to
exchange traffic. Additionally, the forwarding is configured such that the web traffic
is forwarded to the web cache, while the email traffic (both POP3 and SMTP) is
routed to an anti-spam function. A first step towards the NF-FG verification is the
VNF chains extraction. In our use case, two chains are extracted from the NF-FG
(Figure 3.4): the Chain A processes the web traffic, while the Chain B is traversed
by POP3 and SMTP packets.

We perform multiple tests on the two chains to cover different cases and confi-
guration options: (i) anti-spam and firewall configurations and (ii) traffic directions
(from client to server and vice-versa). Concerning the Chain A, only the ACL firewall

5We do not provide the firewall VNF model as it was presented as use case in [24].

3.4 Implementation and evaluation 49

S

U U U

S

U U U U U

Hair Color
Test A.1 Test A.2 Test B.1 Test B.2 Test B.3

0

0.1

0.2

V
er

ifi
ca

tio
n

Ti
m

e
(s

)

Client → Server Server → Client S=satisfied U=unsatisfied

Fig. 3.5 Formal verification of a service graph with stateful VNFs.
Test {A, B}.1: firewall and anti-spam configured to accept packets; Test {A, B}.2: firewall
configured to drop server/client packets; Test B.3: anti-spam configured to drop server/client

packets.

can be configured, hence we setup two tests: one with the firewall configured to
allow all the traffic (test A.1) and the other one with the firewall configured to drop
all packets exchanged between the web client and server (test A.2).

Instead the Chain B is tested in three scenarios, obtained by changing the fire-
wall and anti-spam configurations as follows: (i) test B.1, similarly to test A.1, is
performed without any function configured to drop the received traffic; (ii) in test
B.2, the firewall drops the traffic between the mail client and server (Figure 3.5); (iii)
test B.3 is such that the anti-spam is configured to drop all the emails sent by the
mail client, while the traffic originated by the server is allowed (Figure 3.5).

Our evaluation is executed on a workstation with 32GB of RAM and an Intel
i7-3770 CPU running an Ubuntu 14.04.01 with kernel 3.13.0-24-generic. The results
are shown in Figure 3.5, where the verification time is reported for each presented
scenario.

In test A.1 the reachability problem from the client to the server (the light
grey colored bar in Figure 3.5) is satisfied as expected. It is worth noting that the
unsatisfiability of the problem in the opposite direction (the dark grey colored bar
in Figure 3.5) is due to the fact that client and server can exchange traffic only if
the connection is initiated by the client. In test A.2, in both cases the reachability
problems are not satisfied because of the firewall VNF configuration. In test B.1,
the verification problem is satisfiable in case of traffic sent by the mail client, while

50 Checking Reachability in Service Graphs

the reachability property is not verified for the traffic sent by the mail server for the
above-mentioned reasons.

As it can be seen from the achieved results, performance is promising also in
the worst case scenario, since we are able to solve the reachability problem in less
than 200ms, while the verification time is less than 50ms in most cases. This is
reasonably in line with the requirements dictated by a SDN/NFV environment like
UNIFY, especially in terms of time required by the verification process to authorize
a newly asked network reconfiguration.

3.4.2 VeriGraph

VeriGraph is the Java implementation of the already presented verification approach,
released as open source tool6 under the AGPLv3 license. We recall that the verifica-
tion engine exploited in this work is the SMT solver Z3, developed by Microsoft.
Moreover, VeriGraph relies on a graph-oriented database for managing service graph
storage, that is Neo4J7.

In details, the whole verification process is performed by the synergistic collabo-
ration of different modules that interact with one another by means of well-defined
interfaces [31]. Since the whole verification process is split into multiple sub proces-
ses, we designed a modular architecture to dispatch and execute the work accordingly.

In order to modularize the design of the overall tool and ease the integration with
the UNIFY architecture, we designed the components shown in the verification tool
in Figure 3.6 to perform the above-mentioned tasks.

Just to give an overview of the UNIFY architecture, it has a three-layered design
to enable different levels of network abstraction: the service layer is aware of the
service logic and it receives the service graph as service description; the second
level hosts the orchestration logic to map the service graph requests to the available
resources in the underlying level (i.e., the NF-FG) and to optimize; finally the
infrastructure layer contains physical and virtual resources (i.e., compute, storage
and networking resources). In particular, we have integrated our verification tool
into the reference prototype implementation of the UNIFY architecture, which is
ESCAPEv2 [32]. ESCAPE incorporates all the three layers of network abstraction

6https://github.com/netgroup-polito/verigraph
7https://neo4j.com/

https://github.com/netgroup-polito/verigraph
https://neo4j.com/

3.4 Implementation and evaluation 51

envisaged by UNIFY (Figure 3.6) and provides a common platform to control and
configure each step of the SFC lifecycle.

Essentially, our verification tool consists of two logical modules:

(i) VeriGraph is the core component and it is externally exposed by means of a
RESTful API. Its fundamental role is that of receiving the service graph under
deployment from the VNF Orchestration Layer and decompose it into different
function chains in order to perform reachability-based verification on each
involved chain. In this context, the term “function chain” is used to indicate
a non-cyclic sequence of middleboxes that starts from one source node and
ends into a different destination node. As a consequence, starting from a given
service graph, it is generally possible to extract multiple chains with the same
source and destination nodes. VeriGraph also receives the invariants to check
against the requested service graph;

(ii) Neo4JManager8 is used internally by VeriGraph to store the under deployment
graph onto the Neo4J database and extract all the required chains from the
graph based on the reachability invariants to check. This module is also able
to perform some basic topological reachability checks on its own, thanks to
the sophisticated API provided by Neo4J database. Notice that the reachability
checks performed by Neo4JManager do not take into account nodes behaviour
and their configurations, i.e. it only considers the raw topology and properties
verified using the standard graph theory. Further complex checks are imple-
mented by VeriGraph exploiting FOL formulas and VNF models, as described
in previous sections.

Thanks to the collaboration of these two modules, we are able to check some
reachability-derived invariants against the service graph under deployment, both
from a topological perspective (in order to speed up the verification phase in case of
bad service graph specification) and from a behavioural point of view of the involved
VNFs. In particular, VeriGraph can check the violation of:

(i) Reachability: the tool builds a formal model of each middlebox involved in
the path between source and destination and checks if at least one packet from
the source node can arrive at the destination. In this case we are sure that if

8https://github.com/netgroup-polito/neo4jmanager

https://github.com/netgroup-polito/neo4jmanager

52 Checking Reachability in Service Graphs

Fig. 3.6 VeriGraph design architecture.

the reachability property is not satisfied, there is no connection between the
two nodes in the graph;

(ii) Isolation: the tool checks that no packet that goes from source to destination
passes through a certain middlebox. In practice, this is equivalent to veri-
fying that the source cannot reach this middlebox in all the paths toward the
destination node;

(iii) Traversal: the tool checks that all packets that go from source to destination
pass through a middlebox. This kind of invariants is the opposite of the
aforementioned isolation properties, because we have to check both that the
source reaches the middlebox in every paths towards the destination and that
the middlebox reaches always the destination.

3.4.3 UNIFY pre-deployment verification: use case

In Section 3.4.1, we defined a possible scenario to validate our verification approach.
The presented results were mainly obtained by feeding the Z3 SMT solver with the
proper formulas to model the considered graph and the corresponding invariants. In

3.4 Implementation and evaluation 53

HOST1

HOST2

HOST3

SERV ER

FW
NAT

DPI

Fig. 3.7 Network Function-Forwarding Graph use case.

this section, we further refine our validation by considering the newly implemented
components, i.e. VeriGraph with Neo4JManager and the complete tool workflow.

In particular, we are located into the Orchestration layer of the UNIFY architec-
ture, and in turn, of ESCAPE. The workflow of VeriGraph is composed of several
phases (shown in Figure 3.6): (i) receive a NF-FG and the invariants to check as
input from the VNF architecture, e.g., ESCAPE (step 1 in Figure 3.6); (ii) store the
graph and all of its nodes into Neo4JManager (step 2), by means of the VeriGraph
REST API (“NF-FG Creation”); (iii) extract all the possible chains (step 3) to/from
the nodes involved in the provided policies(“Chains Extraction”); (iv) generate a
verification scenario for each chain extracted (step 4), including all the necessary
FOL formulas to model the encountered middleboxes (“FOL Formula Creation”);
(v) run all the verification tasks generated in the previous step (“Z3 running”) and
return the verification result (step 5); (vi) raise an exception if any error occurred
during the previous step.

The aim is to understand the impact of each phase of the verification on the
overall deployment of the service graph. To do this, in Figure 3.7 we briefly report
the network scenario we used to check if VeriGraph has been correctly integrated into
the UNIFY architecture and in particular into Escape. Moreover, we evaluated the

54 Checking Reachability in Service Graphs

Table 3.1 Verification times achieved by VeriGraph with a bad network configurations.

Reachability
Property

Verification
Result

NF-FG Creation +
Chain Extraction

FOL Formula
Creation

Z3
Running

Verification
Time

Host1 ->Server X 169ms 87ms 54ms 310ms
Host2 ->Server x 196ms 130ms 28ms 354ms
Host3 ->Server x 175ms 88ms 30ms 293ms

Table 3.2 Verification times achieved by VeriGraph with a correct network configurations.

Reachability
Property

Verification
Result

NF-FG Creation +
Chain Extraction

FOL Formula
Creation

Z3
Running

Verification
Time

Host1 ->Server X 188ms 94ms 61ms 343ms
Host2 ->Server X 209ms 86ms 65ms 355ms
Host3 ->Server X 153ms 97ms 107ms 357ms

time spent by VeriGraph in each of its phases. This evaluation has been performed
under different network configurations on the same NF-FG.

In order to check if each host is able to reach the web server (shown in Figure 3.7),
initially we have configured the firewall to drop all traffic coming from the NAT
function. Table 3.1 shows in fact that the reachability verification between the
endhost Host2 and the web server Server is not satisfied (column “Verification
Result”), similarly for the endhost Host3 and the server.

We then fix the network behaviour by changing the firewall configuration and
allowing traffic between any end host and the web server. As we expected, VeriGraph
checks successfully the reachability invariants in the requested service graph for any
end host.

From the point of view of a VNF Orchestrator, VeriGraph fulfils the aforementio-
ned network verification constraints, which are the use of non-complex modelling
approaches in order to achieve reasonable verification times and to run the service
graph checks before of the deployment phase. The timing results shown in Tables 3.1
and 3.2 show that VeriGraph is able to check service graph request in less than
400ms, with different VNF configurations. This result does not impact the overall
deployment step, because the achieved verification times are completely acceptable
for humans who hardly notice this difference.

3.5 Future works: scalability issues 55

3.5 Future works: scalability issues

One desirable property of a verification tool is the scalability to enterprise and
operator networks. Given the promising evaluation results achieved, we spent more
efforts to the scalability issues in verifying complex service graphs.

Even though the boolean modelling-based approach seems to be more promi-
sing than traditional model checking techniques that generally suffer of memory
consumption, VeriGraph must be able to treat also complex service graphs.

The initial approach adopted in VeriGraph is to model a VNF and the whole
service graph as a set of First Order Logic (FOL) formulas (e.g., NAT model shown
in Figure 3.3). Unfortunately, FOL is an undecidable logic due to the presence of
existential and universal quantifiers (i.e., ∃ and ∀) and this would cause Z3 and other
SMT solvers to timeout. Thus, a tentative for making VeriGraph able to treat also
large-sized networks is to change the modelling strategies used to represent the VNF
catalogue and the forwarding principles of the networks.

To ensure the formulas to describe a service graph (i.e., the union of the models
of the network forwarding principle and of each VNF involved in the graph) are
decidable, we plan to make the FOL-based formulas in a Skolemized normal form in
order to remove the existential quantifiers.

In order to apply this new formalism, a possible strategy is to reformulate our
assertions with variables that represent an event, which represents a particular condi-
tion in the network forwarding like the delivery of a packet. We can consider also
the cause that has triggered an event, which is an event itself. To better understand,
we can consider the receiving of a packet as an event which is caused by the packet’s
sending, which could be considered as an event as well.

In this reformulation of the FOL-models, each event has its own properties that
characterize it like source and destination nodes, time, etc.... Those properties can be
assigned to an event with predicate functions, which are pure FOL functions that do
not have an a priory interpretation, but they allow any interpretation that is consistent
with the constraints over the function itself. We can also use predicate functions
to retrieve the cause of an event (i.e., by defining a “cause” function) and to check
which kind of event we are considering. In particular, we can consider two kinds of
event, that are the sending and receiving events (differentiated by the “isSend” and
“isRecv” functions).

56 Checking Reachability in Service Graphs

isRecv(event(n_0,n_1, p_0, t_0)) =⇒ isSend(cause(event(n_0,n_1, p_0, t_0)))∧
src(cause(event(n_0,n_1, p_0, t_0))) == n_0∧
dest(cause(event(n_0,n_1, p_0, t_0))) == n_0∧
pkt(cause(event(n_0,n_1, p_0, t_0))) == p_0∧
time(cause(event(n_0,n_1, p_0, t_0)))<
time(event(n_0,n_1, p_0, t_0))

Fig. 3.8 Formula for modelling packets receiving and sending.

To complete the formula transformation, we have to replace the use of the
quantifiers (i.e., ∀ and ∃) in the model formulas with equivalent formulas that contain
Skolem functions instead of symbols.

To better understand how to model a network with this new approach, one aspect
in the network forwarding that we can model is when a network node receives a
packet. The action of receiving a packet implies that a network node (different
from who is receiving) has sent that packet before. This means that in our model a
receiving event is caused by a sending event, with some basic conditions: the source
node of the cause must be equal to the source node of the receiving event (similar
for the destination node); the sending and receiving events are delivering the same
packets and the first event happens before than the second one. This concept can be
expressed in the new formalism shown in Figure 3.8.

For what concerns VNF modelling, let us consider the firewall functionality
shown in Figure 3.4 as example, which drops packets based on an Access Control
List (ACL). As we have already mentioned, our ACL firewall will forward only
those packets with source and destination addresses that do not match any entry in
the ACL. Then, the formula 3.9 states that the event e of sending (isSend(e)) done
by the firewall itself as source node (src(e) == f irewall) implies that the cause
of e was a receipt event (isRecv(cause(e))), whose destination node is the firewall
(dest(cause(e)) == f irewall). Formula 3.9 also indicates that the packet sent during
the event e is the same packet received during the cause(e) (i.e., pkt(cause(e)) ==

pkt(e)) and that the source and destination addresses inside this packet are not
present in the ACL of the firewall (¬acl(src(pkt(e)),dest(pkt(e))).

3.5 Future works: scalability issues 57

(isSend(e)∧ src(e) == f irewall) =⇒ isRecv(cause(e))∧
dest(cause(e)) == f irewall∧
pkt(cause(e)) == pkt(e)∧
¬acl(src(pkt(e)),dest(pkt(e)),∀e

Fig. 3.9 ACL firewall model in Skolemized form.

The issues related to the scalability of a verification approach are very critical
tasks for a VNF Orchestrator, which can face with large-sized service graphs and
needs a verification service able to treat all the incoming graph requests. Thus, we
sustain the importance of improving VeriGraph in this direction and of making it
able to scale w.r.t. the service graph size.

Chapter 4

A Proposal for Seamless
Configuration of VNFs

In this part of the thesis, we now move to the presentation of the problems derived
from the configuration of service graphs and possible solutions.

Traditional service provisioning models took a great deal of time and effort.
The creation of chain-based network services in the past meant acquiring network
devices and cabling them together in the required sequence. Each service required a
specialized hardware device, and each device had to be individually configured with
its own command syntax.

We already know that the introduction of NFV and SDN has improved the
management and configuration of network services because, on one hand, moving
network functions into virtual instances means that building SFCs no longer requires
acquiring hardware, and on the other hand, moving network management out of
the hardware and put it in a logical centralized appliance means the replacement of
proprietary device configuration languages in favour of standard solutions and the
increment of agility and flexibility in the network configuration.

What the literature has proposed during the last years are solutions for selecting
the best VNFs to create the desired network service, for allocating resources for
the selected VNFs (e.g., number of VNF instances or CPU/Operating System/-
bandwidth/... requirements), for instantiating the network connections between the
network functions.

60 A Proposal for Seamless Configuration of VNFs

All of these steps are needed to deploy a service graph, but what we still miss to
complete this phase of the network service life cycle is a way to push down functional
configurations into the VNF (e.g., blacklist for DNS filter or IP addresses for router
interfaces) without using vendor-specific interfaces.

Enabling a flexible and seamless configuration process in the service life cycle
allows providers to improve the quality of services offered to the final users, achieving
many advantages. An example is the possibility of fixing bugs in case of verification
failures. However, we can envision several challenges to address: (i) network
functions may require different ways (REST API, CLI, SMTP, etc...) for being
configured and (ii) the semantics of a configuration depend on the network function
itself (e.g., router parameters are clearly different from firewall ones).

Thus in this chapter we investigate a possible solution for configuring VNFs
compared with the other proposals in the research world.

4.1 Problem statement and contributions

In order to enable a user-centric service model, where final users can customize their
service graphs by selecting network functions either among the natively supported
catalog or provided by third-parties, and to simplify the management aspects, Data
Center Providers (DCPs) rely on the use of data center management software, named
cloud managers (CM), such as OpenStack1. A cloud manager is a software suite that
handles management tasks such as the deployment of Virtual Machines (VM), the
creation of the virtual network topology, and more.

Cloud managers can rely on additional systems for configuring network services
and functions: examples are Puppet, Chef, Ansible and others. One advantage
of such solutions is the possibility to integrate a network function without any
modification to the function itself, thanks to the use of additional software modules
such as agents or plug-ins. This approach, in fact, relieves VNF developers from the
burden of developing a special instance of their functions for each particular CM
adopted by the provider. However these tools miss a high-level agility in configuring
VNFs because they are targeted to very expert users (i.e., providers, administrators,
developers etc.). Existing configuration systems generally have a very steep learning

1https://www.openstack.org/

https://www.openstack.org/

4.1 Problem statement and contributions 61

curve and this implies that non-expert tenants cannot build their virtual networks
without learning how to use the tool allowed by their DCP. Moreover, configuration
tools generally force users to create VNF configurations in the format needed by the
tools themselves, without providing a high-level representation of such configuration
parameters (e.g., no separation between the representation of an IP address and
its real value). In this way, such tools cannot exploit the advantages provided by
model-based configuration approaches, which have been recently proposed in the
literature (e.g., [33]).

Model-based configuration means defining a representation (i.e., a data model)
for the configuration parameters of each VNF. The configuration, defined through the
above data model, is then automatically processed internally by the system, hence
generating the actual configuration parameters (e.g., IP addresses associated to all
the interfaces of a router VNF), which are then pushed into the VNF. An advantage
of the separation of the actual VNF configuration from its high-level representation is
that it does not force DCPs to use a single tool (e.g., Puppet) for configuring network
functions. This makes VNF insertion simpler, because developers can integrate their
VNF implementations in any CM that supports the same model-based approach.

Among the recent solutions that follow this trend, an informal working group
of network operators has proposed the use of vendor-neutral data models through
the OpenConfig project2. OpenConfig aims at creating a set of YANG-based models
of network functions, leaving the choice of the strategies for pushing the actual
configuration, automatically derived from the data model, to the operators such
as the DCP. ForCES [33] is another example of VNF-independent configuration
approach, which relies on a unified model of network abstractions and makes uses
of a single protocol to control the VNF lifecycle. In order to use this approach with
already existing VNFs, either the VNFs have to be updated with the addition of an
implementation of the protocols specified by the above standard, or new adaptation
components have to be provided, in order to guarantee the seamless integration of
the existing VNFs in the new architecture.

In line with this recent trend, we propose a new architecture based on vendor-
neutral network function data models defined through VNF descriptions that (i)
facilitates the DCP in building a rich VNF catalog by adding services that can offer
a simple and uniform configuration plane to tenants, (ii) enables non-expert tenants

2https://www.openconfig.net/

https://www.openconfig.net/

62 A Proposal for Seamless Configuration of VNFs

to configure their network services through that simple and coherent interface, and
(iii) offers VNF developers an easy way to integrate their services in the CM used by
the DCP.

Relying on previous works [34] and inspired by advantages of the existing
agent/plug-in-based solutions that avoid changes in the VNF code, we design an
architecture that exploits additional translation modules. The distinctive features of
our additional modules are that they are VNF-agnostic (differently from configuration
plug-ins), while they are specific per-configuration strategy. In this thesis, we
define configuration strategy as the combination of the protocol used to send the
configuration (e.g., SSH, NETCONF, SNMP, etc.) and configuration method (e.g.,
command line interface (CLI), REST API, file etc.) that has to be used to fully
configure a VNF. In particular, the characteristic to transparently support multiple
configuration strategies is a clear differentiation compared to existing solutions,
which usually make use of a single protocol or interface (e.g., Puppet).

In summary, this work examines how DCPs can enhance their CM for enabling
the proposed configuration approach. In particular, we propose a solution that relies
on new components and a different way to input configuration data to perform all the
necessary configuration tasks, and does neither require additional per-VNF control
modules (such as an additional VM that provides the adaptation layer between the
CM and the VNF, or an additional module running natively in the CM), nor changes
in the VNF code to integrate it in the CM, such as the the implementation of an
additional configuration strategy in the VNF itself.

4.2 Related work

In this section we investigate existing approaches for configuring VNFs. Even though
the research world has presented different works somehow related to ours, most of
the examined solutions focus on a subset of the problem we face, for this reason we
have grouped them in several categories.

4.2 Related work 63

4.2.1 Agent-Based Configuration Approach

Several tools have been proposed to make the configuration and installation of
additional software easy in a data center. Puppet3, Chef4, Ansible5 are examples of
existing configuration management systems, which aim at simplifying the task of
managing large and complex compute deployments and keeping the system up to
date.

This kind of solutions is based on a master-agent model (like Puppet), which
requires the use of agents running in each node to configure and update the network
services installed on it. One advantage derived from an agent-based approach is
that the VNF developer does not take upon himself the overhead of managing the
communication between the VNF and NFV architecture, because it is handled by
the provider. This means that VNF developers do not have to implement additional
software, apart from their functions, and also providers avoid the installation of
unknown software (i.e., VNF-specific plug-ins) in their network.

On the other side, such solutions generally present drawbacks like steep learning
curve, no abstraction of the network function configurations and also difficulty in
managing physical instances of network functions due to the installation of non-
native support agents (e.g., Puppet’s agent). Moreover, most of them rely on a
centralized management module, which has to collect the configurations of all the
functions and services installed in the network and manage them, bearing all the
well-known problems of a centralized solution. On the contrary, we envision a
solution modular and logically distributed.

4.2.2 Protocol-Based Configuration Approach

Among the investigated solutions for configuring network functions, SNMP [35] and
NETCONF [36] are two protocols that lay on data model languages. SNMP relies
on SMIv2, while NETCONF on YANG, which has been indicated in [37] as a better
data modelling language compared to other languages (e.g., XML schemas).

From a provider perspective, the use of a single configuration protocol, like
SNMP or NETCONF, may limit the VNF catalog: all the non-SNMP/NETCONF

3https://puppetlabs.com/
4https://www.chef.io/
5http://www.ansible.com/

https://puppetlabs.com/
https://www.chef.io/
http://www.ansible.com/

64 A Proposal for Seamless Configuration of VNFs

functions cannot be selected in case these are the only protocols supported by the
provider. The use of a more flexible architecture that can enable more than one
configuration strategy (e.g., NETCONF, RPC, REST, etc.) can relive, on one side, the
VNF developers from integrating the support of further protocols in their functions,
and, on the other side, make the provider free to chose the best configuration strategies
among the available ones, based on, for example, security implications.

4.2.3 Model-based configuration approaches

A recent proposal in model-based configuration is represented by the open-source
OpenDayLight (ODL)6 SDN controller, which exploits a model-based service ab-
straction layer in order to create programmable (and configurable) network services.
In particular, ODL enables the integration of third-parties VNFs thanks to the use of
plug-ins in charge of the communication between the VNF and ODL, and YANG-
based models that specify the data structures used and the messages supported by
the northbound interface of the VNF itself.

At the best of our knowledge, the peculiarity of the approach taken by ODL
does not consist in the model-driven abstraction, because many solutions encourage
the use of models to represent data structures and primitives to generate the VNF
configuration and push it down to the function itself. Instead, while the SDN
controller needs VNF-specific plug-ins that are developed by the VNF developers
and that have to implement an RPC API as northbound interface (i.e., toward the SDN
controller), we envision the use of configuration modules that are VNF-agnostic and
that can communicate with the VNF through any protocol or API (i.e., configuration
strategy) supported by the provider.

The ForCES framework [38], defined by the IETF Forwarding and Control
Element Separation working group, is another example of model-based configuration
approach and it addresses the creation, configuration, and resource assignment of
VNFs, exploiting an object-oriented model. In this context, [33] argues for the need
of a unifying common network abstraction model for both forwarding aspects and
network functions. This model is processed by a Network Function Manager in
charge of accessing to each device through appropriate APIs and managing their life

6https://www.opendaylight.org/

https://www.opendaylight.org/

4.2 Related work 65

cycle. The authors have also provided a proof-of-concept of the ForCES applicability
in an NFV architecture [39].

However, instead of exploiting existing configuration strategies already supported
by a network function, as it is envisioned by our work, their solution uses an
additional protocol (namely ForCES) for configuration and management purposes.
Moreover, the ForCES framework was designed for configuring network datapaths
by means of an XML schema: on the contrary, recent trends define function models
for configuration purposes, without considering network connections and resources
and use YANG as data modelling language, instead of XML schemas, for the
aforementioned reasons.

OpenConfig is an Industry-based working group that proposes another model-
based approach for configuration and management and is currently building a public
database of vendor-neutral data models of network functions, created using the
YANG language. The development of these vendor-neutral data models can facilitate
VNF integration, because, it focuses on making function model natively supported
on networking hardware and software platforms reusable for any provider network.
The main goal of the OpenConfig project is concentrated on the modeling phase,
leaving providers free to implement any strategy for pushing configurations into
network functions. Our main objective is instead to define all the features needed to
handle all the steps of a complete configuration process.

4.2.4 Other Approaches

Finally, it is worth summarizing how some of the most recent orchestration architec-
tures proposed in the literature refer to the VNF configuration problem, starting with
the well-known ETSI-driven NFV architecture. Even though the ETSI NFV project
has considered the problem of configuring VNFs and has proposed the Management
and Orchestrator component (MANO) to take care of management and configuration
tasks in the NFV architecture, only few works (e.g., [40]) are currently available that
investigate this issue.

An example of MANO solution is vConductor, presented by Shen et al. [41],
which enables users to define their virtual networks. The authors have designed
their solution to exploit OpenStack network and compute resource provisioning
frameworks, providing a proof of concept. In particular their prototype exploits a

66 A Proposal for Seamless Configuration of VNFs

data model for service, computing and networking aspects, neglecting configuration
parameters and data as we, instead, envision.

Juju7, instead, is an open-source framework for modelling and deploying appli-
cations in service oriented architectures. It is seen more as a VNF Manager of the
ETSI NFV architecture than a VNF Orchestrator, because it aims at simplifying
and automating the service (or application) integration instead of implementing
orchestration functionalities. Juju, in fact, is in charge of modeling services and
tacking care of their delivery, regardless of the underlying infrastructure. Any other
aspect of a service delivery is left to other tools, such as the service configuration that
is managed in Juju thanks to the aforementioned Puppet and Chef. In this case we
can find all of the pro and cons of the approaches adopted by such tools as discussed
in Section 4.2.1.

Another important architecture has been developed within the FP7 project
UNIFY [42], which aims at orchestrating any VNFs available in the whole net-
work of the telecom operator, which addresses the configuration problem by defining
a dedicated module as responsible of this task. A proof of concept prototype of this
architecture is available through the ESCAPE framework [32], which deploys virtual
networks by processing a data model (i.e., Network Function-Forwarding Graph -
NF-FG). However, the problem of the configuration has not been properly investiga-
ted, as the NF-FG model includes only basic parameters such as IP addresses and
cannot be seen as an acceptable answer to the very general problem of VNF (and
service) configuration.

4.3 Objectives and Challenges

This chapter presents a flexible, scalable and VNF-agnostic solution to configure
VNFs based on (i) a VNF-independent formalism to describe the data model of any
VNF, (ii) a set of VNF-dependent high-level data models (based on the previous
formalism) that describe the function itself, and (iii) a set of VNF-independent
components called translators and gateways that are in charge of translating high-
level configuration directives into the actual configuration commands, which are
VNF-specific.

7https://jujucharms.com/

https://jujucharms.com/

4.3 Objectives and Challenges 67

In our case, network functions (and their models) can be provided dynamically
to be deployed in tenant virtual networks and CMs must guarantee their complete
integration, even when these functions are not known in advance to the CM (e.g.,
in case of third-parties VNFs). This involves allowing the communication with
other components (such as other network functions) and configuring the functions
themselves. In particular the problem we faced is that after creating the virtual
network, configuring the network paths (e.g., OpenFlow rules) and installing the
chosen VNFs, tenants have to configure them, in terms of functional and behavioral
information (e.g., black-listed domains for DNS filter).

The enhancements of CMs for enabling seamless configuration can bring benefits
to all the actors involved, which are the DCP, VNF developers and Tenants.

From a DCP point of view, the use of a flexible and automated configuration
approach can facilitate the insertion of new VNFs into its catalog, as the manual
intervention of the DCP is no longer required each time a new VNF has to be
added, with well-known consequences in terms of provisioning agility (minutes
instead of weeks). This has a beneficial impact also on costs, as the adoption of
VNF-independent high-level formalisms for data models reduces the difficulties in
configuring different VNFs and favours the migration to industry standards such as
the one proposed by the OpenConfig project, based on the YANG language.

Furthermore, a model-based approach enables also DCPs to enforce additional
controls such as integrity checks and verification of the configuration correctness
before actually deploying the requested virtual network, as proposed in some recent
works [20, 24]. Another example is the implementation of an automatic reconfigura-
tion process, such as the realignment of configuration parameters across multiple
VNFs (e.g., the IP network assigned by the DHCP and the IP subnet used by the
firewall to filter incoming traffic), although this requires the development of new ad-
vanced automated tools that guarantee the correctness of the generated configuration.

A possible answer to the above problem can be found in [40], which focuses
on security applications and exploits refinement-based techniques to generate and
deploy the proper functional configurations in the controlled VNFs. The resulting
configurations are automatically derived from a set of high-level security statements,
defined by the tenant itself, and are proved to be correct thanks to the mathematical
background those techniques are built upon.

68 A Proposal for Seamless Configuration of VNFs

From a VNF developer perspective, instead, our solution would relieve develo-
pers from the burden of integrating their VNFs in every architecture, for example,
which may require the development of CM-specific plug-ins. Hence a model-based
approach can make VNFs immediately usable in any present and future DCP archi-
tectures (i.e., CMs), without the necessity of special integration efforts (e.g., reusing
VNF models). In particular, our solution is designed so that VNFs can be integrated
without supporting additional protocols, but exploiting those configuration strategies
the function natively supports.

Finally, tenants can benefit from an enriched sets of functions, hence more
services. Moreover, they are allowed to build and operate virtual networks without
knowing the low-level configuration details (e.g., command line of a router or
configuration files for a DNS filter) because our solution hides such technical details.
In fact, DCPs could also provide a unified API (e.g., a dashboard) in order to facilitate
tenants to experience a uniform way to program and configure the entire network
infrastructure, including both topology information (e.g., links and VNFs) and the
configuration required by the VNFs themselves. For example, a tenant could be able
to configure a router through the same API that he used to deploy the function into
the network.

While the advantages of having an architecture able to automatically configure
VNFs according to the model-based approach are clear, we can envision two pro-
blems. First, the semantic of a configuration depends on the network function itself,
as the parameters used to configure a router are clearly different from the ones needed
by a firewall. This requires (i) VNF-specific data models, although created with a
language that is VNF-independent and hence can support arbitrary functions, and
(ii) a set of components able to dynamically understand such descriptions and apply
them to the target VNF. Second, network functions may require different strategies
for being configured: some support configuration methods like a web-based interface,
a REST API, or an SSH-based configuration; others can be configured via SNMP,
and more. This requires the translation of high-level configuration directives coming
from the tenant into the specific commands available in the chosen configuration
strategy (e.g., SNMP MIBs, configuration files) and the implementation of a com-
munication protocol in charge of transferring the above configuration to the target
VNF.

4.4 The approach 69

The target architecture should avoid the insertion of any VNF-specific configura-
tion component inside the DCP’s network, such as dedicated software modules that
provide the interface between the uniform and user-friendly configuration interface
exposed to the tenants and the actual configuration strategy supported by the specific
VNF. In addition, the VNF images should be kept unchanged independently of the
CM under consideration and the configuration strategies chosen by the DCP and/or
supported by the VNFs. Finally, in case a VNF supports multiple configuration
strategies, the architecture should be able to allow the DCP to choose the best one
based on a cost function and/or its management policies.

4.4 The approach

This section presents first the high-level overview of the whole architecture, then it
will show a more detailed view of the components in charge of configuring VNFs
and the inputs they require for their tasks, and the respective actors that are in charge
of that data.

4.4.1 Architecture overview

In order to perform a complete service deployment, including the configuration of
the VNF, the CM needs both the VNF image and its data model, which is collected
in a VNF description and must be provided by the VNF developer. The DCP has to
store both the VNF image and description in the proper modules of its CM, in order
to have them available when the tenant issues a service request (Figure 4.1). At this
point, the tenant can configure its VNFs through a VNF-agnostic interface provided
by the CM (e.g., REST API, dashboard, etc.). Finally, the configuration module will
automatically generate and push the actual configuration in the VNFs, making the
requested service fully operative.

In this process it is important that the VNF description is defined in a unified
format in order to help mainly developers and DCPs. The VNF developer can define
the main functional information (e.g., firewall policy) and the configuration protocols
and methods (i.e., configuration strategies) for pushing them into the VNF in a way
that is recognized by any DCP, which, in turn, are able to add to their catalog and
use any VNF that adheres to the unified description format. In order for this to

70 A Proposal for Seamless Configuration of VNFs

Tenant Cloud Manager VNF Developer

instantiateVirtualNetwork()

{successMess}

selectVNF(name)

{successMess}

configureVNF(configParameters)

{successMess}

purchaseVNF(name)

{VNF image, VNF description}

select3PartyVNF(name)

{successMess}

configureVNF(configParameters)

{successMess}

deployVirtualNetwork()

{successMess}

LOOP

[VNF request]

ALT

[choose VNF
from DCP catalog]

[choose
third-party VNF]

Fig. 4.1 Interaction between different actors.

be possible, DCPs must be able to configure any VNF regardless of their intrinsic
details.

In order to enable this kind of configuration service, many features are needed in
a CM, in particular the integration of modules that perform the configuration and the
modification of the exposed interface to receive the VNF configuration parameters.

A possible configuration-oriented architecture of a CM is shown in Figure 4.2
(case A): a master component is in charge of generating the VNF configurations,
while the agents are software modules installed in the network where the VNFs are
deployed, that monitor if the VNFs need some configuration updates and, in case
alert the master.

This is the approach adopted by solutions like Chef, Puppets, etc., where the
master/agent communication is based on HTTP API. This type of solution avoids the

4.4 The approach 71

Cloud Manager

VNF

A

P

I

CLI

TRANSLATOR

GATEWAY

Tenant

VNF ……

…….

……Agent

• Configuration strategy: 1
• VNF catalog: limited
• Agent: per-function/node

• Configuration strategy: 1
• VNF catalog: many VNFs
• Plug-in: per-function

• Configuration strategy: many
• VNF catalog: many
• Translator: per-strategy

Cloud Manager

MasterAPI
Tenant

A

B

C

Cloud ManagerAPI
Tenant

REST

TRANSLATOR

GATEWAY

….

TRANSLATOR

GATEWAY

VNF

Agent

VNF VNF VNF

Plug-in

VNF

Plug-in

VNF

Plug-in

VNF ……

……

Fig. 4.2 Possible configuration-oriented CM architectures.

necessity to develop additional code (i.e., adaptation of the VNFs to the configuration
protocol chosen by the DCP, or the implementation of VNF-specific plug-ins), hence
facilitating the operations of the VNF developer. However, this architecture presents
some limitations (i) with respect to the VNF catalog, because functions that cannot
be configured through the agent cannot be integrated in the system (or further effort
must be spent for their integration), and (ii) it requires the presence of an agent that
runs aside each VNFs.

Another possible architecture is depicted in case B (Figure 4.2), where the
configuration engine is not centralized inside the CM, but it is moved to VNF-specific
plug-ins. This is the approach currently adopted by OpenDayLight, which requires
a control plug-in developed by the VNF developer to enable the communication
between VNF and cloud manager by means of, for example, an RPC API. From
a DCP point of view, this solution leads to: (i) decreased VNF integration cost
than case A; (ii) a richer set of offered virtual services thanks to the simplicity
in integrating new VNFs; (iii) the necessity to execute control modules that are
developed by third-parties, which might introduce additional security issues.

72 A Proposal for Seamless Configuration of VNFs

Our solution is represented by the architecture shown in case C (Figure 4.2),
which translates the high-level configuration parameters in the actual VNF configu-
ration commands and pushes them into the function. This solution (i) avoids any
change in the VNF source code and/or the implementation of additional configura-
tion plug-ins, (ii) avoids the installation of control agents in the network in order to
better scale with the number of deployed VNFs and, finally, (iii) supports multiple
configuration strategies (e.g., CLI, REST, etc.).

In particular, our approach is based on the splitting the configuration engine
in two orthogonal (and sequential) tasks, which consists in the translation of high-
level configuration parameters into a particular format required by a VNF and their
delivery to the function. Thus, a translator takes care of the first task and a gateway
will take care of the latter, transferring and installing the VNF configuration by using
one of the configuration strategies already supported by the function itself.

This logically distributed architecture allows providers to optimize the configu-
ration task by instantiating a variable number of translators and gateways, possibly
only upon request, based on the current load of the system and the number of VNFs
that have to be configured in order to implement the overall service request.

The use of translators and gateways allows the system to increase the number
of supported configuration strategies (hence, VNFs that require unconventional
configuration methods and protocols) without impacting on the existing ones, which
continue to operate as usual. Moreover, these modules exploit the data model
descriptions of the VNFs for which the configuration has to be created, enabling
DCPs to support an unlimited number of network functions. Also the separation
of translating VNF configuration from the task of delivering it to the VNF allows
to split the inputs needed by the new components. In particular, translators and
gateways will use different parts of the VNF description, which are: VNF object
model, translation rules and access parameters. The next sections will describe in
detail these inputs and how they are exploited by the new components.

4.4.2 Configuration translators

Since each configuration strategy has its own peculiarities (e.g., for a CLI-based
configuration, it is necessary to know the commands for enabling administrative
authorization), the architecture includes a configuration translator for each confi-

4.4 The approach 73

guration strategy the DCP wants to support (Figure 4.3). A translator hence must
be aware of all the particular techniques and quirks needed for the strategy it is in
charge of.

The use of separated translators makes also the system more extensible and
manageable, as it allows an easier insertion, replacement and removal of supported
configuration strategies: when the DCP wants to support a new strategy, he has
just to make a new translator available (and, in turn, a new gateway). Furthermore,
the system becomes scalable with respect to the number of VNFs running in the
system: one translator (and gateway) enables the integration of a number of network
functions that support that strategy. The larger the number of VNFs, the larger the
number of translators and gateways that are instantiated. This solution contrasts with
the limited scalability of agent-based architectures where a single agent may become
a bottleneck.

Translator inputs. In order to perform its job, a translator needs the VNF Object
Model (OM), which is the VNF-specific model that we exploit to represent the
function data inside the system (point 1 in Figure 4.3). In particular a VNF object
model represents a description of the data-structure instantiated for storing the
configuration parameters of a VNF. This means that each VNF must be associated
with its object model in order to be correctly integrated into the system. Note that
more than one OM may be necessary for the same type of VNF. For example, a
firewall from a first manufacturer can support features that are different from the
ones supported by a firewall of another manufacturer, requiring further configuration
parameters for such additional features and hence a different object model.

Moreover since the object model is only the specification of the data structure
used to store configuration parameters, an instance of the OM for each deployed VNF
is stored inside the CM, namely the VNF Object Model instance (OM instance). For
instance, we can consider the VNF OM as a class declaration in an object-oriented
programming language, while the VNF OM instance can be seen as a particular
instance of that class. In particular, when the CM receives the request to deploy a
new set of services (point 2), for each VNF that is being instantiated a specific OM
instance is created (point 3). Referring to the previous example, if the tenant has
required two VNFs of the same firewall, two OM instances are created from the
object model of that particular firewall, one for each firewall VNF deployed in the

74 A Proposal for Seamless Configuration of VNFs

VNF
Description

Translation
Rules

VNF
Object Model

FW1
VNF

Cloud Manager

④

Tenant Data Center Provider VNF Developer

Data
center

①

CM interface

web browser

FW

FW

LB NAT

FW2
VNF

LB
VNF

NAT
VNF

Access
Parameters

OM Instances

FW#1
OM Instance

FW#2
OM Instance

LB
OM Instance

NAT
OM Instance

Config
Translator

(REST)

Config
Translator

(FILE)
……

Config
Translator

(CLI)

Config
Gateway

(REST)

Config
Gateway

(FILE)
……

Config
Gateway

(CLI)

②

③

⑤

⑥

⑦

⑧
⑨

⑩

Fig. 4.3 Overview of a CM architecture for configuring VNFs.

network. Each OM instance will contain the set of policy rules configured for its
associated firewall.

Among the other aforementioned advantages, the use of data models makes any
changes in DCP-provided API easier and transparent for the internal processes of
the system. This avoids also the use of data-structure formats for collecting VNF
configurations that would be translator-specific.

Another input coming from the CM is a set of translation rules (point 4), i.e.
directives used to drive the translator in generating the configuration of the VNF in
the right format. They express the way to translate the structure and content of the
OM instance into the specific structure/format required by the VNF. Referring to the
previous example of the firewall, translation rules specify the format of policy rules
according to the specific firewall in use.

The particular format used to configure a VNF depends also on the configuration
strategy supported by the function itself (e.g., CLI, REST API, file etc.). For instance,
a configuration through REST interface has certainly a different format from one
used for CLI-based configuration.

4.4 The approach 75

To better clarify the idea under the translation rules, let us consider the previous
example of the firewall and suppose that a policy rule can be set through a command
line like “add rule -source 130.192.31.24 -destination 8.8.8.8 -action ACCEPT": an
example of translation rule may be like “add rule -source IP_VALUE -destination
IP_VALUE -action ACTION_VALUE", where the actual configuration parameters
values (i.e., IP address and action) are stored in the OM instance of that firewall.
Further details about the format of the translation rules in our solution are presented
later.

As well as the object model, translation rules are both configuration strategy- and
VNF-specific, since each network function has its own primitives to be used in the
configuration phase. Hence both the VNF object model and translation rules can be
provided by the developer through the VNF description.

With respect to which inputs the configuration translators need, the new modules
have been designed to receive: (i) configuration parameters saved into the OM
instance of the VNF (point 5 in Figure 4.3); (ii) translation rules for deploying such
parameters into the VNF in the right format (point 6).

It is interesting to note that an OM instance is self-descriptive and hence transla-
tors can discover the structure of an OM from any instance of that model.

4.4.3 Configuration gateways

The proposed architecture includes also a configuration gateway for each translator
and, in turn, for each strategy supported (Figure 4.3). Gateways are in charge of
delivering the actual VNF configuration into the function by means of the configu-
ration strategy for which it is authorized. In order to achieve this goal, a gateway
needs surely the result of the configuration translation process, which represents the
final configuration of the function (point 8 in Figure 4.3). However a configuration
gateway requires another input to perform its goal, namely the access parameters.

Gateway input. The access parameters (point 7 in Figure 4.3) are used to instruct
the system on how to contact the VNF and update its configuration, in order to
complete the configuration of the VNF itself. Examples of access parameters are
IP addresses, port numbers, administrative credentials, commands for entering in

76 A Proposal for Seamless Configuration of VNFs

configuration mode and everything that describes how to add the policy rules inside
the firewall we have considered before.

In our vision access parameters should be standardized for each configuration
strategy, because each strategy needs different information: for example, in a confi-
guration though files, CMs must know the path where configuration files are stored.
DCPs and developers can then set the actual values of those parameters: DCPs would
establish the management information internal to his architecture (e.g., IP addresses
of control interfaces), while developers would set parameters related to the internal
mechanism of the VNF (e.g., root credentials). This implies that access parameters
are strategy-specific, but some of them are also VNF-independent. This is the reason
why we do not include such parameters into VNF descriptions. Further details on
how access parameters are stored in a real implementation of the architecture are
provided later.

4.5 Implementation and evaluation

This section describes a proof-of-concept implementation of the proposed architec-
ture. We start by presenting some details that have not been included in the previous
description in order to keep the architecture description more generic (i.e., inputs
format and languages). We then continue with a description of our prototype.

4.5.1 Object Model

The VNF Object Model is based on the YANG data modeling language [43], deve-
loped by IETF and extended for our purposes. YANG has been designed to model
configuration data and state, which can be manipulated through a protocol such as
NETCONF. YANG was chosen because of it is protocol-agnostic, implementation-
independent and human-readable. YANG is also easy to extend with new directives
without impacting the compatibility with previous implementations. Furthermore it
is oriented to network configuration tasks, hence it provides an excellent foundation
for our problem as well.

This language offers also a wide set of directives to validate its statements. Ex-
amples are type checking, default values, mandatory/optional statements and their

4.5 Implementation and evaluation 77

<schema >

<element name=" router">

<complexType >

....

<sequence >

<element name=" interfaces" minOccurs ="1"

maxOccurs =" unbounded">

<attribute name="name" type=" string"/>

<complexType >

<sequence >

<element name=" ethernet" minOccurs ="1"

maxOccurs =" unbounded">

<complexType >

<attribute name="name" type=" string"/>

<attribute name=" address" type="tns:ipv4"/>

<attribute name="hwid" type="tns:eth"/>

</complexType >

</element >

</sequence >

</complexType >

<key name=" nameEthernetKey">

<selector xpath=" ethernet"/>

<field xpath="name"/>

</key >

</element >

</sequence >

</complexType >

<key name=" nameInterfaceKey">

<selector xpath=" interfaces "/>

<field xpath="name"/>

</key >

</element >

</schema >

Listing 4.1 XML Schema language example: an excerpt of a router VNF description.

cardinality, value ranges checking, and other. While other simple validations are
possible through the definition of new YANG types, more complex validations (e.g.,
dependency checking between statements) would require new extensions. The sup-
port for validating primitives could allow VNF developers to include directives that
can be checked against configuration parameters provided by the tenant. However
we are interested in the configuration process and prefer to leave the checking and
verification of configuration correctness as future work. Hence, in our implementa-
tion YANG has been exploited to define the VNF object model, which includes the
most significant data structures that are required to properly configure the function.

78 A Proposal for Seamless Configuration of VNFs

While the YANG language provides the set of advantages listed before, our
architecture can be implemented with any other language that present similar cha-
racteristics; a possible alternative to YANG is represented by the XML Schema.
In this respect, XML Schema is more mature and already well standardized, but it
is more verbose, as shown by comparing the same data structure defined in XML
Schema (Listing 4.1), where we have defined the same data structure shown in
Listing 4.2. In addition, YANG is being adopted by different projects in the field of
network management such as OpenConfig, and new software artifacts such as the
OpenDaylight SDN controller, hence it should be more familiar at lest to the network
managers.

In the example of a possible YANG Object Model (i.e., VNF description) shown
in Figure 4.2, we have define a structure to describe the state of the Ethernet interfaces
of a router. The idea is to have a data structure to enumerate all the interfaces of a
router (the top-level interfaces list) and, for each of them, store all their network
and physical addresses8 (respectively the leafs address and hwid in the nested
ethernet list).

In our solution, the YANG VNF description file includes also translation rules
(presented in the next section), which are VNF-specific.

4.5.2 Translation rules

As shown in Listing 4.2, translation rules take the form of special comments in the
YANG-based VNF description, using the following structure:

// ConfigTransl:<Transl_N >:<Rule_N > <Rule_V >

where <Transl_N> specifies which configuration translator (and, in turn, confi-
guration strategy) the rule belongs to and can assume values like “file”, “cli”,
“rest”, etc.. Instead, <Rule_N> and <Rule_V> represent the rule name and value,
interpreted as strings. This structure allows to group all the rules for a given translator
under a specific prefix, in a way that is similar to the concept of the namespace. This
permits the presence of multiple translation rules in the same YANG file, which can
be useful when the VNF can support different configuration strategies.

8Usually a network interface is assigned only one network and physical address, but this is not
true in the general case.

4.5 Implementation and evaluation 79

module router {

import ietf -inet -types { prefix inet; }

import ietf -yang -types { prefix yang; }

...

list interfaces {

// ConfigTransl:file:header "// Start Interface List\n";}

// ConfigTransl:file:list_format "%NAME {\n";

// ConfigTransl:file:separators "\n}\n";

// ConfigTransl:file:footer "}\n//End Interface List";

key name;

leaf name {

type string;

}

list ethernet {

// ConfigTransl:file:list_format "%NAME %VALUE {\n";

// ConfigTransl:file:separators "\n";

// ConfigTransl:file:footer "}\n";

key name;

leaf name {

type string;

}

leaf address {

// ConfigTransl:file:leaf_format "%NAME %VALUE\n";

type inet:ipv4 -address;

}

leaf hwid {

// ConfigTransl:file:leaf_format "hw-id %VALUE\n";

type yang:mac -address;

}

}

}

}

Listing 4.2 YANG language example: an excerpt of a router VNF description.

80 A Proposal for Seamless Configuration of VNFs

The example presented in Listing 4.2, which assumes that the router is configured
through a file-based translator, shows some translation rules that create the properly
formatted output, which are: (i) header and footer are inserted respectively before
and after the current YANG element (e.g., list or leaf) when generating the final
configuration; (ii) separators is used to divide child nodes of the current statement;
(iii) list_format and leaf_format work like a printf of the C language, in
which %NAME and %VALUE are expanded with values depending on the context. In
particular, %NAME and %VALUE represent respectively the name of their YANG state-
ment (e.g., “ethernet" for the list ethernet and “address" for the leaf address)
and its actual value (in the case of a list, it will be the value of its key).

Although other configuration strategies may need additional (or different) in-
formation such as the exact ordering sequence of the commands to be issued in a
CLI-based configuration, this does not represent a problem, as new translation rules
can be defined with the format needed by the specific translator. Furthermore, we
could leverage hierarchical data structures, which are natively offered by YANG. For
instance, the current implementation serializes the YANG Object Model of a VNF,
hence assigning a lower priority to the nested elements than their root statement.

None of the keywords is mandatory: an extreme case, thus, is a YANG statement
that does not have any translation rule. In this case that node will not appear in the
configuration output.

4.5.3 Access parameters

In general, access parameter are VNF-independent, but depend on the specific
configuration strategy chosen by the VNF (e.g., a network-based configuration
requires the TCP port to connect to, while a file-based configuration requires to know
where that file is located). Hence the DCP has to define the proper set of access
parameters for each supported configuration strategy. This is the reason why in our
solution the above parameters are not included in the VNF description, but they are
stored in another object that is used only by the CM and may not be fully exported to
the tenant. In order to simplify the deployment, also access parameters are described
using the YANG language.

Moreover, a new OM instance for the access parameters is automatically created
when a VNF is deployed and associated to the function, because this instance must

4.5 Implementation and evaluation 81

module ConfigTransl2File {

list access_param {

key name;

leaf name {

type string;

}

leaf ip_address {

type string;

}

leaf port {

type string;

}

leaf user_name{

type string;

}

leaf user_key {

type string;

}

leaf commands {

type string;

}

leaf file_name {

type string;

}

leaf file_path {

type string;

}

}

}

Listing 4.3 Excerpt of access parameter object model.

store the actual values of access parameters for loading a new configuration into that
VNF. The access parameter OM instance is also associated to its function thanks to
the name field (Listing 4.3), which contains the VNF identifier inside the system.

An example of OM of access parameters for file-based configuration is shown
in Listing 4.3. Here VNF developers, even tenants, must be able to set the access
parameters related to the VNF only. In other words, they must not have the privileges
for setting parameters like IP addresses of management interfaces and others. An
example of possible OM instance associated with the aforementioned model and
related to a router VNF is shown in Listing 4.4, written in a JSON-like format.

The choice of the YANG language for describing the access parameters was
taken also because most of the parameters we need to describe are simple (like

82 A Proposal for Seamless Configuration of VNFs

{

"access_param ":

{

"name": "Router_94",

"ip_address ": "130.192.31.94" ,

"port": "2001" ,

"user_name ": "router_admin",

"user_key ": "admin",

"commands ": "load /configuration/config.boot",

"file_name ": "config.boot",

"file_path ": "/ configuration"

}

}

Listing 4.4 Possible content of an access parameter OM instance.

IPv4/IPv6 address, configuration file name and path, etc.) and natively supported by
YANG. In any case, if needed, we can leverage the additional YANG types defined
by IETF in [44].

Finally to recap the configuration process, Figure 4.4 shows a detailed view of
the whole architecture including all the inputs. The VNF developer has provided
both the VNF image (point 0) to launch the function instance, and the other inputs
required by the system. In particular, the VNF object model (point 1) allows to build
automatically the CM interface (dotted line) and OM instance associated to that
function (dashed line). Translation rules are instead sent to the translators (point 2),
while access parameters (point 3) are stored into a gateway-specific OM instance (its
structure is defined by the DCP, as mentioned before). The OM instance associated
to the access parameters is automatically created when a new VNF is deployed: this
instance is then associated to the VNF and used by the gateway later on.

Through the CM interface (e.g., the DCP web dashboard in Figure 4.4), tenants
can set the VNF configuration parameters (point 4), which are stored into the OM
instance of the function (point 5). After that, this instance (point 6) is passed to
the translator selected based on the preferred configuration strategy (i.e., CLI-based
translator in the example). The combination of this input and the translation rules is
used to generate the actual VNF configuration (point 7). Finally, the configuration
gateway can retrieve both access parameters (point 9) and the produced configuration
(i.e., translator output - point 8) to complete the VNF configuration process (point
10).

4.5 Implementation and evaluation 83

VNF Access Parameters

E.g., VNF is reachable at IP 20.2.2.2 and
TCP port 23

VNF
(e.g. software router)

VNF Object Model
E.g.:
list ethernet {

leaf name { type string; }
leaf address { type inet:ipv4-address; }
leaf netmask { type inet:ipv4-netmask; }
}

VNF Translation Rules

E.g., translate IP/netmask as:
ip address a.b.c.d mask
e.f.g.h

Cloud Manager

VNF#1
Object Model Instance

⑤
⑥

VNF#1
Actual configuration

commands (CLI)

⑦VNF Access Parameters
Object Model

list access_params {
leaf address { … }
leaf port { … }
}

Translator
Config2FILE

Translator
Config2CLI

CM dashboard
web browser

configuration
parameters form

E.g., eth1 has IP
10.1.1.1/24

④

⑨

Tenant VNF Developer

VNF
Software Image

⓪

Data
center

CLI access + configuration commands

③

②

①

⑧

⑩

……Gateway
Config2FILE

Gateway
Config2CLI

……

Access Parameters-VNF#1
Object Model Instance

Translator
Config2REST

Gateway
Config2REST

VNF#2
OM

instance

VNF#3
OM

instance

VNF#N
OM

instance

Data Center Provider

Fig. 4.4 Detailed overview of the enhancements in CM architecture.

4.5.4 ConfigTransl2File Prototype

Having defined the language and formats of the additional inputs required by the
new components, we have also implemented a prototype for validating and tes-
ting the effectiveness of our solution. In our prototype, a C++ library, namely
ConfigTranslLib, has been designed to support several configuration strategies.
We have implemented a translator/gateway prototype, namely ConfigTransl2File,
to configure VNFs by means of files, regardless of their format (e.g., XML, text or
more).

This translator receives inputs through a REST interface exposed by the CM,
which are: (i) YANG OM instances of VNFs, where the translator can retrieve
the configuration parameters chosen by tenant and the configuration file structure
required by the function; (ii) translation rules, which have been stored in the VNF
OM instance as well as the configuration parameters.

For the sake of simplicity, in our implementation the whole set of access parame-
ters is configurable through the REST API. However, in a real vendor’s implementa-

84 A Proposal for Seamless Configuration of VNFs

module bind9 {

list zone {

// ConfigTransl:file:list_format "%NAME \"% VALUE\" {\n";

// ConfigTransl:file:separators ";\n";

// ConfigTransl:file:footer "};\n ";

key name;

leaf name {

type string;

}

leaf type {

// ConfigTransl:file:leaf_format "%NAME %VALUE\n";

type string;

}

leaf file {

// ConfigTransl:file:leaf_format "%NAME \" %VALUE \"\n";

type string;

}

leaf master {

// ConfigTransl:file:leaf_format "%NAME { %VALUE; };\n";

type string;

}

}

}

Listing 4.5 An excerpt of the Bind9 YANG description file.

tion, just a subset of those parameters must be exposed and made public to tenants
and developers. The access parameters are then stored into another OM instance,
specific for the ConfigTransl2File translator.

Finally it is worth noting that our solution is able to support VNFs that could
require multiple configuration files. The ConfigTransl2File library can be in-
structed to write different portions of the same YANG OM into different configuration
files, so that VNFs that require it can dump different parts of their data into different
locations. This can be done because of the object model abstraction: the root element
of a YANG module, for example a YANG list, has no difference from a nested
YANG statement (e.g., container, leaf-list, list) under it, then these two elements of
an object model can be the entry points associated to different configuration files of
the same function.

4.5 Implementation and evaluation 85

zone ‘ ‘ example . com" {
t y p e s l a v e ;
f i l e ‘ ‘ db . example . com " ;
m a s t e r s { 1 9 2 . 1 6 8 . 1 . 1 0 ; } ;

}

Listing 4.6 Excerpt of the generated Bind9 configuration file.

4.5.5 Validation

We validated our architecture by implementing the components required to configure
two VNFs, Bind9 and Vyatta Core, respectively a DNS server and a software
router, which represent two well-known, albeit very different, network functions.
We decided to benchmark the performance of our prototype using one VNF at a
time, omitting the case in which multiple VNFs are deployed (hence, need to be
configured) at the same time. In fact, our current proof-of-concept prototype handles
the two VNFs sequentially, hence requiring a total time for the configuration that
is the sum of the individual components. However, it is trivial to implement the
architecture with multiple gateways and translators, all running in parallel, hence
achieving a configuration time that is independent from the number of VNFs that
have to be configured.

Starting with the validation phase, in particular concerning the DNS server,
we have defined the YANG-based description for Bind9. An excerpt is shown in
Listing 4.5, while Listing 4.6 is the corresponding part of the Bind9 configuration
file, generated by our prototype. As shown in Listing 4.6, we have configured Bind9
to act as Secondary Master (i.e., it gets the zone data from the Primary Master for
that zone). Our validation methodology consists in sending configuration requests
to our CM through its REST interface that aim at setting the Bind9 configuration
parameters; the call triggers the ConfigTransl2File translator, which generates
the above-mentioned configuration file. Another REST call is then issued to initialize
the Bind9 access parameters, which are stored in the proper OM instance.

Having all of the required inputs, the system is able to push the final configuration
file into the VNF and restart it. The successful deployment of the configuration is
validated by interrogating the Bind9 instance and checking that the returned answer
are coherent with the desired configuration.

86 A Proposal for Seamless Configuration of VNFs

A similar validation has been performed also for the second VNF, which in-
volves the Vyatta Core router. An excerpt of its YANG description file is shown
in Listing 4.2. In this case we have checked that the Vyatta instance is actually
configured with the desired data by checking the reachability of the IP addresses
on the interfaces and its static routes. Listing 4.7 shows an excerpt of the Vyatta
configuration file that was correctly generated by the ConfigTransl2File prototype
from the description shown in Listing 4.2.

/ / S t a r t I n t e r f a c e L i s t
. . .
i n t e r f a c e s {

e t h e r n e t e t h 0 {
a d d r e s s 1 3 0 . 1 9 2 . 3 1 . 9 4
du p l ex a u t o
hw−i d 00 :0 c : 2 9 : 6 4 : 6 6 : 1 c
mtu 1500
s m p _ a f f i n i t y a u t o
speed a u t o

}
}
. . .
/ / End I n t e r f a c e L i s t

Listing 4.7 Excerpt of the Vyatta configuration file.

4.5.6 Testing results

Two metrics have been considered for evaluating the effectiveness of the proposed
solution, which are (i) the elapsed time for generating configuration files and (ii)
the reduction of complexity from a tenant prospective, which can be translated in
the size (i.e., verbosity) of the generated file compared to the corresponding YANG
source.

Starting with the first metric, Figure 4.5 plots the required time for generating the
configuration file versus the size of such file. We have performed multiple test runs
(i.e., about 100 executions per file dimension) for both Vyatta Core (square points in
figure) and Bind9 (circle points).

As show in the graphs, we have obtained satisfactory trends, because, as we
expect, the time required by ConfigTransl2File grows proportionally to the size of
the configuration file. This means that our solution is able to handle configurations

4.5 Implementation and evaluation 87

1 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

(k)bytes

(m
)s

ec
on

ds
Vyatta Core

Bind9

Fig. 4.5 Elapsed time for generating Vyatta Core and Bind9 configuration files, with 95%
confidential intervals.

with a growing complexity, without requiring an exponential time increase. This
is in line with the constraints of assuring a good experience to tenants. In addition
to the size of a configuration file, other metrics may be considered to evaluate the
complexity of a VNF configuration. The evaluation of many metrics is very useful
from a provider point of view, because it can help in selecting the most suitable
configuration method/API among the ones supported by a function. A metric that is
the most suitable to evaluate a configuration strategy, in fact, may not be appropriate
for another strategy (e.g., command priority may not be a relevant complexity
indicator for file-based configuration). We leave the evaluation of our approach with
other metrics as future work.

In addition, our tests demonstrate that, for real case scenarios, the time required to
obtain the configuration file is on the order of tens of milliseconds. This result is also
in line with the configuration times that are achieved with other agent-based solutions.
In particular, we have identified Ansible, as one possible solution used to compare
our approach. Ansible is based on agents that exploit the SSH protocol for their
interaction with the VNF, which is usually supported by most VNFs. Furthermore,
similarly to our approach, it avoids the installation of new agents in the VNF, hence
preserving the original network function image. Compared to the configuration
time needed by Ansible to push a configuration in both Bind9 and Vyatta, our
solution performs slightly slower, but it never exceeds 40% the value obtained by
Ansible, which is completely acceptable for humans who hardly notice this difference.

88 A Proposal for Seamless Configuration of VNFs

Con
f.

File
(1K

B)

Con
f.

File
(10

KB)

Con
f.

File
(20

KB)

Con
f.

File
(30

KB)

Con
f.

File
(40

KB)

Con
f.

File
(50

KB)

Con
f.

File
(60

KB)

Con
f.

File
(70

KB)

Con
f.

File
(80

KB)

Con
f.

File
(90

KB)

Con
f.

File
(10

0K
B)

0

20

40

60

80

100

120
(k

)b
yt

es

REST messages size
Configuration file size

Fig. 4.6 Bind9 use case: reduction of configuration complexity.

Furthermore this result has been obtained with proof-of-concept code, which can be
optimized in the future.

The two graphs, shown in Figure 4.5, report the 95% confidential interval and
show that our solution takes less than 30ms in average in both use cases. The
configuration time achieved by our prototype has a negligible impact on the total
deployment time, which is usually on the order of tens of seconds when virtual
machines have to be started. Hence, these results demonstrate that the introduction of
our solution in the CM does not increase the service provisioning time experienced
by tenants.

The second test suite aims at evaluating the reduction of complexity in configuring
networks from a tenant prospective, achieved thanks to our prototype. In particular
our solution allow the creation of YANG files in which only the main configuration
parameters are exported, such as policy rules in a firewall VNF, avoiding all the
details required by the specific configuration method and the possible syntactical
rules (and keywords) required by the VNF native configuration method (e.g., firewall
rule format, priority commands, special directives etc.).

As a metric to measure the complexity of the configuration, we used the size (in
bytes) of the configuration files generated by our tool (dark grey bars in Figures 4.6
and 4.7), which represent the complexity of the native configuration method of
the VNF. The above value has been compared with the size of the configuration

4.5 Implementation and evaluation 89

Con
f.

File
(1K

B)

Con
f.

File
(10

KB)

Con
f.

File
(20

KB)

Con
f.

File
(30

KB)

Con
f.

File
(40

KB)

Con
f.

File
(50

KB)

Con
f.

File
(60

KB)

Con
f.

File
(70

KB)

Con
f.

File
(80

KB)

Con
f.

File
(90

KB)

Con
f.

File
(10

0K
B)

0

20

40

60

80

100

120
(k

)b
yt

es

REST messages size
Configuration file size

Fig. 4.7 Vyatta use case: reduction of configuration complexity.

messages that have been generated to push the configuration in the CM through our
configuration REST APIs, which can be seen as the size of the same configuration
with our approach (light grey bars in Figures 4.6 and 4.7). In particular, Figure 4.6
shows the results achieved in the Bind9 case, while Figure 4.7 depicts the case of the
Vyatta Core router.

In the Bind9 case, the reduction of complexity, that is the difference between
the size of the configuration file and REST messages, grows linearly, suggesting
that tenants are facilitated in configuration phase. In the Vyatta case, the size of the
configuration file is approximately equal to the REST message size, hence suggesting
a similar complexity. However, it is worth noting that, with our approach, tenants
are relieved from the burden of having a deep knowledge of how to configure their
VNFs, since they must interact only with the CM, using a uniform configuration
model across all VNFs. In addition, this result must not be attributed to a possible
inefficiency of our solution as it is due to the differences existing between the two
VNFs: each VNF implementation has its own configuration peculiarities and one
function can be simpler than other in configuration phase. This result highlights
the importance of supporting multiple configuration strategies and, in turn, multiple
translators/gateways. For example, a configuration through the CLI may reduce
significantly the configuration complexity of the Vyatta case, which means that the
difference between the REST message payloads and the produced configuration is
more evident than the configuration through file. Supporting many translators, the

90 A Proposal for Seamless Configuration of VNFs

DCP may select the most suitable one for configuring a specific VNF instance, based
on their internal management policies and costs.

Concluding, our solution reduces the effort spent by tenants in configuring their
virtual services, with a negligible impact in terms of configuration time and, likely,
with a simplified configuration interface.

Chapter 5

Conclusion

It is argued that in the future Telecommunications infrastructures are likely to become
highly dynamic, flexible and programmable production environments capable of
providing any ICT services. Current OSS/BSS do not seem to cope with the require-
ments posed by this evolution: in fact, future operations will involve the management
and control of a myriad of software processes, rather than closed physical nodes.

Today most providers offer dynamic network services, where users can achieve a
certain degree of flexibility to cope with their needs. Users can build their own virtual
services, creating network connections and deploying their preferred VNFs/services.
Providers do not want to pose limitations also on VNF selection (i.e, they would
like to allow users to chose VNFs either from the catalogue offered by providers or
implemented by third-parties) and are looking for ways to enable further network
services (e.g., network verification).

In this thesis, we focus on different aspects of a network service life cycle:
we started from the anomaly analysis and reachability-checking in the chain-based
services to move toward the functional configuration of the under-deployment service
graph.

In particular, we started by presenting a solution to specify and verify the presence
of anomalies in a forwarding policy, before the policy rules are enforced by the SDN
Controller and installed into the network switches to create the desired service
graph. The proposed approach enables precise and unambiguous specifications of
policies and of related anomalies by using standard notations such as First Order
logic and Horn clauses. Through the application of already existing verification

92 Conclusion

engines, the approach allows a rigorous verification of the absence of anomalies and
the consequent guarantee that the verified set of policies is anomaly-free.

This work also fulfils the challenges of network verification in a SDN/NFV con-
text. We recall that providers need verification services with non complex modelling
approaches that are scalable and fast in order to be applied before deploying the
service graph. Our model, in fact, implements an early-verification approach since it
is able to check medium- and large-sized networks in reasonable verification times
from a VNF Orchestrator perspective.

Moreover, we achieve also high-level flexibility in network verification, because
providers can define their own sets of anomalies, checking a pre-defined set of
anomalies in every kind of network topology (e.g., bad policy rule specification or
forwarding loops) and then assuring a minimum level of correctness. This approach
could also become a wider, and more ambitious contribution. Since policy-based
systems are largely widespread in data protection, filtering, access control, and many
other policy domains, a useful contribution can be to extend this verification model in
order to encompass different policy domains. An extended verification model could
verify that a domain-specific policy is consistent also in the presence of policies
belonging to other domains.

For what concerns reachability analysis in service graphs, we presented our initial
contribution related to the verification process, which is one of the most important
pillars in the SP-DevOps feedback cycle and a key enabler to support envisioned
changes in the way providers deploy and operate new network services.

After generalizing the applicability of a state of the art approach to the verification
of complex service graphs, we presented and discussed a couple of models we
developed to validate our key ideas. Given the promising evaluation results achieved,
we will address more efforts to some open topics in the VNF verification area such
as scalability issues in verifying complex service graphs.

Other aspects can be investigated to address the limitations of the current approa-
ches to check service graphs. For example, one limitation of the existing approaches
is their possible low exploitation in real system deployments due to the complexity
of the adopted modelling techniques (e.g., FOL in Z3). These are quite far from the
traditional programming languages and paradigms developers know and use, with
consequent high “barriers to entry”.

93

Other solutions are moving in this direction like Symnet [45], which actually
offers a more friendly imperative language for expressing the data plane processing
operations. However, this is still far from the programming languages that are part
of the common background of VNF developers. In this sense, for example, the
definition of a Java-like modelling language might be of great importance for a real
exploitation of these verification techniques.

A second limitation of all current verification techniques is that they are not well
integrated into the orchestration process, but they act as a post-processing step after
the orchestration process. In this way, if errors are detected, service deployment fails
because the orchestrator does not have clues about how to fix errors.

A possible progress beyond the current state of the art will be the development of
formal approaches that, while providing final assurance levels similar to the ones of
the state-of-the-art modelling and verification techniques, are incorporated into the
service orchestration process, which in this way produces network configurations
that, once deployed into the underlying infrastructure, are formally guaranteed to
satisfy the required policies.

Finally, we have investigated the weaknesses of the current Cloud Managers used
by providers in order to offer a solution for configuring the network functions using
a simple and uniform configuration method, without at the same time forcing the
provider to deploy additional per-VNF software modules or the VNF developer to
adapt its code to the configuration tools chosen by the provider.

We have proposed a model-based approach to solve the above problem, which
enables to configure VNFs in terms of functional parameters (e.g., IP address for
a router and policy rules for a firewall), bringing multiple advantages for all the
actors involved (i.e., provider, VNF developer and tenant). The cost and complexity
reduction of integrating further VNFs is an example of a possible advantage for the
provider and the VNF developer. While from the tenant perspective, our solution
does not impact the service-provisioning time and simplifies the tenants interaction
with the provider, because tenants are relieved from the burden of having a deep
knowledge of how to configure each of their functions.

Possible future extensions could include further services provided by DCPs for
verifying the correctness of the configuration generated and validating the correct
integration of the desired configuration in the NFV architecture.

References

[1] Hyojoon Kim and Nick Feamster. Improving network management with
software defined networking. IEEE Communications Magazine, 51(2):114–
119, feb 2013.

[2] Joel Halpern and Carlos Pignataro. Service function chaining (sfc) architecture.
RFC 7665, RFC Editor, oct 2015. http://www.rfc-editor.org/rfc/rfc7665.txt.

[3] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-
son, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling
innovation in campus networks. ACM SIGCOMM Computer Communication
Review, 38(2):69–74, mar 2008.

[4] Joel M. Halpern and Carlos Pignataro. Service function chaining (sfc) architec-
ture. RFC 7665, RFC Editor, oct 2015. http://www.ietf.org/rfc/rfc7665.txt.

[5] Robert Soulé, Shrutarshi Basu, Parisa Jalili Marandi, Fernando Pedone, Robert
Kleinberg, Emin Gun Sirer, and Nate Foster. Merlin: A language for provisi-
oning network resources. In Proceedings of the 10th ACM International on
Conference on emerging Networking Experiments and Technologies (CoNEXT
'14), pages 213–226. ACM, nov 2014.

[6] Mark Reitblatt, Marco Canini, Arjun Guha, and Nate Foster. FatTire: decla-
rative fault tolerance for software-defined networks. In Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined networ-
king (HotSDN 2013), pages 109–114. ACM, aug 2013.

[7] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brig-
hten Godfrey. Veriflow: Verifying network-wide invariants in real time. In
Proceedings of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13), Lombard, IL, apr 2013. USENIX.

[8] Ehab Al-Shaer and Saeed Al-Haj. FlowChecker: Configuration analysis and
verification of federated openflow infrastructures. In Proceedings of the 3rd
ACM workshop on Assurable and usable security configuration (SafeConfig
2010), pages 37–44. ACM, oct 2010.

[9] Roberto Bifulco and Fabian Schneider. Openflow rules interactions: definition
and detection. In Proceedings of the IEEE Conference on SDN forthe Future
Networks and Services (SDN4FNS 2013), pages 1–6. IEEE, nov 2013.

http://www.rfc-editor.org/rfc/rfc7665.txt
http://www.ietf.org/rfc/rfc7665.txt

96 References

[10] Ehab S Al-Shaer and Hazem H Hamed. Modeling and Management of Firewall
Policies. IEEE Transactions on Network and Service Management, 1(1):2–10,
apr 2004.

[11] Bruno Lopes Alcantara Batista, Gustavo Augusto Lima de Campos, and Mar-
cial P Fernandez. Flow-based conflict detection in openflow networks using
first-order logic. In Proceedings of the IEEE Symposium on Computers and
Communication (ISCC 2014), pages 1–6. IEEE, mar 2014.

[12] Alfred Horn. On sentences which are true of direct unions of algebras. Journal
of Symbolic Logic, 16(1):14–21, 1951.

[13] Michal Bali. Drools JBoss Rules 5.0 Developer’s Guide. Packt Publishing Ltd,
2009.

[14] Nicolae Paladi. Towards secure sdn policy management. In Proceedings of
the IEEE/ACM 8th International Conference on Utility and Cloud Computing
(UCC 2015), pages 607–611. IEEE, dec 2015.

[15] Marco Canini, Daniele Venzano, Peter Perešíni, Dejan Kostić, and Jennifer
Rexford. A nice way to test openflow applications. In Proceedings of the
9th USENIX Conference on Networked Systems Design and Implementation
(NSDI’12), pages 10–10. USENIX Association, apr 2012.

[16] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, Philip Brig-
hten Godfrey, and Samuel Talmadge King. Debugging the data plane with
anteater. ACM SIGCOMM Computer Communication Review, 41(4):290–301,
oct 2011.

[17] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick
McKeown, and Scott Whyte. Real time network policy checking using header
space analysis. In Proceedings of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), pages 99–112, Lombard, IL,
apr 2013. USENIX.

[18] Peyman Kazemian, George Varghese, and Nick McKeown. Header space
analysis: Static checking for networks. In Proceedings of the 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 12),
pages 113–126, San Jose, CA, apr 2012. USENIX.

[19] Robert Soulé, Shrutarshi Basu, Robert Kleinberg, Emin Gün Sirer, and Nate
Foster. Managing the network with merlin. In Proceedings of the 12th ACM
Workshop on Hot Topics in Networks (HotSDN 2013), page 24. ACM, nov
2013.

[20] Serena Spinoso, Matteo Virgilio, Wolfgang John, Antonio Manzalini, Guido
Marchetto, and Riccardo Sisto. Formal verification of virtual network function
graphs in an sp-devops context. In Proceedings of the 4th European Conference
on Service Oriented and Cloud Computing (ESOCC 2015), pages 253–262.
Springer International Publishing, sep 2015.

References 97

[21] Matteo Virgilio. Study and analysis of innovative network protocols and
architectures. PhD thesis, Politecnico di Torino, 2016.

[22] Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong, Mabry Tyson,
and Guofei Gu. A security enforcement kernel for openflow networks. In
Proceedings of the 1th ACM SIGCOMM workshop on Hot topics in software
defined networking (HotSDN ’12), pages 121–126. ACM, aug 2012.

[23] Sooel Son, Seungwon Shin, Vinod Yegneswaran, Phillip A. Porras, and Guofei
Gu. Model checking invariant security properties in openflow. In Proceedings
of IEEE International Conference on Communications ICC, pages 1974–1979.
IEEE, jun 2013.

[24] Aurojit Panda, Ori Lahav, Katerina J. Argyraki, Mooly Sagiv, and Scott Shen-
ker. Verifying isolation properties in the presence of middleboxes. CoRR,
abs/1409.7687, 2014.

[25] Sanjeev Sharma and Bernie Coyne. DevOps For Dummies. Limited IBM
Edition’ book, oct 2013.

[26] Wolfgang John and Catalin Meirosu. Unify deliverable d4.1: Initial requi-
rements for the sp-devops concept, universal node capabilities and proposed
tools, 2014. https://www.fp7-unify.eu/index.php/results.html#Deliverables.

[27] Wolfgang John, Konstantinos Pentikousis, George Agapiou, Eduardo Jacob,
Mario Kind, Antonio Manzalini, Fulvio Risso, Dimitri Staessens, Rebecca
Steinert, and Catalin Meirosu. Research directions in network service chaining.
In Proceedings of the IEEE Conference on SDN for the Future Networks and
Services (SDN4FNS 2013), pages 1–7. IEEE, nov 2013.

[28] Catalin Meirosu. Unify deliverable m4.1: Sp-devops concept evolution and
initial plans for prototyping, 2014. https://www.fp7-unify.eu/index.php/results.
html#Deliverables.

[29] Raj Jain and Subharthi Paul. Network virtualization and software defined
networking for cloud computing: a survey. Communications Magazine, IEEE,
51(11):24–31, nov 2013.

[30] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
Proceedings of the International conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 337–340. Springer-Verlag, mar
2008.

[31] Per Danielsson, Jan Ekman, András Gulyás, Per Kreuger, Shaoteng Liu, Guido
Marchetto, Felicián Németh, Bertrand Pechenot, István Pelle, Sachin Sharma,
Riccardo Sisto, Pontus Sköldström, Serena Spinoso, Rebecca Steinert, and
Matteo Virgilio. Unify deliverable d4.4: Public devopspro code base, 2016.
https://www.fp7-unify.eu/index.php/results.html#Deliverables.

https://www.fp7-unify.eu/index.php/results.html#Deliverables
https://www.fp7-unify.eu/index.php/results.html#Deliverables
https://www.fp7-unify.eu/index.php/results.html#Deliverables
https://www.fp7-unify.eu/index.php/results.html#Deliverables

98 References

[32] Attila Csoma, Balázs Sonkoly, Levente Csikor, Felicián Németh, Andràs Gu-
lyas, Wouter Tavernier, and Sahel Sahhaf. Escape: Extensible service chain
prototyping environment using mininet, click, netconf and pox. ACM SIG-
COMM Computer Communication Review, 44(4):125–126, aug 2014.

[33] Evangelos Haleplidis, Jamal Hadi Salim, Spyros Denazis, and Odysseas Koufo-
pavlou. Towards a network abstraction model for SDN. Journal of Network
and Systems Management, 23(2):309–327, jul 2015.

[34] Serena Spinoso, Marco Leogrande, Fulvio Risso, Sushil Singh, and Riccardo
Sisto. Automatic configuration of opaque network functions in CMS. In
Proceedings of the IEEE/ACM 7th International Conference on Utility and
Cloud Computing (UCC ’14), pages 750–755. IEEE, dec 2014.

[35] Jeffrey D Case, Mark Fedor, Martin L Schoffstall, and James Davin. A Simple
Network Management Protocol (SNMP). RFC 6241, RFC Editor, may 1990.
http://www.ietf.org/rfc/rfc1157.txt.

[36] Rob Enns, Martin Bjorklund, Jürgen Schöenwäelder, and Andy Ed. Bierman.
Network Configuration Protocol (NETCONF). RFC 6241, RFC Editor, jun
2011. http://www.rfc-editor.org/rfc/rfc6241.txt.

[37] Hui Xu and Debao Xiao. Data modeling for netconf-based network manage-
ment: Xml schema or yang. In Proceedings of the 11th IEEE International
Conference on Communication Technology (ICCT 2008), pages 561–564. IEEE,
nov 2008.

[38] Lily Yang, Ram Dantu, T Anderson, and Ram Gopal. Forwarding and Control
Element Separation (ForCES) Framework. RFC 3746, RFC Editor, apr 204.
http://www.rfc-editor.org/rfc/rfc3746.txt.

[39] Evangelos Haleplidis, Spyros Denazis, Odysseas Koufopavlou, Diego Lopez,
Damascene Joachimpillai, J Martin, Jamal Hadi Salim, and Kostas Pentikousis.
ForCES applicability to SDN-enhanced NFV. In Proceedings of the 3rd
European Workshop on Software Defined Networks (EWSDN 2014), pages
43–48. IEEE, sep 2014.

[40] Cataldo Basile, Antonio Lioy, Christin Pitscheider, Fulvio Valenza, and Marco
Vallini. A novel approach for integrating security policy enforcement with
dynamic network virtualization. In Proceedings of the 1st IEEE Conference on
Network Softwarization (NetSoft 2015), pages 1–5. IEEE, April 2015.

[41] Wenyu Shen, Masahiro Yoshida, Kenji Minato, and Wataru Imajuku. vConduc-
tor: An enabler for achieving virtual network integration as a service. IEEE
Communications Magazine, 53(2):116–124, feb 2015.

[42] András Császár, Wolfgang John, Mario Kind, Catalin Meirosu, Gergely Pon-
grácz, Dimitri Staessens, Attila Takács, and Fritz-Joachim Westphal. Unifying
Cloud and Carrier Network: EU FP7 Project UNIFY. In Proceedings of the 6th

http://www.ietf.org/rfc/rfc1157.txt
http://www.rfc-editor.org/rfc/rfc6241.txt
http://www.rfc-editor.org/rfc/rfc3746.txt

References 99

IEEE/ACM International Conference on Utility and Cloud Computing (UCC
’13), pages 452–457. IEEE, dec 2013.

[43] Martin Bjorklund. YANG - A data modeling language for the Network
Configuration Protocol (NETCONF). RFC 6020, RFC Editor, oct 2010.
http://www.rfc-editor.org/rfc/rfc6020.txt.

[44] Jürgen Schoenwaelder. Common YANG Data Type. RFC 6991, RFC Editor,
jul 2013. http://www.rfc-editor.org/rfc/rfc6991.txt.

[45] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. Symnet:
scalable symbolic execution for modern networks. In Proceedings of the ACM
Conference on SIGCOMM (SIGCOMM '16), pages 314–327. ACM, aug 2016.

http://www.rfc-editor.org/rfc/rfc6020.txt
http://www.rfc-editor.org/rfc/rfc6991.txt

