35,019 research outputs found

    A WSDL-Based Type System for WS-BPEL

    Get PDF
    We tackle the problem of providing rigorous formal foundations to current software engineering technologies for web services. We focus on two of the most used XML-based languages for web services: WSDL and WS-BPEL. To this aim, first we select an expressive subset of WS-BPEL, with special concern for modeling the interactions among web service instances in a network context, and define its operational semantics. We call ws-calculus the resulting formalism. Then, we put forward a rigorous typing discipline that formalizes the relationship existing between ws-calculus terms and the associated WSDL documents and supports verification of their compliance. We prove that the type system and the operational semantics of ws-calculus are ā€˜soundā€™ and apply our approach to an example application involving three interacting web services

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Action semantics in retrospect

    Get PDF
    This paper is a themed account of the action semantics project, which Peter Mosses has led since the 1980s. It explains his motivations for developing action semantics, the inspirations behind its design, and the foundations of action semantics based on unified algebras. It goes on to outline some applications of action semantics to describe real programming languages, and some efforts to implement programming languages using action semantics directed compiler generation. It concludes by outlining more recent developments and reflecting on the success of the action semantics project

    Cinnamons: A Computation Model Underlying Control Network Programming

    Full text link
    We give the easily recognizable name "cinnamon" and "cinnamon programming" to a new computation model intended to form a theoretical foundation for Control Network Programming (CNP). CNP has established itself as a programming paradigm combining declarative and imperative features, built-in search engine, powerful tools for search control that allow easy, intuitive, visual development of heuristic, nondeterministic, and randomized solutions. We define rigorously the syntax and semantics of the new model of computation, at the same time trying to keep clear the intuition behind and to include enough examples. The purposely simplified theoretical model is then compared to both WHILE-programs (thus demonstrating its Turing-completeness), and the "real" CNP. Finally, future research possibilities are mentioned that would eventually extend the cinnamon programming into the directions of nondeterminism, randomness, and fuzziness.Comment: 7th Intl Conf. on Computer Science, Engineering & Applications (ICCSEA 2017) September 23~24, 2017, Copenhagen, Denmar

    State-based and process-based value passing

    Get PDF
    State-based and process-based formalisms each come with their own distinct set of assumptions and properties. To combine them in a useful way it is important to be sure of these assumptions in order that the formalisms are combined in ways which have, or which allow, the intended combined properties. Consequently we cannot necessarily expect to take on state-based formalism and one process-based formalism and combine them and get something sensible, especially since the act of combining can have subtle consequences. Here we concentrate on value-passing, how it is treated in each formalism, and how the formalisms can be combined so as to preserve certain properties. Specifically, the aim is to take from the many process-based formalisms definitions that will best fit with our chosen stat-based formalism, namely Z, so that the fit is simple, has no unintended consequences and is as elegant as possible
    • ā€¦
    corecore