2,925 research outputs found

    Computing Nash Equilibrium in Wireless Ad Hoc Networks: A Simulation-Based Approach

    Full text link
    This paper studies the problem of computing Nash equilibrium in wireless networks modeled by Weighted Timed Automata. Such formalism comes together with a logic that can be used to describe complex features such as timed energy constraints. Our contribution is a method for solving this problem using Statistical Model Checking. The method has been implemented in UPPAAL model checker and has been applied to the analysis of Aloha CSMA/CD and IEEE 802.15.4 CSMA/CA protocols.Comment: In Proceedings IWIGP 2012, arXiv:1202.422

    Energy-efficient multi-criteria packet forwarding in multi-hop wireless networks

    Get PDF
    Reliable multi-hop packet forwarding is an important requirement for the implementation of realistic large-scale wireless ad-hoc networks. However, packet forwarding methods based on a single criterion, such as the traditional greedy geographic forwarding, are not sufficient in most realistic wireless settings because perfect-reception-within-rangecannot be assumed. Furthermore, methods where the selection of intermediate relaying nodes is performed at the transmitter-side do not adapt well to rapidly changing network environments. Although a few link-aware geographic forwarding schemes have been reported in the literature, the tradeoffs between multiple decision criteria and their impact on network metrics such as throughput, delay and energy consumption have not been studied. This dissertation presents a series of strategies aimed at addressing the challenges faced by the choice of relay nodes in error-prone dynamic wireless network environments. First, a single-criterion receiver-side relay election (RSRE) is introduced as a distributed alternative to the traditional transmitter-side relay selection. Contrary to the transmitter- side selection, at each hop, an optimal node is elected among receivers to relay packets toward the destination. Next, a multi-criteria RSRE, which factors multiple decision criteria in the election process at lower overhead cost, is proposed. A general cost metric in the form of a multi-parameter mapping function aggregates decision criteria into a single metric used to rank potential relay candidates. A two-criteria RSRE case study shows that a proper combination of greedy forwarding and link quality leads to higher energy efficiency and substantial improvement in the end-to-end delay. Last, mesh multi-path forwarding methods are examined. A generalized mesh construction algorithm in introduced to show impact of a mesh structure on network performance

    Medium Access Control in Energy Harvesting - Wireless Sensor Networks

    Get PDF

    An analytical model of MAC protocol dependant power consumption in multi-hop ad hoc wireless sensor networks

    Get PDF
    Power efficiency is the most constraining requirement for viable operation of battery-powered networked sensors. Conventionally, dynamic power management (DPM) is used to put sensor nodes into different states such as active, idle, and sleep, each consuming a certain level of power. Within the active state, communication operational states, such as receive and transmit consume different levels of nodal power. This thesis shows how DPM states and protocol operational states can be combined into a single stochastic model to finely evaluate the power consumption performance of a medium access control (MAC) protocol. The model is formulated as a semi-Markov decision process (SMDP) wherein the node\u27s states, sojourn times, and transition probabilities are controlled by a virtual node controller. The overall operation of a communication protocol is viewed as a randomized policy for the SMDP, and the long-run average cost per unit time measures the energy efficiency of the protocol

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Efficient Information Access in Data-Intensive Sensor Networks

    Get PDF
    Recent advances in wireless communications and microelectronics have enabled wide deployment of smart sensor networks. Such networks naturally apply to a broad range of applications that involve system monitoring and information tracking (e.g., fine-grained weather/environmental monitoring, structural health monitoring, urban-scale traffic or parking monitoring, gunshot detection, monitoring volcanic eruptions, measuring rate of melting glaciers, forest fire detection, emergency medical care, disaster response, airport security infrastructure, monitoring of children in metropolitan areas, product transition in warehouse networks etc.).Meanwhile, existing wireless sensor networks (WSNs) perform poorly when the applications have high bandwidth needs for data transmission and stringent delay constraints against the network communication. Such requirements are common for Data Intensive Sensor Networks (DISNs) implementing Mission-Critical Monitoring applications (MCM applications).We propose to enhance existing wireless network standards with flexible query optimization strategies that take into account network constraints and application-specific data delivery patterns in order to meet high performance requirements of MCM applications.In this respect, this dissertation has two major contributions: First, we have developed an algebraic framework called Data Transmission Algebra (DTA) for collision-aware concurrent data transmissions. Here, we have merged the serialization concept from the databases with the knowledge of wireless network characteristics. We have developed an optimizer that uses the DTA framework, and generates an optimal data transmission schedule with respect to latency, throughput, and energy usage. We have extended the DTA framework to handle location-based trust and sensor mobility. We improved DTA scalability with Whirlpool data delivery mechanism, which takes advantage of partitioning of the network. Second, we propose relaxed optimization strategy and develop an adaptive approach to deliver data in data-intensive wireless sensor networks. In particular, we have shown that local actions at nodes help network to adapt in worse network conditions and perform better. We show that local decisions at the nodes can converge towards desirable global network properties e.g.,high packet success ratio for the network. We have also developed a network monitoring tool to assess the state and dynamic convergence of the WSN, and force it towards better performance
    corecore