3 research outputs found

    자동 운율 복제를 위한 모음 길이와 기본 주파수 예측

    Get PDF
    학위논문 (석사)-- 서울대학교 대학원 : 인문대학 협동과정 인지과학전공, 2018. 8. 정민화.The use of computers to help people improve their pronunciation skills of a foreign language has rapidly increased in the last decades. Majority of such Computer-Assisted Pronunciation Training (CAPT) systems have been focused on teaching correct pronunciation of segments only, however, while prosody received much less attention. One of the new approaches to prosody training is self-imitation learning. Prosodic features from a native utterance are transplanted onto learners own speech, and given back as corrective feedback. The main drawback is that this technique requires two identical sets of native and non-native utterances, which makes its actual implementation cumbersome and inflexible. As a preliminary research towards developing a new method of prosody transplantation, the first part of the study surveys previous related works and points out their advantages and drawbacks. We also compare prosodic systems of Korean and English, point out major areas of mistakes that Korean learners of English tend to do, and then we analyze acoustic features that this mistakes are correlated with. We suggest that transplantation of vowel duration and fundamental frequency will be the most effective for self-imitation learning by Korean speakers of English. The second part of this study introduces a new proposed model for prosody transplantation. Instead of transplanting acoustic values from a pre-recorded utterance, we suggest to use a deep neural network (DNN) based system to predict them instead. Three different models are built and described: baseline recurrent neural network (RNN), long short-term memory (LSTM) model and gated recurrent unit (GRU) model. The models were trained on Boston University Radio Speech Corpus, using a minimal set of relevant input features. The models were compared with each other, as well as with state-of-the-art prosody prediction systems from speech synthesis research. Implementation of the proposed prediction model in automatic prosody transplantation is described and the results are analyzed. A perceptual evaluation by native speakers was carried out. Accentedness and comprehensibility ratings of modified and original non-native utterances were compared with each other. The results showed that duration transplantation can lead to the improvements in comprehensibility score. This study lays the groundwork for a fully automatic self-imitation prosody training system and its results can be used to help Korean learners master problematic areas of English prosody, such as sentence stress.Chapter 1. Introduction . 10 1.1 Background. 10 1.2 Research Objective 12 1.3 Research Outline. 15 Chapter 2. Related Works. 16 2.1 Self-imitation Prosody Training. 16 2.1.1 Prosody Transplantation Methods . 18 2.1.2 Effects of Prosody Transplantation on Accentedness Rating 23 2.1.3 Effects of Self-Imitation Learning on Proficiency Rating 26 2.2 Prosody of Korean-accented English Speech 28 2.2.1 Prosodic Systems of Korean and English 28 2.2.2 Common Prosodic Mistakes. 29 2.3 Deep Learning Based Prosody Prediction 34 2.3.1 Deep Learning . 34 2.3.2 Recurrent Neural Networks 35 2.3.2 The Long Short-Term Memory Architecture. 37 2.3.3 Gated Recurrent Units. 39 2.3.4 Prosody Prediction Models 40 Chapter 3. Vowel Duration and Fundamental Frequency Prediction Model 43 3.1 Data 43 3.2. Input Feature Selection. 45 3.3 System Architecture and Training 56 3.4 Results and Evaluation 63 3.4.1 Objective Metrics. 63 3.4.2 Vowel Duration Prediction Models Results. 65 3.4.2 Fundamental Frequency Prediction Models Results 68 3.4.3 Comparison with other models . 68 Chapter 4. Automatic Prosody Transplantation 72 4.1 Data 72 4.2 Transplantation Method. 74 4.3 Perceptual Evaluation 79 4.4 Results 80 Chapter 5. Conclusion. 82 5.1 Summary 82 5.2 Contribution 84 5.3 Limitations 85 5.4 Recommendations for Future Study. 85 References 88 Appendix 96Maste

    Statistical Parametric Methods for Articulatory-Based Foreign Accent Conversion

    Get PDF
    Foreign accent conversion seeks to transform utterances from a non-native speaker (L2) to appear as if they had been produced by the same speaker but with a native (L1) accent. Such accent-modified utterances have been suggested to be effective in pronunciation training for adult second language learners. Accent modification involves separating the linguistic gestures and voice-quality cues from the L1 and L2 utterances, then transposing them across the two speakers. However, because of the complex interaction between these two sources of information, their separation in the acoustic domain is not straightforward. As a result, vocoding approaches to accent conversion results in a voice that is different from both the L1 and L2 speakers. In contrast, separation in the articulatory domain is straightforward since linguistic gestures are readily available via articulatory data. However, because of the difficulty in collecting articulatory data, conventional synthesis techniques based on unit selection are ill-suited for accent conversion given the small size of articulatory corpora and the inability to interpolate missing native sounds in L2 corpus. To address these issues, this dissertation presents two statistical parametric methods to accent conversion that operate in the acoustic and articulatory domains, respectively. The acoustic method uses a cross-speaker statistical mapping to generate L2 acoustic features from the trajectories of L1 acoustic features in a reference utterance. Our results show significant reductions in the perceived non-native accents compared to the corresponding L2 utterance. The results also show a strong voice-similarity between accent conversions and the original L2 utterance. Our second (articulatory-based) approach consists of building a statistical parametric articulatory synthesizer for a non-native speaker, then driving the synthesizer with the articulators from the reference L1 speaker. This statistical approach not only has low data requirements but also has the flexibility to interpolate missing sounds in the L2 corpus. In a series of listening tests, articulatory accent conversions were rated more intelligible and less accented than their L2 counterparts. In the final study, we compare the two approaches: acoustic and articulatory. Our results show that the articulatory approach, despite the direct access to the native linguistic gestures, is less effective in reducing perceived non-native accents than the acoustic approach

    Developing Sparse Representations for Anchor-Based Voice Conversion

    Get PDF
    Voice conversion is the task of transforming speech from one speaker to sound as if it was produced by another speaker, changing the identity while retaining the linguistic content. There are many methods for performing voice conversion, but oftentimes these methods have onerous training requirements or fail in instances where one speaker has a nonnative accent. To address these issues, this dissertation presents and evaluates a novel “anchor-based” representation of speech that separates speaker content from speaker identity by modeling how speakers form English phonemes. We call the proposed method Sparse, Anchor-Based Representation of Speech (SABR), and explore methods for optimizing the parameters of this model in native-to-native and native-to-nonnative voice conversion contexts. We begin the dissertation by demonstrating how sparse coding in combination with a compact, phoneme-based dictionary can be used to separate speaker identity from content in objective and subjective tests. The formulation of the representation then presents several research questions. First, we propose a method for improving the synthesis quality by using the sparse coding residual in combination with a frequency warping algorithm to convert the residual from the source to target speaker’s space, and add it to the target speaker’s estimated spectrum. Experimentally, we find that synthesis quality is significantly improved via this transform. Second, we propose and evaluate two methods for selecting and optimizing SABR anchors in native-to-native and native-to-nonnative voice conversion. We find that synthesis quality is significantly improved by the proposed methods, especially in native-to- nonnative voice conversion over baseline algorithms. In a detailed analysis of the algorithms, we find they focus on phonemes that are difficult for nonnative speakers of English or naturally have multiple acoustic states. Following this, we examine methods for adding in temporal constraints to SABR via the Fused Lasso. The proposed method significantly reduces the inter-frame variance in the sparse codes over other methods that incorporate temporal features into sparse coding representations. Finally, in a case study, we examine the use of the SABR methods and optimizations in the context of a computer aided pronunciation training system for building “Golden Speakers”, or ideal models for nonnative speakers of a second language to learn correct pronunciation. Under the hypothesis that the optimal “Golden Speaker” was the learner’s voice, synthesized with a native accent, we used SABR to build voice models for nonnative speakers and evaluated the resulting synthesis in terms of quality, identity, and accentedness. We found that even when deployed in the field, the SABR method generated synthesis with low accentedness and similar acoustic identity to the target speaker, validating the use of the method for building “golden speakers”
    corecore