72 research outputs found

    Strong Induction in Hardware Model Checking

    Get PDF
    Symbolic Model checking is a widely used technique for automated verification of both hardware and software systems. Unbounded SAT-based Symbolic Model Checking (SMC) algorithms are very popular in hardware verification. The principle of strong induction is one of the first techniques for SMC. While elegant and simple to apply, properties as such can rarely be proven using strong induction and when they can be strengthened, there is no effective strategy to guess the depth of induction. It has been mostly displaced by techniques that compute inductive strengthenings based on interpolation and property directed reachability (PDR). In this thesis, we prove that strong induction is more concise than induction. We then present kAvy, an SMC algorithm that effectively uses strong induction to guide interpolation and PDR-style incremental inductive invariant construction. Unlike pure strong induction, kAvy uses PDR-style generalization to compute and strengthen an inductive trace. Unlike pure PDR, kAvy uses relative strong induction to construct an inductive invariant. The depth of induction is adjusted dynamically by minimizing a proof of unsatisfiability. We have implemented kAvy within the Avy Model Checker and evaluated it on HWMCC instances. Our results show that kAvy is more effective than both Avy and PDR, and that using strong induction leads to faster running time and solving more instances. Further, on a class of benchmarks, called shift, kAvy is orders of magnitude faster than Avy, PDR and pure strong induction

    Controlled and effective interpolation

    Get PDF
    Model checking is a well established technique to verify systems, exhaustively and automatically. The state space explosion, known as the main difficulty in model checking scalability, has been successfully approached by symbolic model checking which represents programs using logic, usually at the propositional or first order theories level. Craig interpolation is one of the most successful abstraction techniques used in symbolic methods. Interpolants can be efficiently generated from proofs of unsatisfiability, and have been used as means of over-approximation to generate inductive invariants, refinement predicates, and function summaries. However, interpolation is still not fully understood. For several theories it is only possible to generate one interpolant, giving the interpolation-based application no chance of further optimization via interpolation. For the theories that have interpolation systems that are able to generate different interpolants, it is not understood what makes one interpolant better than another, and how to generate the most suitable ones for a particular verification task. The goal of this thesis is to address the problems of how to generate multiple interpolants for theories that still lack this flexibility in their interpolation algorithms, and how to aim at good interpolants. This thesis extends the state-of-the-art by introducing novel interpolation frameworks for different theories. For propositional logic, this work provides a thorough theoretical analysis showing which properties are desirable in a labeling function for the Labeled Interpolation Systems framework (LIS). The Proof-Sensitive labeling function is presented, and we prove that it generates interpolants with the smallest number of Boolean connectives in the entire LIS framework. Two variants that aim at controlling the logical strength of propositional interpolants while maintaining a small size are given. The new interpolation algorithms are compared to previous ones from the literature in different model checking settings, showing that they consistently lead to a better overall verification performance. The Equalities and Uninterpreted Functions (EUF)-interpolation system, presented in this thesis, is a duality-based interpolation framework capable of generating multiple interpolants for a single proof of unsatisfiability, and provides control over the logical strength of the interpolants it generates using labeling functions. The labeling functions can be theoretically compared with respect to their strength, and we prove that two of them generate the interpolants with the smallest number of equalities. Our experiments follow the theory, showing that the generated interpolants indeed have different logical strength. We combine propositional and EUF interpolation in a model checking setting, and show that the strength of the interpolation algorithms for different theories has to be aligned in order to generate smaller interpolants. This work also introduces the Linear Real Arithmetic (LRA)-interpolation system, an interpolation framework for LRA. The framework is able to generate infinitely many interpolants of different logical strength using the duality of interpolants. The strength of the LRA interpolants can be controlled by a normalized strength factor, which makes it straightforward for an interpolationbased application to choose the level of strength it wants for the interpolants. Our experiments with the LRA-interpolation system and a model checker show that it is very important for the application to be able to fine tune the strength of the LRA interpolants in order to achieve optimal performance. The interpolation frameworks were implemented and form the interpolation module in OpenSMT2, an open source efficient SMT solver. OpenSMT2 has been integrated to the propositional interpolation-based model checkers FunFrog and eVolCheck, and to the first order interpolation-based model checkerHiFrog. This thesis presents real life model checking experiments using the novel interpolation frameworks and the tools aforementioned, showing the viability and strengths of the techniques

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    A Faithful Semantics for Generalised Symbolic Trajectory Evaluation

    Full text link
    Generalised Symbolic Trajectory Evaluation (GSTE) is a high-capacity formal verification technique for hardware. GSTE uses abstraction, meaning that details of the circuit behaviour are removed from the circuit model. A semantics for GSTE can be used to predict and understand why certain circuit properties can or cannot be proven by GSTE. Several semantics have been described for GSTE. These semantics, however, are not faithful to the proving power of GSTE-algorithms, that is, the GSTE-algorithms are incomplete with respect to the semantics. The abstraction used in GSTE makes it hard to understand why a specific property can, or cannot, be proven by GSTE. The semantics mentioned above cannot help the user in doing so. The contribution of this paper is a faithful semantics for GSTE. That is, we give a simple formal theory that deems a property to be true if-and-only-if the property can be proven by a GSTE-model checker. We prove that the GSTE algorithm is sound and complete with respect to this semantics

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing
    • …
    corecore