
SDN-Actors: Modeling and Verification of
SDN Programs?
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Abstract. Software-Defined Networking (SDN) is a recent networking
paradigm that has become increasingly popular in the last decade. It
gives unprecedented control over the global behavior of the network and
provides a new opportunity for formal methods. Much work has ap-
peared in the last few years on providing bridges between SDN and
verification. This paper advances this research line and provides a link
between SDN and traditional work on formal methods for verification
of distributed software—actor-based modelling. We show how SDN pro-
grams can be seamlessly modelled using actors, and thus existing ad-
vanced model checking techniques developed for actors can be directly
applied to verify a range of properties of SDN networks, including con-
sistency of flow tables, violation of safety policies, and forwarding loops.

1 Introduction

SDN is a novel networking architecture which is now widely used in industry,
with many companies –such as Google and Facebook– using SDN to control their
backbone networks and datacenters. The core principle in SDN is the separation
of the control and data planes –there is a centralized controller which operates a
collection of distributed interconnected switches. The controller can dynamically
update switches’ policies depending on the observed flow of packets, which is a
simple but powerful way to react to unexpected events in the network. Network
verification has become increasingly popular since SDN was introduced, because
in this new paradigm the amount of detailed information available about network
events is rich enough and can be centrally gathered to check for properties, both
statically and dynamically, of the network behavior. Moreover, the controller
itself is a program which can be analyzed. The distributed and concurrent nature
of network behavior makes the verification tasks challenging and has inspired
much research in the verification and formal methods communities.
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This paper provides a new bridge between SDN and a strand of formal meth-
ods –actor-based modeling [2], which is a framework that was developed to an-
alyze concurrent systems. Actors form the basic unit of computation in such
framework, are equipped with a private memory, and can interact with oth-
ers through asynchronous messages. This setup enables reasoning about local
properties without knowledge of the whole program, which gives rise to more
compositional and thus scalable methods. Actors provide the foundations for
the concurrency model of languages used in industry, e.g., Erlang and Scala,
and libraries used in mainstream languages, e.g., Akka.

Contributions. The main contributions of this paper are:

1. SDN-Actors: An encoding of all components of an SDN network into the
actor-based language ABS [13]. One of the most challenging aspects to en-
code were the OpenFlow barrier messages, special instructions that the con-
troller can use to force switches to execute all their queued tasks.

2. A soundness proof of the encoding (and implementation) of barriers (Th. 2).
3. Application of (context-sensitive) dynamic partial-order reduction (DPOR)

techniques to model check SDN programs. We have implemented this model
checker on top of the SYCO tool [4] for actors.

4. Several case studies of SDN and properties to illustrate the versatility and
potential of the approach. We were able to find bugs related to programming
errors in the controller, forwarding loops, and violation of safety policies.

Though we did not explore it in this paper, the encoding we provide opens the
door to apply a range of techniques other than model checking. For instance,
static analysis, runtime monitoring or simulation of network behavior can be
done now using the ABS toolsuite [1]. Other tools and methods for verification of
message-passing and concurrent-object systems could be also easily adapted [6,
8,15,16]. In addition, because the encoding is not very far from the original flow
tables, both model extraction from existing network code and code generation
from an actor model should be achievable with a small extension of the tool.

2 Overview

This section provides an overview of the contents of the paper through an ex-
tended example, that we also use to introduce some basic concepts and notations.

2.1 Concurrency errors in SDN networks

SDN is a networking architecture where a central software controller can dynam-
ically change how network switches forward packets by monitoring the traffic.
Switches can be connected to hosts and to other switches via bidirectional chan-
nels that may reorder packets. Each switch has a flow table, that is a collection of
guarded forwarding rules to determine the route of incoming packets. Whenever
a switch receives a packet, it checks if one of the flow table rules applies. If no
rule applies, the switch sends a message to the controller via a dedicated link,
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Fig. 1. Example SDN load-balancer. On the left: structure of the SDN. On the right:
messages exchanged in a possible execution of a naive controller program. Coloured
arrows stand for control messages to switches, indicating which flow rule to install
(colours specify the link to be used for the forwarding). Grey boxes and arrows among
them represent packet forwardings. Dashed arrows indicate messages to the controller.

and the packet is buffered until instructions arrive. Depending on its policy, the
controller instructs the switch, and possibly other switches in the network, on
how to update their flow tables. Such control messages between the controller
and the switches can be processed in arbitrary order.

We now show how a simple load-balancer can be implemented in SDN (exam-
ple taken from [11]) and how potential bugs can easily arise due to the concurrent
behavior and asynchrony of message passing. Suppose we want to balance the
traffic to a server by using two replicas R1 and R2 to which the controller alter-
nates the traffic in a round-robin fashion. The structure of the SDN is shown in
Fig. 1, on the left: H0 is any host that wants to communicate with the server
and S1, S2 and S3 are switches (numbers on endpoints stand for port numbers).

Even in this simple network, an incorrect implementation of the controller
can lead to serious problems. In Fig. 1, on the right, we show an execution of
a naive controller, which simply instructs switches to forward packets along the
shortest path to the chosen replica. This implementation ignores the potential
concurrency in actions taken by switches and controller, leading to a forwarding
loop between S1 and S2. In the first round, when S1 queries the controller, R1 is
chosen. The figure shows S1 forwarding the packet to S2 before the end of the first
round, i.e., before a rule is installed on S2 (green arrow). This causes S2 to query
the controller, which triggers the second round in which the controller chooses
R2. Thus, it sends instructions to install rules on S2, S1 and S3 to forward the
packet to S1, S3 and R2, resp. When the controller rules arrive at S1, it will have
two contradictory instructions, telling to forward the packet either to S2 or to
S3. In the former, the loop at the bottom of the figure occurs. This issue can be
avoided if the implementation uses barriers –the controller will then guarantee
that S2 receives and processes control messages before taking any other action.
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2.2 Actor-based modeling of SDN networks

We now explain how we can automatically detect the above problem using actors
and model checking. We use the object-oriented actor language ABS [1, 13],
where each actor type is specified as a class, consisting of a set of fields and
methods. Actors are instances of actor classes. For instance, the instructions:
Controller ctrl = new Controller(); Switch s1 = new Switch(”S1”,ctrl); Host h0
= new Host(”H0”,s1,0); create three actors: a controller ctrl; a switch s1 with
name "S1" and a reference to ctrl; a host h0, with name "H0", connected to the
switch s1 via the port 0. The SDN in Fig. 1 can be modeled using one actor per
component (additional data structures for network links will be shown later).

The execution model of actors is asynchronous. Each actor can be thought
of as a processor, with a queue of pending tasks and a local memory. Actors are
executed in parallel and, at each actor, one task is nondeterministically selected
among all the pending ones and executed. The syntax Fut<type> f=a!m(x)
spawns an asynchronous task m(x), that is added to the queue of pending tasks
of a, type is the type of the data returned by m or Unit if no data is returned. This
task consists in executing the method m of a with arguments x. The variable f is
a future variable [9] that will allow us to check if such task has been completed.
Synchronous calls are written a.m(x), we omit a if the target actor is this.

A partial trace of execution of our SDN actor model computed by the model
checker is (the code that the tasks below execute will be given in Sec. 3):

1: h0!sendIn
1−→ 2: s1!switchHandlePacket

2−→ 3: ctrl!controlHandleMessage

3−→ 4: s1!switchHandleMessage(s2), 5: s1!sendOut, 6: s2!switchHandleMessage(r1)

Intuitively, a packet sending (sendIn) is executed on h0 (label 1), which causes
the packet to be forwarded to the switch s1 (2), then s1 sends a control message
to the controller (3). Finally, the controller spawns the three tasks in the last
state (parameters tell where to forward the packet). When executed, these tasks
will produce the messages in Fig. 1 with the same numbers. Their execution
order is arbitrary: if it is the one shown in Fig. 1, the execution trace may lead
to a state exhibiting a forwarding cycle between s1 and s2. As we will show later,
this situation can be easily detected by our model checker via an exploration of
a reduced execution tree, which avoids equivalent executions (Sec. 4).

The ABS language provides a convenient await primitive that will be used
to model barriers and to rule out the behavior described above. The instruction
await f? can be used to synchronize with the termination of the task associated
to the future variable f, by releasing the processor (so that another task can
be scheduled) if the task is not finished. Once the awaited task is finished, the
suspended task can resume. The await can be used also with boolean conditions
await b? to suspend the execution of the current active task until condition b
holds. The formal semantics of the language is included in Appendix A.
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3 SDN-Actors: an actor based encoding of SDN programs

We present the concept of SDN-Actor in four steps: Sec. 3.1 describes the cre-
ation and initialization of the actors according to the topology. Sec. 3.2 provides
the encoding of the operations and communication for Switch and Host actors.
Sec. 3.3 proposes the encoding of the controller, and Sec. 3.4 the extension to
implement barriers. Altogether, our encoding provides an actor-based semantics
foundation of SDN networks that follow the OpenFlow specification [18].

3.1 Network topology

The topology can be given as a relation with two types of links:

– SHlink(s,h,o): switch s is connected to host h through the port o
– SSlink(s1,i1,s2,i2): switch s1 is connected via port i1 to port i2 of switch s2

from which we automatically generate the initial configuration as follows.

Definition 1 (initial configuration). Let S and H be, respectively, the set of
different switch and host identifiers available in the link relations that define the
network topology. The initial configuration (method main) is defined as:

– We create a controller actor Controller ctrl=new Controller()
– For each sid∈S, we create an actor Switch s=new Switch(sid,ctrl)
– For each hid∈H, we create an actor Host h=new Host(hid,s,o) where s is the

reference to the switch actor, o the port identifier, that hid is connected to.
– The data structures srefs and hrefs store, resp., the relations between identifier

in the topology and reference in the program, for all switches in S and hosts
in H.

– The data structure ntw contains the link relations in the network topology.
– The synchronous call ctrl.addConfig(srefs,hrefs,ntw) initializes in the controller

the topology relations and the references to switches and hosts s.t. the con-
troller can send control messages to redirect the traffic to the involved links.

Example 1. By applying Def. 1 to the topology in Fig. 1, given as the rela-
tion: SHlink(S1, H0, 0), SHlink(S2, R1, 0), SHlink(S3, R2, 0), SSlink(S1, 1, S2, 1),

SSlink(S1, 2, S3, 1), we obtain the following initial configuration which consti-
tutes the main method from which the execution starts:

1 main() { Controller ctrl = new Controller(); Switch s1 = new Switch("S1",ctrl);
2 Switch s2 = new Switch("S2",ctrl); Switch s3 = new Switch("S3",ctrl);
3 Host h0 = new Host("H0",s1,0); Host r1 = new Host("R1",s2,0);
4 Host r2 = new Host("R2",s3,0);
5 Map<SwitchId,Switch> srefs = {"S1":s1, "S2":s2, "S3":s3};
6 Map<HostId,Host> hrefs = {"H0":h0, "R1":r1, "R2":r2};
7 List<Link> ntw = [SHLink("S1","H0",0), SSLink("S1",1,"S2",1),..];
8 ctrl.addConfig(srefs,hrefs,ntw); }

The data structures srefs and hrefs are implemented using maps, and the network
ntw as a heterogeneous list. The use of data structures is nevertheless orthogonal
to the encoding as actors. We just assume standard functions to create, initialize,
access them (like getters, put, lookup, etc.) that will appear in italics in the code.
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9 type SwitchId=... type HostId=... type PortId=... type PacketId=...
10 type PacketH=... type Packet=... type Action=... type Link=...
11 type MatchF=(PacketH,PortId);

12 class Host(HostId hid, Switch s, PortId o) {
13 Unit sendIn(Packet p){ s!switchHandlePacket(p,o);}
14 Unit hostHandlePacket(Packet p){ / ∗ output packet ∗ /}
15 }
16 class Switch(SwitchId sid, Controller ctrl) {
17 Map<MatchF,Action> flowT={};
18 Map<PacketId,(Packet,PortId)> buffer={};
19 Unit switchHandlePacket(Packet p, PortId o){
20 Action l=lookup(flowT,(getHeader(p),o));
21 if (isSwitch(l)) getSwitch(l)!switchHandlePacket(p,getPort(l));
22 else if (isHost(l)) getHost(l)!hostHandlePacket(p);
23 else { buffer=put(buffer,getId(p),(p,o));
24 ctrl!controlHandleMessage(sid,o,getId(p),getHeader(p)); }}
25 Unit sendOut(PacketId pi){
26 Packet p; PortId o; (p,o)=lookup(buffer,pi);
27 Action l=lookup(flowT,(getHeader(p),o));
28 if (isSwitch(l)) getSwitch(l)!switchHandlePacket(p,getPort(l));
29 else if (isHost(l)) getHost(l)!hostHandlePacket(p);
30 / ∗ else packet is dropped ∗ /}
31 Unit switchHandleMessage(MatchF m, Action a){ flowT=put(flowT,m,a);}
32 }

Fig. 2. Type declarations (top) and actor-based host and switch classes (bottom)

3.2 The switch and host classes

Fig. 2 presents the actor-based Switch and Host classes. We include at the top
some type declarations that are assumed and must be implemented (such as iden-
tifiers, packets and their headers, etc.). There are two main data structures that
are implemented in more detail to make explicit the information they contain:

– the buffer at Line 18 (L18 for short) is a map that must contain pairs of
packet and input port indexed by their PacketId.

– the flow table flowT (L17) is implemented as a map indexed by the so-called
match field [18] represented by type MatchF in Fig. 2. The match field is com-
posed by information stored in the header of a Packet (retrieved by function
getHeader) and the input port. For a given matching, the flow table con-
tains the Action the switch has to perform upon the reception of the Packet.
An action l can be of three types: i) send the packet to a host h, ii) send the
packet to the port o of a switch s, iii) drop the packet. Given an action l,
function isSwitch resp. isHost succeeds if the action is of type ii) resp. i),
and functions getSwitch, getHost and getPort return the s, h and o resp.
The full implementation must allow duplicate entries (non-deterministically
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selected), and the use of wildcards in the match fields, but these aspects are
unrelated to the encoding of SDN actors, and skipped for simplicity.

Upon creation, hosts receive their identifier and a reference to the switch and
the port identifier they are connected to (defined as class parameters that are
initialized at the actor creation). Their method sendIn is used to send a packet
to the switch, and method hostHandlePacket to receive a packet from the switch.
Switches receive upon creation their identifier and a reference to the controller.
They have as additional fields: (a) the flow table flowT (as described above) in
which they store the actions to take upon receiving each kind of package, and
(b) a buffer in which they store packets that are waiting for a response from the
controller. Switches can perform three operations: (1) switchHandlePacket receives
a packet, looks up in the flow table the action to be made L20, and, if there is
an entry for the packet in the table, it asynchronously makes the corresponding
action (either send it to a host L22 or to a switch L21). Otherwise, it sends
a controlHandleMessage request and puts the packet and input port in the buffer
(L23 and L24) until it can be handled later upon receipt of a sendOut; (2) sendOut

receives a packet identifier that corresponds to a waiting packet, retrieves it
from the buffer (L26), looks up the action l to be performed in the flow table,
and makes the corresponding asynchronous call (as in switchHandlePacket); (3)
switchHandleMessage corresponds to a message received from the controller with
an instruction to update the flow table. Other switch operations like forward
packet, that is similar to sendOut but directly tells the switch the action to be
performed, or flood, that sends a packet through all ports except the input port,
can be encoded similarly and are used in the experiments in Sec. 5.

Example 2. In main, after L8, we add h0!sendIn(p), where p is a packet to be sent
to the IP address of the replica servers (the information on the destination is
part of the packet header). This is the only asynchronous task that main spawns.
Its execution in turn spawns a new task s1!switchHandlePacket(p,0) at L13, that
does not find an entry in flowT at L20 and spawns a controlHandleMessage task on
the controller at L24, whose code is presented in the next section.

3.3 The controller

After creating the controller actor, the method addConfig is invoked synchronously
to initialize the references to switches and hosts and set up the initial network
topology (see L8). A simple controller is presented in Fig. 3, removing the blue
lines 35, 36, 41, 44, 46, 48, 49 which provide the implementation of barriers.
When a switch asynchronously invokes controlHandleMessage, the controller ap-
plies the current policy—applyPolicy must be implemented for each different type
of controller. The implementation of the policy typically requires the definition of
new data structures in the controller to store additional information (see Sec. 5).
When applying the policy, we obtain a list of switch identifiers and correspond-
ing actions to be applied to them. The while loop at L42 in controlHandleMessage

asynchronously invokes switchHandleMessage at L45 on each of the switches in
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33 class Controller() {
34 Map<SwitchId,Switch> srefs={}; Map<HostId,Host> href={}; List<Link> ntw=[];
35 Map<SwitchId,List<Fut<Unit>> barrierMap={};
36 Set<SwitchId> barrierOn = ∅;
37 Unit addConfig(Map<SwitchId,Switch> sr, Map<HostId,Host> hr, List<Link> n){
38 / ∗ references to switches and hosts and network topology initialized ∗ / }
39 Unit controlHandleMessage(SwitchId sid, PortId o, PacketId p, PacketH h){
40 List<(SwitchId,MatchF,Action)> l=applyPolicy(sid,o,h);
41 List<SwitchId> ls = [];
42 while (not(isEmpty(l))) {
43 SwitchId s1; Action a1; MatchF m1; (s1,m1,a1)=head(l);
44 barrierWait(s1);
45 Fut<Unit> f=lookup(srefs,s1)!switchHandleMessage(m1,a1);
46 barrierMap=putAdd(barrierMap,s1,f); ls = add(ls,s1);
47 l=tail(l);}
48 while (not(isEmpty(ls))) {barrierRequest(head(ls)); ls=tail(ls);}
49 barrierWait(sid);
50 lookup(srefs,sid)!sendOut(p);
51 }
52 List<(SwitchId,MatchF,Action)> applyPolicy(SwitchId sid, PortId o, PacketH h) {
53 / ∗ implementation of specific policy ∗ /}
54 }

Fig. 3. Controller class w/o barriers in black (w/ barriers extended in blue)

the list, and passes as parameter the corresponding action to be applied for the
given match entry. Finally, it notifies at L50 the switch from which the packet
came that the packet can already be sent out. More sophisticated controllers
that build upon this encoding are described in Sec. 5.

Example 3. In the example, applyPolicy corresponds to the load-balancer de-
scribed in Sec. 2, which directs external requests to a chosen replica in a round-
robin fashion. For the call applyPolicy(s1,0,h), it chooses r1 and thus, it returns
in L40 two actions: (s1→s2), (s2→r1), i.e., one action to install in s1 the rule to
send the packet to s2, and the second to install in s2 the rule to send it to r1.
For simplicity, we assume that the Action just contains the location to which the
packet has to be sent (without including the port). The while loop thus spawns
two asynchronous calls, s1!switchHandleMessage(m1,s2) and s2!switchHandleMessage

(m1,r1). Besides, it sends a s1!sendOut(p) in L50. Several problems may arise in
this implementation. One problem, as explained in Sec. 2, is that the packet is
sent from s1 to s2 before the control message is processed by s2. Then, s2 gets the
packet and it does not find any matching rule, thus it sends a controlHandleMessage

to the controller. Applying the above policy, the controller chooses now as replica
r2 and returns the actions: (s2→s1), (s1→s3), (s3→r2), i.e., the packet should be
sent to r2 by first sending from s2 to s1 (first action), and so on. This might
create the circularity depicted in Fig. 1.
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55 Unit barrierWait (SwitchId sid){
56 await not(contains(barrierOn,sid))?;
57 }
58 Unit barrierRequest (SwitchId sid){
59 barrierOn=add(barrierOn,sid);
60 List<Fut<Unit>> futSid=lookup(barrierMap,sid);
61 while (not(isEmpty(futSid)) {
62 Fut<Unit> fi=head(futSid);
63 await fi?;
64 futSid=tail(futSid); }
65 barrierOn=delete(barrierOn,sid);
66 }

Fig. 4. Implementation of barriers (part of class Controller)

The following theorem ensures the soundness of our modeling. Essentially we
guarantee that, for a given SDN network that follows the OpenFlow specification,
any execution in the network has an equivalent execution in the SDN-Actor
model. An execution in the network is characterized by the messages in the
queues of the switches, hosts, and controller and the state of their data structures.
An equivalent execution in the model will thus ensure the same messages in the
actors queues and the same state in actors data structures.

Theorem 1 (soundness). Given a SDN network N , consider its SDN-Actor
model Na with an initial configuration main obtained by Def. 1, and the Switch,
Host and Controller classes in Figs. 2 and 3. Then, for each execution in N , there
exists an equivalent execution trace in Na using the semantics of App. A.

3.4 Barriers

Barriers [18] have been designed to force a switch to handle previous control
messages, and thus avoid problems such as the one described above.

Definition 2 (OF barrier). Following OpenFlow [18], upon receipt of a bar-
rier message, the switch must finish processing all previously-received controller
messages, before executing any messages beyond the barrier message.

Figs. 3 and 4 show our modeling that intuitively consists in the controller not
sending further messages to any switch on which a barrier has been activated,
until this switch acknowledges that all previous control messages have been al-
ready processed. The main points in the implementation are: (1) the controller
creates a future variable at L45 for every asynchronous task that it posts on all
switches; (2) it keeps in barrierMap the list of future variables (not yet acknowl-
edged) for each of the switches (putAdd in L46 adds the future variable to the
list indexed by s1 in the map); (3) it keeps in barrierOn the set of switches with
an active barrier; (4) a barrier on a switch consists in the controller awaiting
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on the list of future variables that the switch needs to acknowledge to ensure
that its control messages have already been processed (method barrierRequest);
(5) all control messages must be now preceded by an invocation to barrierWait

that checks if the corresponding switch has an active barrier, L56. This is be-
cause while suspended in a barrier, the controller can start to process another
controlHandleMessage unrelated to the previous one, but which affects (some of)
the same switches for which a barrier was set. So, we cannot send messages to
them until their barriers are set to off. Note that this is not a restriction on the
type of controllers we model, but rather an effective way to encode barriers using
actors and await instructions that ensures the behaviour of OpenFlow barriers.

Theorem 2 (soundness of barriers). Methods barrierRequest and barrierWait

provide a sound encoding of the OF barrier messages in Def. 2.

4 DPOR-based model checking of SDN-Actors

Model checking tools deal with a combinatorial blow-up of the state space (a.k.a.
the state space problem) that must be faced to solve real-world problems. As for
model checking SDN programs, the problem is exacerbated because of the con-
current and distributed nature of networks: all network components (switches,
hosts, controllers) are distributed nodes that run in parallel and whose con-
current tasks can interact. As we have seen, a controller message sent from a
switch can change the state of another switch, and affect the route of an in-
coming packet. Thus, a model checker needs to explore all possible reorderings
of dependent tasks (i.e., those whose execution might interfere with each other)
leading to a huge number of possible executions even for networks with few nodes
and few packets. Besides, the space is unbounded because hosts may generate
unboundedly many packets that could be simultaneously traversing the network.

There are two incomplete approaches to handle unbounded inputs: one is to
impose a bound k on the number of packets of each type (as e.g. in [7]) and
the other one is to use abstraction (as e.g. in [17]). In the former, the search
space is exhausted for the considered input, but there could be bugs that only
show up when more packets are considered. In the latter, abstraction requires
to lose information and bugs may only show up when the omitted information
is considered. Therefore, the sources of incompleteness are different, and the
approaches can complement each other. Our implementation uses the former,
e.g., in Ex. 2 we have considered one packet (limit k = 1). The rest of the
section presents the key features of our approach assuming such a k bound.

4.1 DPOR-based model checking in actors

DPOR [12] is able to dynamically identify and avoid the exploration of redun-
dant executions and prune the search space exponentially. It is based on the idea
of initially exploring an arbitrary interleaving of the various concurrent tasks,
and dynamically tracking dependent interactions between them to identify back-
tracking points where alternative paths in the state space need to be explored.
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Fig. 5. Search tree for running example w/o barriers (rightmost branch w/ barriers)

Two tasks are independent when changing their order of execution will not affect
their combined effect. When DPOR is applied to actor systems, there are inher-
ent reductions [22] because: (i) we can atomically execute each task (without
re-orderings) until a return or an await instruction are found, because concur-
rency is non-preemptive and the active task cannot be interrupted. This avoids
having to consider the reorderings at the level of instructions (as one must do
in thread-based concurrency), and allows us to work at the level of tasks. (ii)
Besides that, two tasks can have a dependency only if they belong to the same
actor. This is because only the actor itself can modify its private memory.

Example 4. Fig. 5 shows the search tree computed by DPOR for our SDN-
Actor program without barriers. It has no redundancy, i.e., each execution cor-
responds to a different behavior on the packet arrival and/or the actions in-
stalled in the flow tables (see top right descriptions). At each node (i.e., state),
we show the available tasks. A task is given an identifier the first time it ap-
pears, and afterwards only its identifier is shown. Method names are abbreviated
as shown in the top left, and parameters are omitted except in tasks executing
switchHandleMessage, for which we only include the switch identifier that is part
of the Action to be installed. For instance, 4:s1!shm(s2) is a task with identifier
4, that will execute method switchHandleMessage on s1 and will add to its flow
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table the information that the packet must be sent to s2. Labels on the edges
show the task(s) that have been executed. At each state, we underline the tasks
which have an interacting dependency. The execution starts by executing the
main method in Ex. 1 with the instruction sendIn added in Ex. 2 which appears
in the root. The next two steps have one task available, but in the fourth state
we have tasks 4 and 5, belonging to the same actor, whose reordering needs to
be considered (leading to branching), while 6 is independent of them. Out of

the 8 branches of the tree, only the rightmost execution h corresponds to the
correct behavior in which the packet is actually sent to r1 and the actions are
installed in the flow tables in the expected order. In execution a the packet does
not arrive at the destination because the sendOut is executed before the action
has been installed. Executions d and g correspond to the cycle described in
Sec. 2, each of them with different installations of actions.

Importantly, we do not need specific optimizations to use the DPOR algorithm
in [3] to model check SDN-Actors. The use of await (is already covered by DPOR
and) does not require any change either and, as expected, the search tree for the

implementation with barriers only contains branch h . The difference arises from
task 3 in the tree: in the presence of barriers, this leads to a state in which we
have the asynchronous calls 4 and 6 and task 3 suspended at the await in L63
(awaiting first the termination of 4 and then that of 6). Therefore, the dependent
tasks 4 and 5 will not coexist because 5 is not spawned until 4 and 6 terminate.

4.2 Entry-level and context-sensitive independence

When two tasks that belong to the same actor are found, in the context of
DPOR techniques independence is commonly over-approximated by requiring
that actor fields accessed by one task are not modified by the other. In our
model, all tasks posted on a given switch access its flow table, namely sendOut and
switchHandlePacket read it and switchHandleMessage writes it. Thus, in principle,
any task executing switchHandleMessage is considered dependent on the other two.
This explains the tasks underlinings in the figure and the branching in the tree.
When there are multiple packets traversing the network it is usually the case
that the different packets access distinct entries in the flow table. This results
in the inaccurate detection of many dependencies hence producing redundant
executions. Using Context-sensitive DPOR [3], we alleviate this state explosion:

1. Entry-level independence. We adopt a finer-grained notion of entry-level in-
dependence for which an access to entry i is independent from an access to
j if i 6= j. This aspect is not visible when considering a single packet as in
the example, as all accesses to the flow table refer to the same entry. How-
ever, by simply adding another packet to the erroneous program, the state
explosion is huge and the system times out if entry-level independence is not
implemented, while it computes 92 executions (exploring 761 states) with
entry-level independence.

2. Context-sensitiveness. Even when two tasks t and p access the same entry,
Context-sensitive DPOR introduces some further checks that execute the
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considered tasks from the current state S in the two orders t · p and p · t.
If they lead to the same state, one of the derivations is pruned and further
exploration from it is thus avoided. For instance, executing two consecutive
switchHandleMessage on the same entry might lead to the same state if the
flow table may contain duplicate entries, as our implementation allows.

4.3 Comparison of DPOR reductions with related work

Other model checkers for SDN programs have used DPOR-based algorithms be-
fore [7,17]. According to the experiments in the NICE tool, DPOR only achieves
a 20% reduction of the search space because even the finest granularity does not
distinguish independent flows. The reason for this modest reduction might be
that it does not take advantage of the inherent independence of the code exe-
cuted by the distributed elements of the network (switches, host, clients), nor
to the fact that barriers allow removing dependencies, as our actor-based SDN
model does. In Kuai [17], a number of optimizations are defined to take advan-
tage of these aspects. Such optimizations must be (1) identified and formalized
in the semantics, (2) proven correct and, (3) implemented in the model checker.
Instead, due to our formalization using actors, the optimizations are already
implicit in the model and handled by the model checker without requiring any
extension. Another main difference with Kuai is that they make two important
simplifications to the kind of SDNs they can handle: (i) they assume a simplified
model of switches in which a switch gets suspended (i.e., does not process further
packets nor controller messages) while awaiting a controller request. The error
showed in Ex. 1 would thus not be captured. We do not make any simplification
and thus a switch can start to process a new packet while awaiting the controller
and can also receive other controller actions (triggered by other switches). (ii)
It works on a class of SDNs in which the size of the controller queue is one.
Therefore, it will not capture potential errors that arise due to the reordering of
messages by the controller. In contrast, our model checker works on the general
model of SDN networks.

5 Checking SDN properties in case studies

We have built the extension for property checking on top of SYCO [4], a system
that implements context-sensitive DPOR exploration. To evaluate our approach,
we have implemented a series of standard SDN benchmarks used in previous
work [5, 11, 17]. In order to check property P we add to the controller a new
method called error message and encode P as a Boolean function Fp using
the programming language itself. Then, in all places where the property has to
hold, we add an if statement checking the negation of Fp and if it holds we call
asynchronously to error message on the controller. Then property holds for
the given input if and only if there is no trace in the execution tree including a
call to error message.

Our goal is on the one hand to show the versatility of our approach to check
properties that are handled using different approaches in the literature (e.g.,
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Name Switch x Host x Packet Execs States Time
LB 3x3x1/3x4x2 8/92 64/761 15/263
LBB 3x4x2/3x7x5/3x10x8/3x12x10 3/21/171/683 48/482/3996/16028 13/212/3542/22941
SSHE 2x2x(1ssh/1oth/2each/2cor) 9/21/2648/1201 56/135/24116/9406 14/37/12308/3276
SSHB 2x2x2/2x2x3 27/2013 318/23643 119/13261
MI 1x5x(8/10/11) 122/753/1506 2710/17613/35870 1003/11800/34894
MIB 1x5x(8/10/11) 138/831/1653 3215/20640/41512 1668/18591/53349
LE 3x3x(2/5)/6x3x2 10/46/40 178/1269/1239 59/467/649

6x3x5/9x2x2 132/944 5765/12339 3798/12230

Table 1. Experimental evaluation

programming errors in the controller as in [5], safety policy violations as in [5,17],
or loop detection as in [11]). And, on the other hand, to show that we are
able to handle networks at least as large as (and sometimes larger than) in
related systems [17], but without requiring simplifications to the SDN models,
nor extensions for DPOR reduction, and in spite of using a non-distributed model
checker. We should note that a precise comparison of figures is not possible due
to the differences described in Sec. 4.3 and the use of different implementations
of controllers. Our system can be tried online at http://costa.ls.fi.upm.
es/syco using the option CS-DPOR, where the benchmarks can be also found
in the folder FM18.

Table 1 shows a summary of the experimental results. Times are obtained
on an Intel Core i7 at 3.4Ghz with 8GB of RAM (Linux Kernel 3.2). For each
benchmark, we show in the second column the number of switches, hosts and
packets, Execs corresponds to the number of different executions (i.e., branches
in the search tree), States to the number of nodes in the search tree, and Time
is the time taken by the analysis in ms. Although entry-level independence can
be proved automatically, this is not yet implemented in SYCO and we have
used annotations to declare it. As an example, in method switchHandleMsg, the
annotation: [indep(switchHandlePacket(pin,pkt),!matchHeaderAndPort(getHeader(pkt),

pin,m))] states that tasks executing switchHandleMessage(m,a) are independent of
those executing switchHandlePacket(pin,pkt) if the match field of the message does
not match the header and the input port of the packet (the condition is checked
by the auxiliary function matchHeaderAndPort).

Controller with load balancer [11] (LB/LBB). This corresponds to the
controller of [11], similar to our running example. It performs stateless load
balancing among a set of replica identified by a virtual IP (VIP) address. When
receiving packets destined to a VIP, the controller selects a particular host and
installs flow rules along the entire path. For a buggy controller without barriers
(LB) and a network with 3 switches and 3 hosts, we detect that there is a
forwarding loop (i.e., that a packet reaches a switch more than once) in 15ms.
For this, we have added to the switches a field to store the packet identifiers
that they have already received, and when the same packet reaches it, it sends
an error message, which is observable from the final state. When we add a
second packet with the same header and another host, as expected, the number
of dependencies increases and, many reorderings need to be tried, leading to
92 different executions and 761 states. Once we check the correct version with
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barriers (LBB), we are able to scale up to 12 hosts and 10 packets. As it can
be observed, for the largest network, 16028 states are explored and in all cases
we verify that the traffic is balanced. The experiments in [11] do not specify
the time to detect the bug for this controller (they only mentioned that their
analysis finishes in less than 32s in the vast majority of cases). Nevertheless, the
underlying techniques to find the bugs are unrelated (see Sec. 6), and thus time
comparison is not meaningful.

SSH controller [17] (SSHE/SSHB). This is based on a controller that dy-
namically modifies the behaviors of the switches as follows: it can update the
switches with a rule that states that no SSH packets are forwarded, and another
that states that all non-SSH packets are forwarded. We have three versions of
the SSH controller. In the row SSHE, the first three evaluations correspond to
an erroneous SSH controller that installs the rule to forward packets and the
rule to drop SSH packets with the same priority, and thus the safety policy can
be violated. As in [17], we evaluate a network with 2 switches and 2 hosts. As for
packets, we write 1ssh, 1other, and 2each to indicate that we send one SSH packet,
one non-SSH packet and one of each type. We detect the error by checking in
the switch if two contradictory drop and forward packet actions are received for
the same entry. The results that we obtain for 1 packet are in the same order
of magnitude as [17]: they produce 13 executions, while we produce 9 or 21, de-
pending on the type of packet. Analysis times are also similar: 0.1s in their case
versus 0.014s or 0.037s in our case. This is as expected because there is almost
no redundancy using plain DPOR, thus no need for our entry-independence or
context-sensitiveness. When we add more packets, the number of dependencies
grows exponentially. This is because the controller receives 2 requests from the
2 messages, and sends dependent control messages to all switches. Therefore, all
reorderings must be tried and the state explosion is huge. The last evaluation
2cor corresponds to the correct SSH controller for which we achieve a notable
improvement as we have now less tasks that match the same entry (as priority
is different). The row SSHB is a correct implementation with barriers that re-
duces the number of executions for 2 packets notably because it guarantees that
forward rules are installed and thus switches will not send further requests.

Firewall with migration [5] (MI/MIB). MI is the implementation of a
firewall that supports migration of trusted hosts. A host is trusted if it either
sent/received (on some switch) a message through/from port 1. Thus, when a
trusted host migrates to a new switch, the controller will remember it was trusted
before and will allow communication from either port. For the same network 1x5
as [5], we can scale the number of packets up to 11 packets that actually modify
the data base for trusted hosts. We can keep on adding more packets if those
do not affect the shared data base. In MIB, we introduce the same bug in the
controller as [5], which forgets to check if trusted on events from port 2. We
detect the error by checking in the final state of the derivations that a packet
arrives to a host that is not in the trusted data base. The scalability of MI and
MIB are rather similar. Both [5] and us find the bug in a negligible time.
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Network authentication with learning [5, 17] (LE). This implements a
composition of a learning switch with authentication in [5]. Also, [17] evaluates
a MAC learning controller but using a different implementation. LE implements
a controller with barriers for which we can verify that the packet flows satisfy
the intended policy and that the flow tables are consistent. We have considered
configurations of 3x3, 6x3 and 9x2. When compared to [17], we handle similar
sizes for networks but we explore less States in less Time. We note that this
might be due to different implementations of the controller and the differences
pointed out in Sec. 4.3.

6 Conclusions and Related Work

We have proposed an actor-based framework to model and verify SDN pro-
grams. A unique feature of our approach is that we can use existing advanced
verification algorithms without requiring any specific extension to handle SDN
features. The last years have witnessed the development of many static and dy-
namic techniques for verification that are closely related to our approach. Using
static approaches, one has the main advantage that, when the property can be
proved, it is ensured for any possible execution, while using dynamic analysis
only guarantees the property for the considered inputs. As a counterpart, in or-
der to cover all possible behaviors, static analysis needs to perform abstraction,
that can give a don’t-know answer, and, possibly, false positives. In [5], the work
on Horn-based verification is lifted to the SDN programming paradigm, but ex-
cluding barriers. Using this kind of verification, one can prove safety invariants
on the program. Using our framework, we can furthermore check liveness in-
variants (e.g., loop detection) by inspecting the traces computed by the model
checker. In [19], a particular type of attacks in the context of SDN networks has
been modeled in Maude using the so-called hierachically structured composite
actor systems described in [10]. This work does not provide a general model for
SDN networks and, besides, barriers are not considered. On the other hand, it
applies a statistical model checker, which requires to have a given scheduler for
the messages. Such scheduler determines the exact order in which messages are
handled while our framework captures all possible behaviours. Hence, both their
aim and their SDN model are radically different from ours. As regards dynamic
techniques, our work is mostly related to the model checkers NICE and Kuai for
SDN programs, which have been compared in detail in Sec. 4.3. Our approach
could be adapted to apply abstractions that bound the size of buffers [17] and to
consider environment messages [21]. The approach of [11, 14] is fundamentally
different from ours because it is based on analyzing dynamically given snapshots
of the network from real executions. Instead, our approach tries to find program-
ming errors by inspecting only the SDN program and considering all possible
execution traces, thus enabling verification at system design time.
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10. Jonas Eckhardt, Tobias Mühlbauer, José Meseguer, and Martin Wirsing. Statistical
model checking for composite actor systems. In WADT, pages 143–160, 2012.

11. Ahmed El-Hassany, Jeremie Miserez, Pavol Bielik, Laurent Vanbever, and Mar-
tin T. Vechev. SDNRacer: concurrency analysis for software-defined networks. In
POPL, pages 402–415, 2016.

12. Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for
model checking software. In POPL, pages 110–121, 2005.
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a(o,⊥, h,Q) = selectAct(S),tk(tk ,m, l , s) = selectTask(a(o,⊥, h,Q)), s 6= ε, S
o·tk
;∗ S′

(mstep) S −→ S′

tk = tk(tk ,m, l, xf = y ! m1(z); s), o1 = l(y), tk1 = fresh(), l1=newlocals(z̄,m1, l)

(asy) a(o, tk , h,Q∪ {tk}) · a(o1, tk
′, h′,Q′) ;

a(o, tk , h,Q∪{tk(tk ,m, l[xf 7→t1], s)}) · a(o1, tk
′, h′,Q′∪{tk(tk1,m1, l1, body(m1))})

tk = tk(tk ,m, l, x = new D(ȳ); s), o1=fresh(),
(new) h′ = newheap(D), l′ = l[x→ o1],class D(f̄){. . .}
a(o, tk , h,Q∪ {tk}) ; a(o, tk , h,Q∪ {tk(tk ,m, l′, s)}) · a(o1,⊥, h′[f̄ 7→ l(ȳ)], ∅)

(await)1
tk = tk(tk ,m, l ,await xf; s), l(xf) = tk1, tk(tk1,m1, l1, ε) ∈ S

a(o, tk , h,Q∪ {tk}) ; a(o, tk , h,Q∪ {tk(tk ,m, l , s)})

(await)2
tk = tk(tk ,m, l ,await xf; s), l(xf) = tk1, tk(tk1,m1, l1, ε) 6∈ S

a(o, tk , h,Q∪ {tk}) ; a(o,⊥, h,Q∪ {tk(tk ,m, l ,await xf; s)})

(return)
tk = tk(tk ,m, l , ε)

a(o, tk , h,Q∪ {tk}) ; a(o,⊥, h,Q∪ {tk})

Fig. 6. Semantics of concurrent primitives of actor programs

A Semantics of Actor Language

The grammar below describes the syntax of our programs:

M ::= T m(T̄ x̄){s; }
s ::= s ; s | x = e | if b then s else s | while b do s | x.m(z̄)

| x = new C(ȳ) | f = x!m(z̄) | await f? | await b?
where x, y, z denote variables names, f a future variable name, and s a sequence
of instructions. For any entity A, the notation Ā is used as a shorthand for
A1, ..., An. We use the special actor identifier this to denote the current actor.
For the sake of generality, the syntax of expressions e, boolean conditions b and
types T is not specified. As in the object-oriented paradigm, a class denotes
a type of actors including their behavior, and it is defined as a set of fields
and methods. The “.” in method calls, such as in x.m(z̄), denotes standard
(synchronous) method calls, while “!” is used for asynchrony.

Fig. 6 presents the semantics of the actor model. An actor is a term a(o, tk , h,Q),
where o is the actor identifier, tk is the identifier of the active task that holds the
actor’s lock or ⊥ if the actor’s lock is free, h is its local heap and Q is the set of
tasks in the actor. A heap h is a mapping h : fields(C) 7→ V, where V stands for
the set of references and values. A task tk is a term tk(tk ,m, l, s) where tk is a
unique task identifier, m is the method name executing in the task, l is a mapping
from local variables to V, and s is the sequence of instructions to be executed. As
actors do not share their states, the semantics can be presented as a macro-step
semantics [20] (defined by means of the transition “−→”) in which the evalu-
ation of all statements of a task takes place serially (without interleaving with
any other task) until it gets to a release point, i.e., a point in which the actor’s
processor becomes idle due to the return or an await instruction. In this case,
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rule (mstep) is applied to select an available task from an actor, namely function
selectAct(S) is applied to select non-deterministically an actor a(o,⊥, h,Q) in
the state with a non-empty queueQ, and, selectTask(a(o,⊥, h,Q)) to select non-
deterministically a task of Q. Micro-step transitions are written ; and define
evaluations within a given macro-step. The sequential instructions are standard
and thus omitted. In (new), an active task tk in actor o creates a new actor
of class D with a fresh identifier o1 = fresh(), which is introduced to the state
with a free lock. Here h′ = newheap(D) stands for a default initialization on the
fields of class D. Rule (asy) spawns a new task (the initial state is created by
newlocals) with a fresh task identifier tk1 which is stored in the future variable
xf. We assume o 6= o1, but the case o = o1 is analogous, the new task tk1 is
simply added to the queue Q′ of actor o1. In rule (await)1, the future variable
xf we are awaiting for points to a finished task and thus the await can be
completed. The finished task identified with tk1 is looked up in all actors in the
current state (written as tk(tk1,m1, l1, ε) ∈ S). Otherwise, (await)2 yields the
lock so that any other task of the same actor can take it. The behaviour of await
on boolean conditions is analogous. When rule (return) is executed, the task
is finished, but it remains in the queue so that rules (await)1 and (await)2 can
be applied. A derivation E ≡ S0 −→ · · · −→ Sn is complete if S0 is the initial
state and all actors in Sn are of the form a(o,⊥, h,Q), where for all tk ∈ Q it
holds that tk ≡ tk(tk ,m, l , ε).

B Soundness Proofs

Theorem 1. Given an SDN network N , consider its SDN-Actor model Na

with an initial configuration main obtained by Def. 3.1, and the Switch, Host and
Controller classes in Figs. 2 and 3. Then, for each execution in N , there exists
an equivalent execution trace in Na using the semantics of App. A.

Proof. (sketch) The proof consists of two parts: (1) proving that the messages
sent in any execution of the SDN network N have an equivalent state in Na

in which the corresponding actors have the same messages in their queues, and
(2) proving that the state of the data structures of all network elements in N
coincides with the state of the corresponding data structures in Na. In order to
prove (1), it is straightforward from the specification of the network elements by
the OpenFlow that the implementation of the Switch, Host and Controller send the
same messages. It remains to be proved that the messages in Na are processed in
all possible orders as determined by the OpenFlow specification, that state that
they can be re-ordered. This is guaranteed by the rule (asy) in the semantics
(that inserts the message in the corresponding actor queue without any delay)
and rule (mstep) that non-deterministically selects one message from the queue.
Thus, any re-ordering that the network elements may do is captured. As regards
point (2), the state of the data structures of the Switch, Host and Controller classes
in Figs. 2 and 3 is modified by the processing of the messages. Thus, it directly
follows from (1), since it is guaranteed that the same message processing is
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captured by the model. A more formal proof would require having an OpenFlow
formal semantics, which does not exist.

Theorem 2. Methods barrierRequest and barrierWait provide a sound encoding of
the barrier messages of OpenFlow.

Proof. (sketch) The proof can be done by contradiction, assuming that the Open-
Flow specification of barrier messages does not hold: either (1) a message sent
after the barrier is processed before the barrier, or (2) a message sent before the
barrier is processed after the barrier. On the one hand, since all the asynchronous
(message) calls to the switches have already been done when the await is placed
on the futures (of these calls), all execution orders (on the tasks) are still possi-
ble, and hence no feasible behaviour is lost. On the other hand, the properties of
the barrier in OpenFlow are fulfilled since the awaits on the futures introduced
by the barrierRequest method ensure that all previously received messages are
processed (contradicting assumption 1) and the use of the barrierWait method
ensures that no message is sent to the switch before the barrier request is fin-
ished, and hence no such message is processed (contradicting assumption 2).
A detailed proof can be developed on traces (applying the semantics rules in
App. A on the actor-based implementation of barriers) that lead to the above
contradictions.
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