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ABSTRACT

AN ANALYTICAL MODEL OF MAC PROTOCOL DEPENDENT POWER
CONSUMPTION IN MULTI-HOP AD HOC WIRELESS SENSOR NETWORKS

by
Komlan Egoh

Power efficiency is the most constraining requirement for viable operation of battery-

powered networked sensors. Conventionally, dynamic power management (DPM) is used

to put sensor nodes into different states such as active, idle, and sleep, each consuming

a certain level of power. Within the active state, communication operational states, such

as receive and transmit consume different levels of nodal power. This thesis shows how

DPM states and protocol operational states can be combined into a single stochastic model

to finely evaluate the power consumption performance of a medium access control (MAC)

protocol. The model is formulated as a semi-Markov decision process (SMDP) wherein the

node's states, sojourn times, and transition probabilities are controlled by a virtual node

controller. The overall operation of a communication protocol is viewed as a randomized

policy for the SMDP, and the long-run average cost per unit time measures the energy

efficiency of the protocol.
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The mere formulation of a problem is far more essential than
its solution, which may be merely a matter of mathematical
or experimental skills. To raise new questions, new
possibilities, to regard old problems from a new angle
requires creative imagination and marks real advances in
science.

— Albert Einstein
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In designing network protocols for sensor networks, while the constraints of limited channel

bandwidth, memory resources, and processing capabilities play major roles, a fundamental

constraint that needs paramount attention is the limited power/energy resource. In many

sensor network applications, the sensor nodes are battery powered and cannot always be

replenished once they are drained. Therefore, it is very important that the limited energy

resource is utilized judiciously.

Although there have been a lot of ongoing research on power/energy efficiency, many

of the proposed protocols for sensor networks are based on the observations from wireless

LANs (WLANs). However, power consumption properties of the tiny sensor nodes are

vastly different from that observed in WLAN devices. Particularly, unlike in WLANs,

• the receive power consumption dominates over the consumptions due to other activities

[4],

• nodal range of sensors being significantly smaller (10 to 30 meters), power saving by

transmit power control may not be significant, and

• idling power consumption could be significant in sensing applications where the data

exchange rate is low.

In particular, due to miniature size of the nodes, even little functionalities, such as overhearing,

idle listening, etc. consume significant fraction of the total energy reserve of a node [1],

[2], [3].

There also have been a few recent low power aware sensor network protocols that

take into account the uniqueness of the sensors' power consumption properties. Yet, in

1
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seeking optimum network performance at the minimum energy cost, and to devise efficient

new protocols or assess the effectiveness of the current ones, it is very important to have a

detailed understanding of communication related power consumption properties of a sensor

node in different operational conditions.

Since in cellular networks and WLANs for example coverage range is relatively

large, up to a few kilometers, total power consumption at a node is dominated by the

consumption due to signal transmission. The power consumption due to transmitter and

receiver electronics are relatively small. Therefore, in a cellular/WLAN node with transmission

power control capability, nodal power consumption was used to be considered dependent

on the transmit-receive distance only and not on the electronic processing [5]. As the nodal

coverage range decreases, the above method of determining nodal power consumption does

not hold good. As an example, in Cisco Aironet PCM 350 series client adapter cards,

the transmit power consumption (measured in terms of current drawn) at the maximum

power output (20 dBm) is 450 mA, whereas the receiver electronics power consumption is

270 mA and idle mode electronics power consumption is 15 mA [17]. This implies that

power consumption due to electronic processing can no longer be ignored. Indeed, energy

consumption measurements by Feeney and Nilsson [18] on Lucent 802.11 WaveLAN cards

showed how in addition to the transmit mode, receive and idle modes contribute to the total

energy consumption of a node. Another series of measurements on Cisco Aironet PC

4800B PCMCIA 802.11 WLAN cards were conducted by Burns and Ebert [19] that took

receive power consumption into consideration.

As further miniaturized devices are considered, which is the case with the sensor

nodes, the nature of power consumption is in fact dominated by electronics power consumption.

Typical data of a Chipcon sensor transceiver CC2420 [4] in Table 1.1 indicate that receiver

processing power consumption is the major component.
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Table 1.1 Typical power consumption data

Mode Current drawn

Transmit:

0 dBm	 (max)  ... ... ... ... ...

-25 dBm 	 (min)   ... ... ... ... ...

17.4 mA

8.5 mA

Receive 	 ... ... ... ... ... ... ... 19.7 mA

Idle (oscillator and voltage regulator on) 426 AA

Sleep 	 (voltage regulator on)  ... ... ... 20 AA

Moreover, in contrast with the cellular/WLAN devices, the nodal range of sensors

being much smaller (10 to 30 meter), per node power saving by transmit power control

may not be significant in sensor networks.

In this work, the power consumption of peer-to-peer communicating sensor nodes

is investigated and modeled. Along with a manufacturer provided transceiver's power

consumption data (see for example, Chipcon CC2420 datasheet, [4, p.13]), it is also important

to take into account the protocol-dependent power consumption overheads in different

modes, that will make it possible to compare the performances of different medium access

control (MAC) protocols. According to dynamic power management (DPM) strategy [6],

in the interest of energy saving, at any point in time an operational sensor tends to remain in

a low power consuming state. It is assumed that a networked sensor remains in one of the

five states: transmit (Tx), receive (Rx), MAC contention, idle, and sleep. A virtual control

entity is introduced with functionally similar the Power Manager in a DPM model. While

the PM is a software or hardware entity implemented in the MAC or PHY Layer, the virtual

controller is a conceptual central controller. DPM decisions and communication events are

assumed a priori decisions of the virtual controller. To capture the power consumption

properties of a dynamically power managed sensor node, the MAC protocol dependent
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state transition probabilities and sojourn times in different states will first be identified.

The power consumption model is formulated as a semi-Markov decision process (SMDP).

The sojourn time in a state and the state transition probabilities are decided by a virtual

controller. Thus, a sensor node is treated as a controlled stochastic dynamic system (see

Figure 1.1). The sojourn times and state transitions are associated with a device-specific

Figure 1.1 Functional diagram of a network node, represented as a controlled stochastic
dynamic system.

cost. Since the states and transitions are nodal activity and channel condition dependent,

the overall operation of a communication protocol is characterized as a randomized policy

for the SMDP. The energy efficiency of the protocol is measured as the long-run average

cost per unit time.

The energy consumption model in this report is developed with the assumption of

a preamble sampling based low power protocol [2], [7], [8]. The objective is to study

different parametric relationships with the average nodal energy consumption. It is shown

that the developed model can be used as an optimization tool for a given communication

protocol. For example, it would lead us to capture the optimum sleep time of nodes and

data packet size for maximizing transmission success rate with a minimum energy cost.

The model can also be used in comparing energy efficiency of different communication

protocols in sensor networks, and can provide a guideline to determining energy consumption

pattern for a given node and sink deployment strategy and vice versa.

The rest of this report is presented as follows: The concepts of SMDP and the

assumed network model are introduced in the rest of Chapter 1. The state-dependent power
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consumption model is developed in Chapter 2. Chapter 3 contains an application of the

power consumption model and presents results obtained trough numerical computation.

Concluding remarks, related works and future extension of this work are outlined in Chapter 4.

1.2 Related Work

Although there is a lot of literature on power efficient and distributed communication

protocol design for sensor networks there have been few work on protocol related power

consumption modeling. Dynamic power management scheme proposed in [11] introduced

the concept of turning on and off the operating system intelligently to minimize the energy

wastage in power aware sensor nodes. Bollow are highlighted the works related to the

current study. It has been observed in [1] and [3] that overhearing is a major source of

energy consumption in sensor network, and its effect on sensor network energy efficiency

is characterized in [3]. S-MAC [1] extends the concept of RTS-CTS in 802.11, and reduces

the data transmission coordination related energy consumption by locally synchronizing at

the beginning of every activity cycle. It has been demonstrated in [2], [7] that preamble

sampling based Aloha-like access protocol operates power efficiently by reducing idle

listening energy cost. Based on the understandings of power consumption in various nodal

states, B-MAC [8] has been recently proposed. B-MAC operates on preamble sampling

based approach and provides the system designers the flexibility of choosing between

energy awareness and service criteria.

A few recent works have focussed on system performance and energy optimization

via power consumption modeling. System level power optimization have been considered

[9], [13]. The authors uses continuous-time Markov decision process based model to

characterize power consumption in different states and obtain the optimum state transitions.

While continuous-time MDP are suitable for optimal control problems in which the primary

goal is to find an optimal policy for a real power manger implemented as software or

hardware component, the limitation of exponentially distributed inter-decision time of the



6

continuous-time model makes it less applicable to the modeling of complex system under

the influence of random events or the combined action of different system controllers.

Discrete-time Markov process based state modeling has been used in [14], where a sensor

is considered to have two states: sleep and active. It was shown that by controlling the

state of nodes, the optimal interference and routing performances can be achieved. In both

continuous-time and discrete-time Markov process based model, the dwell time in a state

(also called sojourn time) is assumed to have memoryless distribution. In [15], optimal

node placement strategy in a one-dimensional sensor network is studied in order to achieve

energy optimized system performance.

The proposed approach is focused on power consumption related to the operation

of given protocols in the communication stack. By using SMDP model the proposed

methodology offers a general framework that enables protocol designers gain in-depth

understanding the node and network behavior under complex operational condition.

1.3 Background

1.3.1 Controlled Stochastic Systems

Dynamic stochastic systems are the systems that evolve with time under the influence

of a control entity or random events. Power-managed sensor nodes are examples of a

dynamic stochastic system under the influence of the combined action of communication

protocols and power management policies. In general, dynamic stochastic system can

be classified as (i) continuous-time and (ii) discrete-time, if the system is observed in

continuous and discrete-time respectively. Another system classification is (i) controlled

and (ii) uncontrolled, depending on the existence or not of an identifiable system controller.

In all classifications, the system is observed at the initial time to = 0 and is found in

one of a finite (possibly countably infinite) number of states X 0 = i , i = 0,1, 2, • • • , I (I ≤

oo). After a sojourn time of 7 -0 , the system jumps into another state j (X 1 = j) at the time

instant t 1 = to + τ0 with probability p ij , stays for τ1 before jumping to another state k
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(X2 = k) at time t2 = t l + Tl with probability pjk , and so fourth. The two processes {X l}

and {τl} , = 0, 1, 2, • • • , constitute the stochastic model of the dynamic system.

In a controlled dynamic system, a controller or a decision maker is allowed to influence

the system by choosing at each decision epoch one of a finite (possibly countably infinite)

number of actions aκ , = 0, 1, 2,  • • • , K (K ≤  ∞ ) The evolution of the system among

states and the corresponding sojourn times within states are therefore determined by the

actions of the decision maker. In other words, the distribution of the two processes {Xl}

and {re} , = 0, 1, 2, • • • , become action dependent.

The theory of controlled stochastic systems offers practical analytical frameworks

for the study of (i) optimal control problem, and (ii) performance evaluation problem.

While the earlier is the primary concern of DPM solutions [6], [9], [10] which seek to

find an optimal decision strategy (or optimal policy) among all feasible decision strategies,

the later focuses on the evaluation of a given decision strategy. In both cases, a cost (or

reward) structure is associated with a strategy, where each state and state transition of the

system incurs a different level of system cost. The primary focus in this thesis work is the

performance evaluation of a given strategy (communication protocol).

Before modeling the different states of a sensor under a given MAC protocol, formal

presentation of SMDP and the outline the assumed network architecture and multi-hop

communication protocol that would affect the nodal states and state transitions are first

given.

1.3.2 Semi-Markov Decision Processes (SMDP)

Consider a controlled stochastic dynamic system as introduced earlier. The system with

state space I = {0, 1, 2, • • , I} is controlled by a sequential decision maker with action

space A = {a0 , a1 , a2 , • • • , aK }. The decision maker reviews the state of the system at

given (possibly random) epochs and must take a decision. In each state i E I, a set of
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actions A(i) C .A is allowed. As a consequence of selecting an action at a decision epoch,

a reward (or cost) is incurred.

Denote the system state X0 at time to , and let to and Xe , l = 0, 1, 2, • • • , be the

subsequent decision epochs and the corresponding system states, respectively.

Definition 1 The above defined model is said to be an SMDP if the embedded process

{Xl}, l = 0, 1, 2, • • • , has the Markov property, i.e., the state of the system at the next

decision epoch depends on the history of the system only through the current state.

In other words, at each decision epoch, the time until the next decision and the next

state of the system only depends on the current state and decision currently chosen by the

decision maker. Note that there is no restriction on the distribution of the inter-decision

time. Discrete-time Markov decision process (DTMDP) and continuous-time Markov

decision process (CTMDP) are special cases of SMDP with fix inter-decision time and

exponentially distributed inter-decision time, respectively.

Below, additional definitions on SMDP and the notational conventions used in the

report are introduced.

Definition 2 A decision rule of an SMDP specifies the rule for selection of actions in each

state at a specified decision epoch.

• Deterministic decision rules are formally defined as a function D t : I →  A which

specifies that the action D t (i) be chosen with certainty if the system is found in state

i at the decision epoch t, for all i.

• Randomized decision rules prescribe that, when the system is found in state i, action

a, E A(i) be chosen with probability p i(aκ ,t), where
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With stationary randomized policies, pi (ak , t) is simply p i (aκ ). correspondingly,

action-dependent state transition probability from state i to j is denoted as p i (a,£ , j).

Definition 3 A decision policy specifies the decision rule of the decision model at all

decision epochs. Denote f {D0 , D1, D2 .,  • • • the decision policy that apply decision

De at the lth decision epoch tt .

• A decision policy is said to be deterministic (respectively, randomized) if it applies a

deterministic (respectively, randomized) decision rule at all decision epochs.

• A decision policy is said to be stationary if it applies the same decision rule at all

decision epochs f = {D, D, D, • • • }.

1.3.3 Network Topology

Consider a network in a circular location space with randomly uniform distributed nodes.

The single data sink is located at the center of the space, which receives all sensed data and

is typically a data processing center. All nodes generate packets according to a homogeneous

Poisson process. In addition, each node also routes the traffic from its neighboring nodes

towards the direction of the sink. For capturing the effect of channel access conflict, the

wireless channel is assumed ideal. The transmission failure or link error is assumed to occur

due to collision. For tractability of the analysis, no queuing at nodes is assumed. Until the

currently waiting or lost (backlogged) packet is successfully (re)transmitted, new arrivals

are discarded. This traffic model will ensure high throughput but at the cost of unpredictable

delay. Note that, instead, any other desired strategy could be adopted. The net new packet

arrival rate at each node is assumed Poisson and denoted by A n . An approximate amount

of relay traffic that a node handles will be computed after the traffic forwarding scheme is

discussed.
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1.3.4 Traffic Forwarding Scheme

A simple random forwarding scheme is assumed where the field nodes send data packets

towards the sink by randomly selecting a forward direction neighbor as a relaying node

in a multi-hop fashion. This simple forwarding approach provides a natural way of traffic

load distribution as well as a tractable way to study the effect of the network multi-hop

dynamics on the node control model.

Assume there are N nodes, of which N — 1 are data sources. The nodes are denoted

by IDs 0 to N — 1, the sink node being node 0. We denote dxy as the distance between

nodes x and y (see Figure 1.2). d0x Δ=dxrepresents the distance of nodexto the sink.

Figure 1.2 Data packets are sent towards the forward direction neighbors. ACK packets
are sent towards the reverse direction neighbors.

All nodes transmit at nominal power and have isotropic radio communication range r. The

neighborhood relationships are defined as follow:

(i) Node y is said to be neighbor of node x (and vise versa) if and only if dxy ≤  r;

(ii) Node y is said to be forward direction neighbor (FDN) of node x if the following

conditions are satisfied:

NFDN(x) denote the set of all FDNs of node x and |NFDN (x)| the number of FDNs

of node x.
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(iii) Node x is said to be reverse direction neighbor (RDN) of node y if the following

conditions are satisfied:

Similarly, NRDN(y) denotes the set of all RDNs of node y and |NfFDN (x)| the

number of RDNs of node y.

Note that (ii) and (iii) imply that directional (forward and reverse) neighborhoods are

not meaningful for nodes at a distance less than r from the sink node. As defined, FDN and

RDN are reciprocal, i.e.,

In the random forwarding scheme, neighborhood information is assumed available,

and for relaying traffic a node selects the nodes in its forward direction neighborhood with

equal probability. With these settings, data packets always travel in the forward direction

while acknowledgment (ACK) packets are sent in the reverse direction.

The Relay Traffic The relay traffic at a node depends on the topology and multi-hop

forwarding strategy. Since the node distribution in the network is uniformly random and

there is only one sink, the closer a node is to the sink, the greater the volume of relay

traffic. Since there is no queueing at a node and new data packet arrivals are assumed

Poisson distributed, the relay data traffic at a node is also Poisson distributed, however

with a distance-to-the-sink dependent rate A r (d), where d is the distance of the node under

consideration to the sink.

To compute A, (d), the circular network space of radius R is divided into concentric

coronas of width r (nodal radio range) around the sink, and consider a node, say x, at a

distance d from the sink (see Figure 1.3). Let the average number of active neighbors of a

node be n. (Note that the number of active neighbors is equal to the total number of alive
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Figure 1.3 Schematic for calculating the relay traffic.

neighbors, because data arrival process at a node is independent of the state of an alive

node [1 1].) Then, the number of nodes in the corona at distance d is 2nd/r . These nodes

will have to carry the new traffic load 2nd λn/r plus the traffic relayed from outside rings

nλn/r2[R2-(d +7r/)2]. In the assumed random forwarding, a packet could take multiple

hops to cover the distance r (nodal radio range), which increases the traffic load of an

intermediate node (say, the node x) further. Denoting the near field distance of a node as do,

the number of hops within a nodal range would vary within [1, r/d0], where it is assumed

that r/d0 is an integer, > 1. This within-range multi-hopping possibility approximately

increases the locally generated traffic 2nd λn/r by a factor of 1/2(1 + r/2d 0) and the relay traffic

by a factor of  r/2d0. Thus, a node at a distance (d ±r/2) carries approximately

r/2nd{2ndλn/r * 1/2(1 + r/2d 0) + nλn/r2 [R2 - (d + r/2) 2] * r/2d 0}=

λn+λn/2(r/2d0-1)+λn/4dd0[R2 - (d+r/2)2]data traffic. Hence, effectively, the approximate

relay traffic carried by a node at a distance d (and in its neighborhood) is:

In the energy consumption modeling in the following Section, for simplicity of the

analysis, it is assumed that the traffic relayed by the neighbors of a node is approximately

the same as that relayed by the node itself. In addition, the distance dependence term in

the relay traffic rate will be omitted; the term λr will be used, which implicitly means

λr d). In Section 3, while computing numerical results, the distance dependence is taken

into account to capture the energy consumption patterns of different nodes.



CHAPTER 2

POWER CONSUMPTION MODEL

With the concepts of SMDP and networking model outlined, the power consumption at

different states of a node will be analyzed. The controlled stochastic system in the present

case follows a randomized decision rule.

A schematic showing the decision paths at the two communicating neighbors during

a transmit-receive operation is shown in Figure 2.1. The basis of decision paths, along

with transition probabilities and the associated cost structure, will be elaborated in the

subsequent development.

2.1 Receive State Analysis

When a node is in receive (Rx) state, three alternative events are possible: it is either

receiving data, or receiving ACK, or overhearing communication from neighboring nodes.

After successfully receiving a data packet, the node immediately sends an ACK packet;

otherwise it simply idles. If an ACK packet is received, the node goes to idle state. When a

node overhears a transmission intended to other, it listens to the transmission long enough

to determine that the packet is not destined to itself and then switches to sleep state.

The state transitions described above (also see Figure 2.2) outline the decision rule

followed by the virtual controller in the Rx state. The set of allowable actions in the Rx

state is therefore

A (Rx) = {"receive data","receive ACK","overhearing"}.

13
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Figure 2.1 Schematic of a sample path of a node as a dynamic stochastic system. Each
state determines certain energy consumption. The first beacon from the transmitter went
unanswered. After successful beaconing and slot alignment, two packets of different size
are transferred with varying transmit power.

Figure 2.2 Decision rule in receive (Rx) state.

2.1.1 Action/Event Selection Probabilities

In this section conditional probabilities of "receiving data", "receiving ACK", and

"overhearing" are computed, given that the node is in Rx state. These probabilities depend

on the node's neighborhood density (average number of local neighbors), traffic load, and

the network's multi-hop communication strategy.

Referring to Figure 1.2, assume that all nodes have the same average number of

forward direction neighbors |NFDN(y)| = |N .FDN (x)| = n1and reverse direction neighbors
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|NRDN (Y)| = |NRDN(x)| =n2.Thus, the average number of local neighbors of a

node, | N(y)| = |N(x)| = n = n1+ n2.By (1.1), the nodeyis a potential relay ofxif

y E NFDN (x) (or equivalently if x E MRDN ( y ) ). Consequently, NRDN(x) represents the

set of n2 nodes that may chose node y as a relaying node. Also, since in random forwarding

each node requesting a relay service evenly balances its traffic among its n 1 FDNs, only

1/n1 fraction of the forward direction traffic of node x is destined to y. Thus, a node picks

up on average per unit time:

• Transmissions from its n2 RDN

—n2 (λ n + λr) data, of which n2/n1(λn+ λr) are destined to x,

— n2λr ACK, of which none is destined to X.

• Transmissions from its n 1 FDN

—

n1 (λn + λr )

 data, of which none is destined to x,

— n1λr ACK, of which n1/n2λr is destined to x.

From the above observations, the probabilities of receiving a data packet, an ACK,

or an overheard packet at a node, while it is in Rx state, can be obtained respectively as:

For further simplification let n 1 = n2 , i.e., assume symmetricity of forwarding

directions, which is approximately the case when the distance to the sink is large and the

nodal transmission range r << R (see Figure 1.2). This gives the simplified probability
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expressions:

where n = n1 + n2 is the average number of local neighbors. Note that (2.6) verifies the

intuition that with symmetricity assumption and random forwarding strategy, the intended

transmission from a node (say node y) to a neighbor (say node x) in its Rx state is with

probability 1/n.

2.1.2 Sojourn Times

To determine the sojourn time distribution in the Rx state, recall that the SMDP model

allows the time spent in a particular state to have a general distribution, and can depend

on the action chosen by the decision maker (virtual controller) as well as the next state

of the system. In capturing the average cost (energy spent) per unit time, the analysis is

particularly interested in the averages of sojourn times.

Figure 2.3 Data transmit and receive process

Receiving data: For successfully receiving a data packet, a node has to remain

in Rx state during the time necessary to receive the entire packet. Fixed-sized packet are

considered with length ',data from all nodes. As depicted in Figure 2.3, it is also assumed

that every data packet reception is preceded by a part or whole of a preamble (for waking up
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the receiving node). It follows that the sojourn time in Rx state while successfully receiving

data is uniformly distributed between (Ldata/C) and (L
data+Lpreamble/C)

, where lpreamble is the

fix length of the preamble and C the data rate of the wireless channel. Recalling that every

successful data packet reception is followed by an ACK transmission (i.e., the next state is

Tx), and denoting by Ei (aκ , j) the average sojourn time in state i if the action a„ is taken

in the present and the next state of the system is j, it follows that

Also, since the data packet error is assumed due forwarding inability or channel

access conflict, and noting that the error checksum is appended at the trailer of the data

packet, the sojourn time in Rx state while a data packet reception fails is uniformly distributed

between 0 and (

L

data+Lpreamble/C)  Thus,

Receiving ACK: ACK packets are in general of smaller size and are sent without

preamble. It is also assumed that every data packet is acknowledged separately. Piggyback-

ing is not used because, in the type of network under consideration, data and ACK packets

follow opposite directions. The distribution of sojourn time in Rx state when ACK is being

received is therefore the time needed to successfully or unsuccessfully receive the ACK

packet, which are respectively given by

for successfully receiving an ACK, and

in case of failure to successfully receive the ACK, where L ack is the length of an ACK

packet.
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Overhearing: It occurs when a node is engaged in receiving transmission that is not

intended for itself. A node overhears for as long as it needs, to determine that it is not the

intended recipient. It is assumed that the time necessary for a node to detect overhearing

is at least the time to receive the header of the data or ACK packet (which could also be

RTS or CTS packets, if they are used). Let Lh the length of the header of both data and

ACK packets. In case the overheard transmission is a data packet, preamble time also needs

to be taken into account. Particularly, the sojourn time is exactly Lh/Cwhen the overheard

transmission is an ACK, and it is uniformly distributed between (L h/C) and (Lh+Lpreamble/C)

if the overheard transmission is a data packet. Following the description in Section 2.1.1, it

can be shown that in unit time a node overhears

•

(n 1 + n

2 - n2/n1) (λn+λr) data packet transmissions, and

• (n 1 + n2 - n1/n2) λr ACK packet transmissions.

Therefore, the conditional probabilities of overhearing data and ACK packets are respectively

given by

The average sojourn time would then be obtained as:
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Making the same simplifying assumption as in (2.4)-(2.6) (i.e., by letting n 1 = n2 ) It

follows from (2.11):

which gives the average sojourn time

2.1.3 Transition Probabilities

Referring to Figure 2.2 the transition probabilities from Rx state to other state of the node

model are computed.

Data packets: After successful reception of data packet, nodes switch to Tx state

to transmit ACK packet. Consequently, the probability of going to Tx after data packet

reception correspond to the probability the the packet is received successfully. To capture

only the MAC related power consumption, it is assumed packet reception fails only in case

of collision.

Consider node x is receiving data from node y. For simplification, further consider

that only nodes in the neighborhood of node x but not in that of node y can cause a collision

with the packet from node y. In the worst case the number of interfering node is

There transition probability into Tx follows



and Erx (data, Tx) is the time spent by node x to receive the entire data packet including

preamble. Correspondingly, the probability of going into idle state is

ACK packets: First note that a node expecting/receiving ACK packet has been a data

packet transmitter at the previous state. If the ACK packet is received successfully the node

simply idles. However, unsuccessful/missing ACK represent the failure of the previously

sent data packet. The node switches to MAC contention mode for retransmission.

The same analysis made above to compute the probability of collision for data packets

can be made to compute the probability of collision of ACK packets.

where Erx (ack, MAC) is the time duration of an ACK packet. The probability of switching

to MAC contention and the probability of switching to idle are given by

Overhearing: The outcome of transmission overhearing is invariably switching to

sleep state, i.e.,
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2.2 Idle State Analysis

Idle listening corresponds to the state in which a node listens actively for potential transmit

or receive packets, and is a major source unnecessary energy consumption in sensor networks.

To reduce energy consumption due to idle listening, timeout policy is often used [6] to

automatically switch the controlled system into lower power consuming state.

In idle state, the events and the corresponding allowable actions of the decision maker

are (see also Figure 2.4):

Figure 2.4 Decision rule in idle state.

• no activity until a timeout threshold tth — goes to sleep,

• interruption of idling period because of new or backlogged data packet to be sent —

goes to Tx or MAC contention, depending on the channel condition, and

• interruption of idling period because of data packet to be received — goes to Rx.

Below, the probability of each of these events, corresponding sojourn times, and associated

costs are computed.

2.2.1 Action/Event Selection Probabilities

First note that when a node x is in idle state, all transmissions and receptions from or to

node x concern data packets, and no ACK packets are involved. The reason is that whenever

an ACK packet has to be transmitted or received, the node will either switch directly from
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Tx to Rx mode (to receive the ACK) or from Rx to Tx mode (to transmit the ACK). In

both cases no transition through the idle state is needed. In other words, when idling, a

node is not required to transmit or receive an ACK packet. However, an idling node can

overhear ACK packets from their neighbors. Thus, the idling period of node x can only be

interrupted due to (i) data packets to be transmitted by the node itself, (ii) data packets to be

received or overheard from neighboring nodes, and (iii) overhearing ACKs. It follows that

in the idling phase, the total rate of transmit attempt would be λn + λr , and the total rate of

receive/ovehear attempt would be n(λ n + λ r) + nλ, - (λn + λr ) = (n - 1)λn  + (2n - 1)λr,

where n( λn + λr ) represents the total number of data packets sent by n  neighbors of node x

and nλr  is the total number of ACK sent of which (λn + λr ) represents the portion destined

to node x.

Therefore, sleep timeout probability, i.e., the probability that there is no transmit,

receive, or overhearing activity until timeout tth occurs is given by

Correspondingly, transmit request probability, i.e., the probability of the idling period being

interrupted by a transmit or retransmit request is given by

where (1-e-n(λn+2λr)tth) is the probability that at least one activity (transmit or receive

request or overhearing) occurs before timeout and

, λ n + λr

/n(λ

n + 2λr

) represents the probability that

a data transmit request occurs before receive request, or overhearing.

A receive request or overhearing probability during the idle period is



23

2.2.2 Sojourn Times

As in the other states, the sojourn time in the idle state depends on the actions chosen by

the decision maker.

Sleep timeout: In the event of sleep timeout, the node stays in idle mode for the

time tth . Therefore,

Transmit/retransmit request: If the idle period is interrupted by a (re)transmit

request for a new or backlogged packet, there could be two possible outcomes: going to

Tx state or MAC contention (or carrier sense (CS)) state. Since the (re)transmit requests

arrival is a Poisson process with parameterλ

n + λ r

, the interarrival time is exponentially

distributed, however truncated at the upper limit of t th. The average sojourn time is therefore

Receive request or overhearing: Sinceλ

n 

andλ

r

 are Poisson distributed, the

interarrival times of receive requests and overhear signals are also exponentially distributed

with parameter (n - 1)λ

n

 + (2n - 1) λ

r

 Δ= λrx , however truncated at the upper limit of tth •

The corresponding average sojourn time is given by

2.2.3 Transition Probabilities

This section computes the transition probabilities out of idle state. Referring to Figure 2.4,

the transition probabilities in the event of sleep timeout or receive request are straight

forward:
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When a node in idle state needs to transmit its own data, the wireless channel is

first sampled according to the MAC protocol and the node only proceeds to Tx state if the

channel is found idle. Bellow, the probability of finding the channel idle is evaluated.

Since all data packets are of the same size, it takes a given amount of time to complete

the full cycle to sending data packet including preamble, actual data packet and subsequent

(eventual) ACK (see Figure 2.3). In the worst case, every transmission attempt from a

node causes the wireless channel to be unavailable for other neighboring nodes for a time

tTxCycle = Lpreamble+Ldata+LACK/C.The probability for a node (sayx)to find the the channel

idle is the probability that none the n neighboring nodes of node x initiated transmission in

preceding tTxCycle interval of time. It follows that

2.3 Transmit State Analysis

When a node is in transmit (Tx) mode, two alternative events are possible: the node is

transmitting either data, or ACK. After successfully sending a data packet, the transmitter

immediately switches to Rx mode to receive an ACK packet. If the data packet transmission

is in error (i.e., if no ACK is received), the transmitter goes to idle state from Tx state. At

the receiver end, after receiving the packet successfully, it goes to Tx state to send an ACK

packet and then becomes idle. The state transition rules are shown in Figure 2.5.
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Figure 2.5 Decision rule in transmit (Tx) state.

Note that, even if the data packet is received successfully at the receiver, it could

be retransmitted due to ACK failure (handled by the Rx state, shown in Figure 2.2). On

the other hand, if the data is not received successfully at the receiver, the data packet is

backlogged at the transmitter and from the idle state it goes through the MAC contention

phase for its retransmission attempt (as depicted in Figure 2.4).

2.3.1 Action/Event Selection Probabilities

In the transmit state, the net data packet arrival rate is λn + λ r and the ACK arrival rate isλ r

. Therefore, the event selection probabilities are, respectively,

2.3.2 Transition Probabilities

Here the same analysis as in the case of Rx is made. When Data packets are involved, all

packet collision assumed to happen only on receiver end because nodes in the neighborhood

of the transmitter refrain from transmitting if the sense any activity on the channel. The
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probability of packet failure due to collision is the same as in equation (2.15).

23.3 Sojourn Times

As in the Rx state, following the similar arguments for sojourn time evaluation,

2.4 Sleep State Analysis

In the sleep state the radio transceiver of the sensor node is switched off to avoid unnecessary

idle listening and minimize energy consumption. During the sleep state, if a transmit

request arrives at its own buffer, the node immediately wakes up to transmit the data

packet. Also, when without any transmit request, a sleeping node periodically wakes up

and samples the wireless channel for activity to maintain the network connectivity. If the

node detects any activity it switches to Rx mode. Otherwise, it goes to the next sleep

cycle. A fixed sleeping length t sleep is considered for all nodes. However, the occurrence

of sleep state of a node is independent of the others', so the probability of all nodes in the

same neighborhood being in sleep mode is negligible. Thus, in sleep state of a node three

alternative events can occur (see Figure 2.6).

• No activity: the sleeping period finishes without any transmit or receive request,

• Transmit request: immediate wakeup if a new packet arrives in node's own buffer

during the sleeping period, and
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• Receive request: Wake up after the current sleep period if a receive request is made

from a from neighboring node.

Figure 2.6 Decision rule in sleep state.

Here, as in the previous cases, although the above events are only known to the real

node at end of the current sleep cycle when the node samples the channel or checks its own

buffer, it is assumed that the virtual node controller possesses a-priori knowledge of the

events and select the appropriate actions just as soon as the node enters the current sleeping

cycle. Since the probability with which the virtual controller selects the different actions

equals the probability of occurrence of the corresponding events, the performance of the

SMDP is the same as that of the real node.

2.4.1 Action/Event Selection Probabilities

The probability of no activity in all n neighbors of the sleeping node and no new packet

arrival at the node's own buffer during a sleep period t sleep is given by

A transmit request arrives at its own buffer with probability
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Likewise, the probability of a sleeping node receiving a relay request from one of its

neighbors, but no new packet arrived at its own buffer, is given by

2.4.2 Sojourn Times

Since a receive request is attended only after the current sleep period, the sojourn time due

to receive request is the same as that due to no activity, which is

A transmit request originated at the sleeping node leads to two possibilities: going to

the Tx state (with clear channel) or the MAC contention (or CS) state (with channel busy).

Since in either case sojourn time is the same, as in case of idle state:

The transitions probabilities in sleep state are similar to that of Idle state (compare

Figure 2.6 and Figure 2.4).

2.5 MAC Contention

MAC contention resolution is used to make efficient use of the shared wireless medium

among nodes in the same vicinity. In the considered MAC scheme, a node samples the

wireless channel whenever it desires to transmit data, and backs-off for a random time if

the channel is not idle, otherwise the node transmits its data (see Figure 2.7). For simplicity

it is assumed that the back-off time is continuously uniformly distributed between 0 and

tback —of f• In the decision model, MAC contention (or physical carrier sensing, CS) corresponds



Figure 2.7 Decision rule in MAC contention state.

to a single action back-off selected with probability 1 whenever the node is this state.

A the end of each back-offperiod, the node samples the wireless channel again and transmits

its data if the channel is found idle, otherwise it backs-off for a random time.

The transition probabilities for MAC contention can be derived from that of idle state

(compare Figure 2.7 and Figure 2.4).

2.6 Cost Structure

To study the power consumption performance of a sensor node as a controlled stochastic

system, it is associated with the SMDP model a cost structure in which every pair of

allowable state action/event pair (i, i E I, aκE A(i)is associated with a cost rate

Ci (aκ ) at which costs are incurred of the sensor node is i and action/event ak is chosen.

Typically the cost structure associated with a SMDP defines the nature and the complexity

of the underlying optimization or evaluation problem. In general the cost incurred in a state

is made of a fixed lump sum state dependent cost, e.g. system initialization or switching

cost, and a state and action (possibly next state) dependent cost rate.

In our sensor node model, as energy consumption is the focus, costs are represented

in each state by communication related power consumption level of the sensor node. The

power consumption performance of the protocol governing the behavior of the node is then

computed as long run expected accumulated cost per unit time. Formally the long run

29



30

average cost under a policy f is defined as

where E(.) is the expectation operation and C(T) is the accumulated cost over a period of

time T. It has been shown in [12] that the long-run average cost can be compute as

Referring to Section 1.3.2, state transition probability of the embedded Markov process

{Xl } is Pij=ΣaκEA(i)pi(aκ)pi(aκ,j).The state probabilityπiis computed usingπ[Pij] =

π,whereΣiπi= 1.



CHAPTER 3

NUMERICAL RESULTS

This chapter presents an application of the proposed power consumption model and gives

results obtained through numerical computation. The proposed model of sensor nodes as

controlled stochastic dynamic systems is applied to study the effect on communication

related power consumption of node sleep cycle. As protocol designers, communication

scientists and engineers often face the optimal design and control problems. The goal of the

protocol designers is to find a fixed optimal value of system parameter, while communication

scientists and engineers search for strategies to dynamically control the system parameter

in order to achieve optimal system operation. In both cases, an in-depth understanding of

the system behavior under complex protocols is needed.

The Effect on Sleep Time on Power Consumption

To illustrate how the power consumption model can be used to gain in-depth understanding

of the complex behavior of sensor nodes under the combined actions of MAC protocols

and power management policies, a study of the effect of sleeping period on the node level

long run power consumption was made under low and high traffic load. In addition, based

on the traffic model and assumptions from Shapter 1.3, an energy consumption map of the

sensor field at was obtained for low and high traffic loads. In all numerical studies, network

radius considered is R = 100, and the sink is located at the center. Nodal radio range is

r = 10, and the near field distance do = 1. Node density (i.e., average number of neighbors

n of a node) and new traffic generation rate An is varied. An in turn modifies the relay traffic

A, (d).

Figure 3.1(a) shows both the power consumption and throughput performance of a

node x at fixed distance (d = 95) from the sink. As all nodes in the same neighborhood

sleep longer, the packet collision probability drops and the throughput of node increases
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which in turn increases the overall energy consumption due to transmission. Figure 3.1(b)

Figure 3.1 Long run average power consumption and throughput performance of a node
at d 95 from the sink. An,	 0.01.

shows the energy consumption per node as the length of sleep cycle is increased. The

results are counter intuitive: the long run average power consumption increases as a node

sleeps longer in each sleep cycle. To have an insight, a look needs to be taken on the node's

overall throughput performance. Because nodes have no queue, it is important in this case

to compare the node's power consumption performance to it's utilization. A throughput

performance factor is therefor introduced as the product of the probability that a node is in

transmit state, the probability that the node is transmitting data, and the probability that the

data is successfully received at the receiver end. As defined, the throughput performance

factor represents the effective utilization of the sensor node, i.e., the fraction of time the

node spends successfully sending data packet.

The previous observation is however only holds true for low traffic load. Refer to

Figure 3.2 where energy and throughput performances are shown for a node a distance

d = 40 to the sink. Since the traffic load is high in the neighborhood of node y, collision

is more likely and nodes (mostly backlogged) will spend more time in lower consuming

state (sleep and MAC contention). As a consequence, an increase in sleep time results in a

decrease in energy consumption, at the cost of lowered throughput performance.
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Figure 3.2 Effect of sleep cycle on nodal energy consumption and throughput at (d = 40.
A, = 0.01).

Existence of an Undesirable Operational Region

The above observation suggests the existence of two regions of operating conditions for the

sensor nodes:

• one desirable region in which an increase in traffic load results in an increase of

energy consumption, and

• one undesirable region in which sensor nodes in which an increase in traffic load may

result in a decrease in overall energy consumption because nodes, being overwhelmed

by traffic, block most of the incoming packets.

Although the analysis consider nodes with no buffer, the behavior of nodes in a practical

implementation will be similar to nodes behavior in the undesirable region if nodes are

overwhelmed beyond there storage capacity. In this case, most part of incoming traffic is

blocked and nodes spend most of the time in contention mode. Because energy consumption

in contention state is less than that required for packet transmission and reception, there is

an apparent net decrease in long run energy consumption. However, because throughput

also decreases at the same time, most of the energy is wasted resolving contention.

Avoiding the Undesirable Region
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The numerical results show that undesirable operational region can be avoided under given

traffic pattern by selecting node density and system parameters as to keep collision probability

low (<< 1.0) for all nodes at all time. This condition is met in Figure 3.3 where the

Figure 3.3 Energy consumption map of the sensor field with low traffic load. A n =
0.0001, n = 15.

nodes, when subject to very low traffic load, consume energy that mostly follow the traffic

pattern. However, Figure 3.4 shows a network scenario where nodes around the sink are

Figure 3.4 Power consumption map of the sensor field with high traffic load. A n = 0.01,
n = 15.

overwhelmed with traffic and operate in the undesirable region. Figure 3.3 also indicates

that for a given single sink location, a suitable distance-dependent node density could be

derived that would enable all nodes in the network spend the same amount of energy.
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Figure 3.5 Power consumption at various sleep time. a n = 0.1, d = 40.

The plots in Figure 3.5 show power consumption behavior with sleep time at different

node densities. Since the new traffic arrival rate is kept at a constant high (A n, = 0.1), at

very low sleep time, low node density cannot handle the traffic properly and shows the

undesired convex region as in Figure 3.4. This indicates again that, for a desirable network

behavior, there is an allowable traffic load with a given uniformly random node density.



CHAPTER 4

CONCLUSION

Power efficiency being a crucial requirement for adequate operation of battery-powered

sensor networks, accurate models are needed to evaluate power consumption performance

of communication protocols for wireless sensor networks. An analytic model for capturing

the power consumption of a peer-to-peer communicating sensor node under a given

communication protocol was developed. A sensor node was modeled as a controlled

stochastic dynamic system, and the model was formulated as a semi-Markov decision

process, wherein a node's states, sojourn times, and the transition probabilities are controlled

by a virtual node controller, that is specific to a given communication protocol set. The

energy efficiency of a protocol was measured as a long-run average cost per unit time.

The developed model assumed a preamble sampling based low power communication

protocol as an underlying MAC protocol and a random forwarding strategy that randomly

selects a forward direction node for multi-hop forwarding a packet. The numerical results

demonstrated that the model can be effectively used as a tool for optimizing different

protocol parameters to achieve energy efficient communication goals.

Although constraining assumptions on the traffic buffering model have been used

for the sake of analytical tractability, the proposed methodology can be extended to more

practical traffic models and will be useful in power-aware sensor networks design without

requiring to conduct extensive field studies and simulations. With minor modifications, the

model can also be used for comparing performances of different communication protocols

in sensor networks and can provide guidelines to determining energy consumption pattern

for a given node and sink deployment strategy and vice versa.

Future extensions of this work include incorporating other effective collision avoidance

strategies (e.g., RTS-CTS-like hand shaking [1]), finite buffering assumption at nodes,
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other forwarding strategies (e.g., directed diffusion [16)), and carrying out discrete-event

simulations with more realistic network and traffic assumptions.
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