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Abstract

Vowel Duration and Fundamental 

Frequency Prediction for Automatic 

Transplantation of Native English 

Prosody onto Korean-accented Speech

Matsvei Sabaleuski 

Interdisciplinary Program in Cognitive Science

The Graduate School

Seoul National University

The use of computers to help people improve their pronunciation skills of a 

foreign language has rapidly increased in the last decades. Majority of such

Computer-Assisted Pronunciation Training (CAPT) systems have been 

focused on teaching correct pronunciation of segments only, however, while 

prosody received much less attention. One of the new approaches to prosody 

training is self-imitation learning. Prosodic features from a native utterance 

are transplanted onto learner’s own speech, and given back as corrective 

feedback. The main drawback is that this technique requires two identical sets 

of native and non-native utterances, which makes its actual implementation 

cumbersome and inflexible. 

As a preliminary research towards developing a new method of prosody 

transplantation, the first part of the study surveys previous related works and 

points out their advantages and drawbacks. We also compare prosodic 



4

systems of Korean and English, point out major areas of mistakes that Korean 

learners of English tend to do, and then we analyze acoustic features that this 

mistakes are correlated with. We suggest that transplantation of vowel 

duration and fundamental frequency will be the most effective for self-

imitation learning by Korean speakers of English. 

The second part of this study introduces a new proposed model for prosody 

transplantation. Instead of transplanting acoustic values from a pre-recorded 

utterance, we suggest to use a deep neural network (DNN) based system to 

predict them instead. Three different models are built and described: baseline 

recurrent neural network (RNN), long short-term memory (LSTM) model and 

gated recurrent unit (GRU) model. The models were trained on Boston 

University Radio Speech Corpus, using a minimal set of relevant input 

features. The models were compared with each other and as well as with state-

of-the-art prosody prediction systems from speech synthesis research. 

Implementation of the proposed prediction model in automatic prosody 

transplantation is described and the results are analyzed. A perceptual 

evaluation by native speakers was carried out. Accentedness and 

comprehensibility ratings of modified and original non-native utterances were 

compared with each other. This study lays the groundwork for a fully 

automatic self-imitation prosody training system and its results can be used to 

help Korean learners master problematic areas of English prosody, such as 

sentence stress.

Keywords: Computer-assisted pronunciation training, Korean-accented 

English Prosody, Prosody transplantation, Prosody prediction, Deep Neural 

Networks (DNN)

Student Number: 2015-23283



5

Contents

Chapter 1. Introduction .......................................................................................10

1.1 Background...............................................................................................10

1.2 Research Objective....................................................................................12

1.3 Research Outline.......................................................................................15

Chapter 2. Related Works ...................................................................................16

2.1 Self-imitation Prosody Training.................................................................16

2.1.1 Prosody Transplantation Methods .........................................................18

2.1.2 Effects of Prosody Transplantation on Accentedness Rating ......................23

2.1.3 Effects of Self-Imitation Learning on Proficiency Rating ..........................26

2.2 Prosody of Korean-accented English Speech..............................................28

2.2.1 Prosodic Systems of Korean and English................................................28

2.2.2 Common Prosodic Mistakes .................................................................29

2.3 Deep Learning Based Prosody Prediction ..................................................34

2.3.1 Deep Learning ...................................................................................34

2.3.2 Recurrent Neural Networks..................................................................35

2.3.2 The Long Short-Term Memory Architecture ...........................................37

2.3.3 Gated Recurrent Units.........................................................................39

2.3.4 Prosody Prediction Models ..................................................................40

Chapter 3. Vowel Duration and Fundamental Frequency Prediction Model ..43

3.1 Data ..........................................................................................................43

3.2. Input Feature Selection.............................................................................45

3.3 System Architecture and Training..............................................................56

3.4 Results and Evaluation ..............................................................................63

3.4.1 Objective Metrics ...............................................................................63

3.4.2 Vowel Duration Prediction Models Results.............................................65

3.4.2 Fundamental Frequency Prediction Models Results..................................68

3.4.3 Comparison with other models .............................................................68



6

Chapter 4. Automatic Prosody Transplantation ................................................72

4.1 Data ..........................................................................................................72

4.2 Transplantation Method.............................................................................74

4.3 Perceptual Evaluation................................................................................79

4.4 Results ......................................................................................................80

Chapter 5. Conclusion .........................................................................................82

5.1 Summary ..................................................................................................82

5.2 Contribution..............................................................................................84

5.3 Limitations................................................................................................85

5.4 Recommendations for Future Study...........................................................85

References ............................................................................................................88

Appendix ..............................................................................................................96



7

List of Tables

Table 2.1. Review of previous research on self-imitation prosody learning.

Table 2.2. Mean and standard deviation of prosodic elements. 

Table 2.3. Review of previous research on DNN-based prosody prediction.

Table 3.1. Duration in minutes of speech, and other statistics about the radio 

news stories. 

Table 3.2. Characteristics of the news stories recorded in the lab for multiple 

speakers.

Table 3.3. F2B speaker, duration by phoneme type.

Table 3.4. F3A speaker, duration by phoneme type.

Table 3.5. F2B speaker, F0 by phoneme type.

Table 3.6. F3A speaker, F0 by phoneme type.

Table 3.7. F2B speaker, duration by stress.

Table 3.8. F3A speaker, duration by stress.

Table 3.9. F2B speaker, F0 by stress.

Table 3.10. F3A speaker, F0 by stress.

Table 3.11. F2B speaker, POS tag by stress.

Table 3.12. F3A speaker, POS tag by stress.

Table 3.13. F2B speaker, POS tag by stress.

Table 3.14. F3A speaker, POS tag by stress.

Table 3.15. ToBI break index values.

Table 3.16. ToBI pitch accents.

Table 3.17. F2B speaker, duration by break tag.

Table 3.18. F2B speaker, F0 by break tag.

Table 3.19. F2B speaker, duration by pitch accent tag.

Table 3.20. F2B speaker, F0 by pitch accent tag.

Table 3.21. Objective metrics for the vowel duration model.



8

Table 3.22. Objective metrics for the fundamental frequency model.

Table 3.23. Comparison with other models.

Table 4.1. Comparison of original non-native and predicted vowel duration 

values.

Table 4.2. Comparison of original non-native and predicted F0 values.



9

List of Figures

Figure 2.1. PSOLA prosodic modification framework

Figure 2.2. PSOLA prosodic modification framework

Figure 2.3. Alignment of speech segments and duration transplantation.

Figure 2.4. Native F0 imposition.

Figure 2.5. Accent and speech quality ratings for each transplantation type.

Figure 2.6. Percentage of stress reduction in learner speech as compared to 

that in native speech.

Figure 2.7. Mean ratios of acoustic values between stressed and unstressed 

vowels.

Figure 2.8. Feedforward network with a single hidden layer containing two 

units.

Figure 2.9. Bidirectional RNN architecture.

Figure 2.10. LSTM architecture.

Figure 2.11. An illustration of GRU.

Figure 3.1. Model architecture outline.

Figure 3.2. Bi-directional LSTM layer.

Figure 3.3. Tangent function.

Figure 3.4. Scatter plot of loss value at each step.

Figure 4.1. Labelled non-native utterance.

Figure 4.2. Example of a TextGrid file with predicted duration values.

Figure 4.3. Python code for comparison of duration between segments.

Figure 4.4. Original contour.

Figure 4.5. Modified contour.

Figure 4.6. Evaluation spreadsheet.

Figure 4.7. Mean accentedness ratings for original and manipulated utterances.

Figure 4.8. Mean comprehensibility ratings for original and manipulated utterances.



10

Chapter 1. Introduction

1.1 Background

Computer-assisted pronunciation training (CAPT) has been attracting 

significant research over the past decades, with the growing number of people 

preferring to learn foreign languages online compared to a traditional 

classroom environment (Jilka and Mohler, 1998; Sundstrom, 1998; Murray, 

1999; Probst et al., 2002; Eskenazi, 2009; Felps et al., 2009; De Meo et al., 

2013; Pellegrino and Vigliano, 2015). CAPT systems benefit learners in 

various aspects: they are able to offer individualized one-on-one tutoring 

regardless of constraints in time and place, allowing students to learn at their

own preferred pace. A study by Murray (1999) shows that users are more 

comfortable practicing pronunciation in a private setting, where they can 

avoid anxiety and embarrassment. Moreover, the feedback generated in CAPT 

system has an advantage in that it can provide feedback, specific to the native 

language of a learner, whereas the instructor in conventional classroom 

environment cannot address and is not necessarily aware of L1 diversities. 

This is an important advantage because learners’ mother tongue influences the 

target language production in foreign language learning, indicating that 

different types of feedbacks are required for each L1; and addressing the L1 

influence is a strength of a CAPT system.  

Typically, during a CAPT session, a student listens to an utterance

pronounced by a native speaker (teacher) and tries to imitate it as closely as 

possible. If the student makes a mistake, corrective feedback is given back, 

typically the same sentence, but recorded with a native speaker voice. Recent 

research has shown the importance of the student/teacher voice similarity on 

the effectiveness of such feedback (Watson and Kewley-Port, 1989; Jilka and 
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Mohler, 1998; Sundstrom, 1998). It was found that the closer teacher’s voice 

resembles the student’s voice in terms of fundamental frequency (F0) and 

articulation rate, the better result can be achieved (Probst et al., 2002; Felps et 

al., 2009). Such ideal feedback voice is often called ‘golden voice’, and is 

considered to be the voice of the student himself. That can be achieved by 

performing accent conversion. The rationale is that, by stripping away 

information that is only related to the teacher ’ s voice quality, accent 

conversion makes it easier for students to perceive differences between their 

accented utterances and their ideal accent-free counterparts.

Pronunciation training, during which a learner receives feedback in his/her 

own voice, but with a native accent, is often called self-imitation learning.

Studies have shown that self-imitation learning can be rather effective, 

especially when trying to improve accentedness, comprehensibility or 

intelligibility of speech (De Meo et al., 2013; Pellegrino and Vigliano, 2015). 

As such it has great potential when the aim is to improve the mastery of 

prosody of the foreign language. So far, the majority of CAPT systems have 

being focused on teaching correct pronunciation of segments. 

Suprasegmentals, on the other hand, have received much less attention. Here 

by suprasegmentals, or prosody, we understand a level of linguistic 

representation at which the acoustic-phonetic properties of an utterance vary 

independently of its lexical items. Prosody deals with suprasegmental features 

of speech, those that are bigger than a phoneme, which are typically syllables, 

words, phrases, etc. It encompasses a range of phenomena: emphasis, pitch 

accents, intonational breaks, rhythm, intonation and others. But intonation, 

speech rate and other elements of prosody play an important role in not only 

global accent overall, but in basic communication – comprehensibility and 

intelligibility of speech (Boula de Mareuil et al., 2004; Pellegrino, 2012; 

Rognoni and Grazia Busa, 2013; Sereno et al., 2016).
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As such, self-imitation learning can be of great help to Korean learners of 

English. In English, every word has one or more lexical stress depending on 

the structure of the word and the number of syllables, but not all word stresses 

are phonetically realized in an utterance. Stress imposed on the utterance level 

has been traditionally called ‘sentence stress’. Korean learners of English 

typically have great difficulties with rhythm and fluency of their speech (Kim 

and Flynn, 2004; Um, 2004; Kim, 2005; Lee et al., 2006; Jun, 2009; Kang et 

al., 2012; Yoo, 2012). Low proficiency learners tend to place sentence stress 

on most of the words in a sentence, even on function words. They tend to use 

strong vowels even in unstressed syllables, giving the impression of syllable-

timed rhythm to native English listeners. Self-imitation prosody training could 

potentially help them to eliminate these problems.

1.2 Research Objective

To achieve ‘golden voice’ for prosody self-imitation training, a prosody 

transplantation technique must be applied. The most commonly used method

is based on the pitch synchronous overlap and add (PSOLA) technique

(Charpentier and Stella, 1986; Moulines and Charpentier, 1990; Valbret et at., 

1992). It allows to manipulate and change segmental duration and F0 of the 

original utterance to match that pronounced by a native speaker. 

This transplantation method has a number of restrictions, though. The 

major drawback is that a set of two identical recorded utterances (by learner 

and native speaker) is required; both must be annotated and must contain the 

exact same number of segments. This alone imposes two challenges for its 

real learning environment implementation. First, recording of teaching 

material with a native speaker can be cost-heavy and time-consuming. Second, 

a pronunciation mistake by learner (mispronunciation, omission, deletion, etc.) 

can prevent the system from working properly, due to the different number of 
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segments. Moreover, the results of such transplantation greatly depend on 

selection of a good native speaker voice. Additionally, voice of the same 

person can vary greatly between different recordings of the same utterance.

These problems explain why there has been little actual application of the 

prosody transplantation technique so far, and at the same time it motivates this 

study. Our hypothesis is that prosody transplantation can be carried out using 

predicted acoustic values (duration and F0), instead of copying them from 

pre-recorded utterances. The prediction model can have similar architecture to 

those, used for prosody prediction in speech synthesis. Recently, that topic 

has attracted considerable attention, with new deep learning-based methods 

(Fernandez et al., 2013; Ding et al., 2015; Su et al., 2016; Bernardi and 

Themistocleous, 2017). By doing that the entire prosody transplantation 

procedure can be potentially automated.

The research objectives are as follows.

Research objective 1. So far, prosody transplantation research concentrated 

on universal transplantation of prosodic parameters to all the segments within 

the utterance. But such approach does not really tell the learner what kind of 

mistake and where was made. As such we aim to investigate the typical 

prosodic mistakes of target learners (L1 Korean speakers of English), and 

propose a selective transplantation strategy that should give them a more 

valuable feedback.

Research objective 2. The next objective is to determine what kind of input 

features will be most effective for a potential prosody prediction model. More 

features is not always better, as not all of them might be contributing to the 

results. Additionally, automatic application of prosody transplantation 

imposes certain constraints: only automatically obtainable features are 

preferable.

Research objective 3. The main objective is to introduce a prosody 
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prediction model for automatic prosody transplantation. We will build a 

number of model, that will primarily rely on input that can be obtained 

automatically and evaluate its performance. 

Research objective 4. The final objective is to show how such prediction 

model can be applied to automatic prosody transplantation and evaluate its 

performance.

To achieve these objectives, the following will be undertaken:

l We will build vowel duration and fundamental frequency prediction 

system based on recurrent neural network (RNN) architectures in 

Python1 programming language, using TensorFlow2 library for deep 

learning. 

l The models will be trained on data from a native American English 

corpus – the Boston University Radio Speech Corpus3. 

l Predicted values will be used in a prosody transplantation experiment

on L1 Korean English data, using Praat4 and Python’s Promo5

library.

l The results of the prosody transplantation will be evaluated in a 

perceptual listening experiment.

The results can be used to help Korean learners master such problematic 

areas of English prosody for them, like sentence stress and rhythm. The 

findings can be also extended to other language pairs. Potentially, the 

proposed model can be integrated into any existing prosody oriented CAPT 

                                                       
1 Python software is available from https://www.python.org/ ..
2 Tensorflow software is available from https://www.tensorflow.org/ and is 
introduced in Abadi et al. (2016).
3 BURSC is available from https://catalog.ldc.upenn.edu/LDC96S36 and is described 
in Ostendorf et al. (1996).
4 Praat software is available from http://www.praat.org/ and described in Boersma
(2011).
5 Prosody-Morphing (ProMo) library is available from 
https://github.com/timmahrt/promo .
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system. One area of research that requires further study is perceptual 

evaluation of transplantation results.

1.3 Research Outline

This study focused on the answering the before mentioned research 

questions. The results of the following research question will be defined in 

Chapter 4 after being discussed in each chapter.

Chapter 2 surveys previous studies on self-imitation learning and prosody 

transplantation. We compare prosodic systems of English and Korean and 

point out typical mistakes, that Korean learners are prone to do. It also 

introduces deep learning and its application in prosody prediction research. 

In Chapter 3 we describe the proposed models’ architecture and input data, 

build two separate models for vowel duration and fundamental frequency

prediction respectively, and evaluate the results.

In Chapter 4 we also show how predicted values from the proposed model 

can be implemented in an automatic prosody transplantation experiment. We 

also investigate the results of such transplantation using perceptual listening 

evaluation.

Chapter 5 concludes the thesis, summarizes the results, points out its 

limitations as well as areas for future study.
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Chapter 2. Related Works

2.1 Self-imitation Prosody Training 

During self-imitation learning, feedback is given back to the student in 

his/her own voice, but with the prosodic features of a native speaker. It is 

claimed that such type of learning can provide more motivation that any of the 

more traditional approaches (Probst et al., 2002; Yoon, 2007; Felps et al., 

2009).  A typical self-imitation training session can consist of the following: 

self-imitation learning “software plays the target sentence uttered by a native 

speaker, records what the language learner repeats, imposes only the prosodic 

features of the native speaker onto the learner’s utterance, and plays back the 

learner’s utterance with the native speaker’s prosody, demonstrating to the 

second language learners that they could “speak” like the native speaker” 

(Yoon, 2007).

Various research has recently appeared in the field of L2 learning that 

employ transforming foreign-accented speech into its native-accented 

counterpart. Either segmental, prosodic or both transformations cab be done,

although prosodic transplantation is more common. Research so far has been 

done for a number of different foreign accents of English: Spanish, Italian, 

French, Indian, Korean, Chinese, and Japanese accents (Felpts et al., 2009; 

Zhao et al., 2012; Aryal et al., 2013; Park, 2013; Rognoni and Grazia Busa, 

2013; Sereno et al., 2016). Other investigates language pairs are: Spanish, 

Chinese and Japanese-accented Italian (De Meo et al, 2013; Pellegrino and 

Vigliano, 2015; Sereno et al., 2016), Italian-accented Spanish (Boula de 

Mareuil et al., 2004), French-accented German (Jugler et al., 2016), and 

Polish-accented French (Kaglik and Boula de Mareuil, 2010).
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Table 2.1. Review of previous research on self-imitation prosody learning.

Author Language Method Features Data Evaluation

Kaglik, et 
al. (2010).

Polish L2 
French

PSOLA, 
text-to-
speech 
synthesis

Duration, 
F0

Recorded 
and 
synthesized 
speech

Perceptual 
evaluation

Bonneau, 
et al. 
(2011)

French L2 
English

TD-
PSOLA

Duration, 
F0

Recorded 
speech

Training 
session and 
parametric 
comparison

Felps, et 
al. (2009)

Indian L2 
English

FD-
PSOLA

Duration, 
F0

Recorded 
speech

Perceptual 
evaluation

De Meo, 
et al. 
(2013)

Chinese 
L2 Italian

PSOLA

Duration, 
F0, 
intensity, 
articulation 
rate

Recorded 
speech

Training 
session and 
perceptual 
evaluation

Pettorino, 
et al. 
(2012)

Italian L2 
English

PSOLA
Duration, 
F0, 
intensity

Recorded 
speech

Spectrographic 
comparison

Yoon 
(2007)

Korean L2 
English

TD-
PSOLA

Duration, 
F0, 
intensity

Recorded 
speech

Spectrographic 
comparison

Pellegrino, 
et al. 
(2015)

Japanese 
L2 Italian

PSOLA
Duration, 
F0, 
intensity

Recorded 
speech

Training 
session and 
perceptual 
evaluation

Zhao, et 
al. (2012)

Chinese 
L2 
English

LP-
PSOLA

Duration, 
F0

Recorded 
speech

Speech 
recognition 
score

Sereno, et 
al. (2014)

Korean L2 
English

PSOLA
Duration, 
F0

Recorded 
speech

Perceptual 
evaluation

Boula de 
Mareul, et 
al. (2004)

Spanish 
L2 Italian, 
Italian L2 
Spanish

TD-
PSOLA

Duration, 
F0

Recorded 
and 
synthesized 
speech

Perceptual 
evaluation

Jugler, et 
al. (2016)

French L2 
German

TD-
PSOLA

Duration, 
F0

Recorded 
speech

Perceptual 
evaluation

Park 
(2012)

Korean, 
Japanese 
and 
Chinese 
L2 
English

TD-
PSOLA

Duration, 
F0

Recorded 
speech

Perceptual 
evaluation

Rognoni, 
et al 
(2014)

Italian L2 
English

TD-
PSOLA

Duration, 
F0

Recorded 
speech

Perceptual 
evaluation
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In Table 2.1 we summarize and analyse prosody transplantation studies 

done so far. For the comparison we used the following relevant criteria: 

language pair used for transplantation, transplanted prosodic features, method 

of transplantation, what kind of data was used, and how the results were 

evaluated. Overall, there are two common sub-areas of research: perceptual 

effects of prosody transplantation on accentedness (or similar ratings) and 

effects of self-imitation learning on language proficiency.

2.1.1 Prosody Transplantation Methods

Prosody transplantation can be achieved by employing a speech 

modification technique. The intonation and duration manipulation of speech 

signal have been a subject of great interest and several methods have been 

proposed to address this problem, with pitch synchronous overlap-add 

(PSOLA) being the most popular one. PSOLA allows to change the duration 

or shift the pitch of speech signals. Its main advantages are simplicity of the 

algorithm itself, rather good quality and fast execution speed. 

The PSOLA algorithm involves the following three steps: “an analysis of 

the original speech waveform in order to produce an intermediate non-

parametric representation of the signal, modifications brought to this 

intermediate representation, and finally the synthesis of the modified signal 

from the modified intermediate representation” (Moulines and Charpentier, 

1990, p.2). 
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The first step (analysis) consists in decomposing the excitation waveform 

x(n) into a sequence of short-term (ST) signals xm(n), synchronized with the 

local pitch-period. These ST-signals are obtained by multiplying the signal by 

Figure 2.1. PSOLA prosodic modification framework. Time-scaling operation, 
aimed at speeding up the speech signal. It is achieved by selective elimination of 

the analysis ST-signals (Valbert et al., 1992)

Figure 2.2. PSOLA prosodic modification framework. Pitch-scale modification. 
It is achieved by modifying the time delay between pitch-marks (Valbert et al., 

1992).
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a sequence of pitch-synchronous analysis windows hm (n), usually of the

Hanning type:

The windows are centred around successive instants called pitch-marks tm, 

which are set at a pitch-synchronous rate on the voiced portions of the signal 

and at a constant rate on the unvoiced portions. The windows are always 

longer than one single pitch period, so that neighbouring ST signals overlap 

with each other. Their length is proportional to the local pitch period, with the 

proportionality factor μ lying between 2 and 4 (2 for low-pitch male voices, 3 

for high-pitch female voices).

The second step is modification. The sequence of analysis ST signals xm(n)

is converted into a modified stream of synthesis ST-signals, synchronized on 

a new set of synthesis pitch-marks. These synthesis pitch-marks are 

determined in order to comply with the desired prosodic modifications. Such 

a conversion involves three basic operations: a modification of the number of 

ST-signals, a modification of the delays between the ST-signals, and possibly, 

a modification of the waveform of each individual ST-signal. An excitation 

signal with modified pitch-scale and time-scale is then obtained by overlap-

adding the stream of synthesis short-term signals. 

In the Time-Domain PSOLA (TD-PSOLA) approach, the synthesis ST-

signals are obtained by simply copying a version of the corresponding 

analysis signal, so that the algorithm consists in selecting a certain number of 

analysis ST-signals xm(n) and translating them by the sequence of delays

δ� = t�̃ − t�:

xm(n) = hm (tm- n) x(n).

���(�) = 	���� − ���
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In the Frequency-Domain PSOLA (FD-PSOLA) approach, the synthesis 

ST-signals are obtained by a frequency-domain transformation of the 

translated signal.

The last stage is to synthesize the signal: this is done by filtering the 

modified excitation signal by synthesis filters synchronized with the synthesis 

pitch-marks, and derived from the analysis filters through a simple 

interpolation procedure. The process is illustrated in Figure 2.1. and Figure 

2.2., showing the two simple cases of time-scaling and pitch-scaling.

The most commonly used PSOLA method is time-domain modification 

(TD-PSOLA), followed by frequency domain modification (FD-PSOLA), and 

linear prediction modification (LP-PSOLA). Time domain approach is known 

to be more advantageous, because it requires much lower computational effort 

and provides good quality over a moderate transformation scale and is 

relatively fast (Valbret et al., 1992).  The main drawback is that time-scaling 

by up by factor greater than two (twice longer or shorter) can cause noticeable 

Figure 2.3. Alignment of speech segments and duration transplantation. Taken 

from Yoon (2007).

Figure 2.4. Native F0 imposition. Taken from Yoon (2007).
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degradation in quality. If corresponding segments in native and original non-

native utterance differ from each other more than that, duration distortion can 

be severe. As a result, might need to ask native speakers to decrease their rate 

of speech. 

Yoon was one of the first to suggest using TD-PSOLA for self-imitation 

learning prosody transplantation (Yoon, 2007). The transplantation was done 

in the following stages. First, segment alignment for both native and non-

native utterances was performed (see Figure 2.3). After that, by implementing 

PSOLA in Praat, non-native segment’s length was adjusted to resemble that 

of the native ones. Then intensity contour was transplanted using a Praat 

script: original contour was mathematically 'neutralized' and native intensity 

contour was imposed instead. And finally F0 contour of the non-native 

utterance was replaced with F0 contour of a the native one (see Figure 2.4). 

Additionally, utterances with only one or two acoustic features were 

transplanted as well. By conducting a spectrographic comparison, it was 

determined that duration and F0 modification, as well as F0 only modification 

yield results, resembling the original native prosody the most.

The obtained modified utterances were compared spectrographically. After 

application of all 3 techniques two utterances became almost identical 

prosodically, although there were present some sub-segmental variations. To 

determine how each of these features contributes to accent reduction, the 

author also compared utterances in which only 1 or 2 of these features were 

cloned. F0 contour only and duration and F0 contour modifications seemed to 

resemble native prosody the most. 

Although the results of the transplantation were deemed satisfactory, the 

experiment has a number of limitations. Only spectrographically evaluation 

was performed, though perceptual evaluation by native speakers might be 

considered a more reliable method. Additionally, transplantation was applied 
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only on segmental level, using syllables or phoneme sub-segments might give 

rather different results. Finally, transplantation can be applied selectively, 

when only predetermined target segments will receive modification.

Nevertheless, PSOLA is one of the easiest methods to implement, and has 

been widely used in prosody transplantation research. TD-PSOLA 

implemented in Praat is the most widely used method, probably due to its 

relatively easy implementation and good speed. Interestingly, only Zhao et al.

tried to experiment with selective prosodic transplantation (Zhao et al., 2012). 

In their research both native and foreign-accented utterances were labelled 

according to ToBI6 system, and only prosodic parameters in mismatched 

segments were replaced. The potential advantage of selective modification, is 

that it allows the learner to see exactly which area was mispronounced, thus 

leading to a greater educational effect. We consider the research in selective 

transplantation so far rather lacking and requiring additional investigation.

Few researchers tried to employ other techniques. Aryal et al. (2015)

proposed to use articulatory synthesis, while Felps et al. (2012) used 

STRAIGT vocoder to synthesize native-like prosody and impose it onto 

segmental information. Both approaches are much more computationally 

heavy. Do not allow to transplant different prosodic features in different 

combinations.

2.1.2 Effects of Prosody Transplantation on Accentedness Rating

                                                       
6 Tones and break indices (ToBI) is a set of conventions for transcribing and 
annotating the prosody of speech (Silverman et al., 1992).
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One of the main areas of research is concentrated on investigating the role 

of prosody in accentedness, intelligibility, comprehensibility or similar 

proficiency-related ratings. A typical experiment would consist of 

transplanting native prosody onto non-native speech, and then comparing it 

with the original native and non-native utterances, or other types of 

modifications (e.g. when segmental information is transplanted instead). The 

comparison is commonly done by asking native speakers of the target foreign 

language to do perceptual evaluation of the utterances. The results of such 

experiments are rather mixed.

Jugler et al. (2016) transplanted fundamental frequency and phone duration

from native German speakers and compared modified utterances with the 

original French-accented and native ones. Although prosodic transplantation 

did lead to the reduction in accentedness ratings, the introduced distortions 

also made the utterance to sound more unnatural. 

Felps et al. (2009) compared the effects of prosody with that of segments 

and found opposite results. They transplanted native F0 and phone duration, 

as well as segmental information onto Indian-accented English speech. To test 

Figure 2.5. Accent and speech quality ratings for each transplantation type. (1 = 
foreign speaker, 2 = prosodic transformation, 3 = segmental transformation, 4 = 
prosodic and segmental transformations, 5 = native speaker). Taken from Felps et 

al. (2009).
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the influence of prosody onto accentedness ratings, different transplantation 

models were implemented: prosodic only, segmental only, or both. Modified, 

as well as original foreign and native utterances were evaluated by native 

speakers. They found that prosodic transplantation lowers accentedness rating 

only slightly, while segmental and combined transplantation give the best 

result. At the same time, they also reduce the perceived quality of speech 

much to a greater extent (see Figure 2.5).

Similar results were obtained by Rognoni and Grazia Busa (2013). It was 

found out that segmental information has the strongest effect in accentedness 

perception. Although prosodic parameters seem to play a role as well: F0 and 

duration do have effect on the ratings, not only when transplanted together, 

but also when transplanted separately. In their experiment, duration showed a 

slightly greater effect, compared to F0. 

Boula de Mareuil et al. (2004) investigated whether prosody transplantation 

affects natural and synthesized speech differently. For synthesized speech, 

prosody transplantation resulted in better accentedness ratings, while in case 

of natural speech, the role of segmental and prosodic information seems to be 

more balances.   

A few experiments were also conducted for the Korean-accented English. 

Sereno et al. (2016) examined the relative impact of segments and intonation 

on accentedness, comprehensibility, and intelligibility. The research showed 

that segments have a significant effect on accentedness, comprehensibility, 

and intelligibility, but prosody only has an effect on intelligibility. Park (2013) 

conducted a similar study, with the main difference that they investigated the 

effects of prosody and segments across speakers of different L1 background, 

as well as evaluated by raters of different L1 background. Both L1 Korean 

and native American English speakers considered the segments to contribute 

more to the accentedness. Japanese raters, on the other hand, gave more 
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weight to the influence of prosodic parameters. These findings are significant 

in that they imply that, for native speakers of some languages, the difference 

in prosody could have a greater influence on the foreign-accentedness than the 

difference in segments, while for native speakers of other languages it might 

be the other way around.

Overall, we can conclude that prosody does influence language-proficiency 

rating, although to a much lesser degree, then segments. Intelligibility seems 

to be affected the most. Additionally, the background of raters might play a 

role as well, that is people of certain L1 backgrounds might give more weight 

to prosody than others. 

2.1.3 Effects of Self-Imitation Learning on Proficiency Rating

The other major area of research was the effects of self-imitation learning 

on language proficiency. Pellegrino and Vigliano (2015) investigated the 

effects of self-imitation learning on Japanese students of Italian. All 

participants were recorded before the training, then during the session, each 

learner trained to mimic their utterances with native accent as many times as 

they need to approximate the model, and recording were made again after that. 

The results indicate that self-imitation promotes an improvement in learners' 

performances in terms of communicative effectiveness (ability to convey 

correct pragmatic function), but average rate of accentedness isn’t affected

significantly.

De Meo et al. (2013) conducted a similar research, but compared the results 

from two groups: one did self-imitation learning, while the other underwent 

conventional imitation training. Degree of foreign accent, improvements in 

intelligibility, and effectiveness of communication were measured to 

determine the success of each technique. Raters were asked to identify the 

speech act type of each utterance. Both teaching strategies promoted an 
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improvement in performances; however, the self-imitation training proved to 

result in more accurate prosodic realizations. Both training sessions resulted 

in better intelligibility ratings, while self-imitation training resulted in slightly 

more utterances judged to sound native-like. These results suggest, that if the 

aim is to learn prosodic patterns of a foreign language, prosody 

transplantation might significantly improve the results.

Bonneau and Colotte (2011), instead of doing perceptual evaluation, took a 

more direct approach and investigate whether self-imitation learning can help 

French student master English lexical stress: F0 and duration ratio of stressed 

and unstressed vowels were compared between control and target group, that 

underwent self-imitation training and received visual feedback (spectrogram) 

as well. Results showed that the various kinds of feedback provided by the 

system enable French learners with a low production level to improve their 

realisations of English lexical accents more than (simple) auditory feedback. 

One limitation of this study, however, was that it is not clear whether positive 

effect was due to self-imitation learning or due to visually given feedback. As 

such, an additional experiment, whether these two types of feedback are 

separated, is required.

The effects of self-imitation learning were also investigated on Korean 

learners of English in Yoon (2011). A group of students underwent self-

Table 2.2. Mean and standard deviation of prosodic elements. The score is the 
Euclidian distance between target values of Korean learners and a native English 

speaker (Yoon, 2011).

Mean (SD)

Before training After training

Intonation Intensity Duration Intonation Intensity Duration

Control group 517 (151) 213 (23) 329 (70) 504 (203) 223 (25) 323 (96)

Experimental 

group
524 (191) 223 (31) 419 (140) 420 (160) 233 (28) 343 (82)
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imitation prosody training during a class twice a week (around 20 min.) for 

five and a half weeks, while another control group did imitation training only.

The participants were recorded before and after he experiment and acoustic 

correlates of prosody were compared with those from native speaker (see 

Table 2.2). Self-imitation learning lead to improvements in terms of 

intonation (F0) and duration, while intensity was not affected; in case of 

control group, no improvements were observed. 

The major drawback of all self-imitation studies done so far is that in all 

studies, but the one conducted by Yoon (2011), only a one-time training 

session was carried in all cases. It can be argued, that pronunciation, and 

prosody specifically, is not something that can be improved in a short amount 

of time. Nevertheless, this area of research seems promising, and the best 

results might be achieved when applied to low-proficiency students mastering 

various aspects of foreign language’s prosodic system.

2.2 Prosody of Korean-accented English Speech

2.2.1 Prosodic Systems of Korean and English

What are the features of Korean accent of English? When it comes to 

prosody, one of the main factors might be the differences between the L1 and 

the L2 prosodic patterns. Abercrombie (1967) and others have proposed that 

all languages of the world are rhythmically isochronous and can be classified 

as either ‘syllable-time’ or ‘stress-timed’. According to this, syllable duration 

should be more varied in stress-timed languages like English, compared to 

syllable-timed languages (like Korean). 

Auer (1991) pointed further differences, such as that in stress-timed 

languages non-accented syllables are reduced compared to accented ones. The 

difference can be phonetic or phonological: non-accented syllables can have 

shorter vowels and/ or vowels can undergo neutralization process. Syllable-
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timed languages shouldn’t have such a distinction. Another difference is the 

natures of accent itself. In languages like English, accent has to be realized 

phonetically very distinctly and be strong. Accent is highly correlated with 

pitch movement and intensity, often supported by length. In syllable-timed 

languages, on the other hand, accent is realized weakly, if present, often only 

by duration, and its placement in the word is usually stable. 

When it comes to English, it is generally believed that stress is manifested 

in terms of three acoustic features: fundamental frequency, duration, and 

intensity. Native speakers emphasize stressed vowels with greater intensity 

and pitch, and longer duration. Unstressed vowels are usually reduced to a 

centralized vowel (schwa) with lower intensity, lower pitch, and shorter 

duration.

Jun (2009) also compared prosodic systems of Korean and English from 

ToBI perspective. She noted that both languages have at least two prosodic 

units above the word level, which are marked by intonation. The intonation 

phrase (IP) is marked similarly in both languages, and focus is realized by 

expanded pitch range during the focused word and reduced after focus. Unlike 

English, in Korean accentual phrase is the lowest level of prosody and that 

there is no prosodic assignment at the lexical word level. One of the main 

difference is in how word prominence is realized. In English, prominence of a 

word is expressed by pitch accent, while in Korean it is achieved by placing 

the word at the beginning of a phrase. 

Overall, most researchers agree, that F0 patterns are the primary means of 

realization of prosody in Korean, while in English duration and intensity play 

a much larger role.

2.2.2 Common Prosodic Mistakes

Then what are the typical mistakes, that Korean learners do in prosody 
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when speaking English? The most often mentioned ones are related to:

l word stress, reduction of unstressed vowels, compound nouns; 

l sentence stress, reduction of unstressed function words; 

l focus;

l pitch accents

When it comes to word stress, it has been found that Korean speakers of 

English learn stress assignment quite well, but have troubled with stress 

reduction. In English, unstressed vowels are usually perceived as lower in 

pitch, shorter, and less loud than stressed vowels. The acoustic correlates of 

these features are lower fundamental frequency (F0), shorter duration, and 

weaker intensity. Korean learners reduce the duration of unstressed reduced 

vowels much less, compared to native speakers (Kim and Flynn, 2004; Lee et 

al., 2006).

Kim (2005) reported that Korean learners show F0 patterns similar to those 

of native speakers, when it comes to stress assignment. F0 slope (difference 

between adjacent elements) was measured in compound nouns and noun 

phrases; both groups had an F0 drop for compound nouns, but an F0 rise for 

Figure 2.6. Percentage of stress reduction in learner speech as compared to that 
in native speech. Learner ratio shows greater discrepancy from that of native 
speech in sentence level. Vword=vowel duration in words, Vsent=vowel duration 
in sentences Sword=syllable duration in words, Ssent=syllable duration in 

sentences (Kim and Flynn, 2004).
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noun phrases. It is also interesting to note, that the difference was greater for 

isolate words, compared to words in sentence and paragraph contexts. 

Different results were found for stress reduction, however. Kim and Flynn 

(2004) compared duration of vowels and syllables of target stimulus words 

pronounced by Korean speakers of English both in isolation and in sentence 

context (e.g. comparing the duration of vowels in contrasting pair „[a]dd‟ and 

„[a]ddition‟). The results suggested that learners better execute stress 

reduction at the word level rather than at the sentence level (see Figure 2.6). 

They speculated that articulation of a sentence puts additional demands on 

learners, and makes it hard to attend to all the phonological aspects.

Similar results were found by Lee et al. (2006). They studied the 

production of unstressed vowels in English by early and late Korean- and 

Japanese-English bilinguals. Korean groups were nativelike in having a lower 

F0 for unstressed as opposed to stressed vowels, but made less of an intensity 

difference between unstressed and stressed vowels, than native speakers, as 

well as less of a difference in duration. They had longer unstressed vowels 

and lower intensity of stressed ones.

Why would stress assignment be easier, than stress reduction for Korean 

learners of English? It may be due to the fact that the Koreans are more used 

to the realization of prosody through F0 variation. In contrast, stress reduction 

is difficult, because Korean phonology does not have unstressed vowels.

In English, stress is manifested not only on word level, but on sentence 

level as well. Yoo (2012) investigated the acquisition of English sentence 

stress by Korean learners. Acoustic differences (in terms of F0, intensity and 

duration) between stressed and unstressed vowels were analysed. In general, 

the patterns of stressed and unstressed vowels produced by the Korean 

speakers were similar to the patterns of the native speakers, even though ratios 

differed. The learners depended more on duration and intensity to express the 
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difference between the two types of vowels (Figure 2.7). The degree of 

reduction of function words was also investigated. The most interesting find 

was that while native speakers reduced all the function words to a relatively 

similar degree, Korean learners showed great variance between different types 

of function words. In particular, four categories showed relatively longer 

duration, compared to native speaker’s production:  prepositions, relative 

pronouns, definite articles, and conjunctions.

Other researchers concentrated on studying of the production of intonation 

patterns by Korean learners of English. Kang et al. (2012) examined the 

phonetic realization of English focus by Korean learners of English at 

different levels of L2 immersion experience, but with almost the same L2 

proficiency. Features like pitch accent patterns, pitch range, and duration of 

focused words were measured. Korean learners produced shorter focus words 

(in relation to the duration of the entire utterance), with a narrower pitch range. 

It is also interesting that learner’s performance differed significantly 

depending on the semantic type of a sentence. Korean speakers of English 

Figure 2.7. Mean ratios of acoustic values between stressed and unstressed 
vowels. AM = American male speakers, AF = American female speakers, KM = 

Korean male speakers, KF = Korean female speakers (Yoo, 2012).
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seemed to have the most difficulty with prosodic patterns of unergative 

sentences. Similar results were found by Um (2004). They noted that Korean 

speakers have little trouble with the use of phrase accents and boundary tones, 

but struggle with pitch accents, especially when signalling new or contrastive 

information. Their pitch values for new information were lower than native 

speakers’, and they also had problem with deaccenting of given information 

(only 50% did it). This might be partially explained by the fact, that Korean 

has special morphological markers for focus and topic; and their absence in 

English might make it harder for Korean learners to apprehend information 

structure of a sentence.

Thus, we can point two main areas of prosody that Korean speakers seem 

to have problems with: stress (both at word and sentence level) and focus 

realization. In both cases there was difference in duration compared to native 

speakers; when dealing with focus Korean learners had problems with correct 

pitch range as well. In English these prosodic features are realized through 

vowels. Hence, for an automatic prosody transplantation system, it will be 

more sensible to modify vowel segments only, and leave consonants 

completely unchanged.

Another question we should ask is whether improvement in these acoustic 

features will result in a more native-like accent? Yoo (2017) examined the 

effects of acoustic features on comprehensibility ratings of English speech, 

read aloud by Korean students. Data from two groups of Korean learners 

(from years 2000 and 2012) were analysed rated by native speakers of English. 

Results showed that higher comprehensibility ratings correlated stronger with 

suprasegmentals rather than segmental features. Moreover, acoustic features 

of stress were also measured and a positive correlation was found between 

pitch ratio, duration ratio, intensity ratio, pitch range, speech rate and 

comprehensibility rating. Speech rate and duration ratio seemed to be 
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associated with comprehensibility to the greatest degree. This supports the 

idea that teaching of prosodic features can improve learner’s overall language 

proficiency.

2.3 Deep Learning Based Prosody Prediction

2.3.1 Deep Learning

Deep learning has emerged as a new area of machine learning 

research since 2006 and techniques developed from it have already 

been impacting a wide range of signal and information processing work, 

including natural language and speech processing.  Deep learning can 

be defined as “a class of machine learning techniques that exploit many 

layers of non-linear information processing extraction and 

transformation, and used for pattern analysis and classification for 

supervised or unsupervised feature” (Deng and Yu, 2014, p. 199). There 

are two essential elements: a model should consist of multiple layers of 

nonlinear information processing, hence the name “deep”; and feature 

representation should be done at a higher, more abstract layer.

Figure 2.8. Feedforward network with a single hidden layer containing two units 

(Goodfellow et al, 2016).
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Historically, the concept of deep learning originated from artificial neural 

network research. Feed-forward neural networks or multi-layer perceptrons 

(MLPs) with many hidden layers, which are often referred to as deep neural 

networks (DNNs), are good examples of the models with a deep architecture 

(see Figure 2.8). They did not receive wide use though, until the optimization 

difficulty associated with the deep models was empirically alleviated when a 

reasonably efficient, unsupervised learning algorithm was introduced in

Hinton et al. (2006), and Hinton and Salakhutdinov (2006).

2.3.2 Recurrent Neural Networks
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Although DNNs are able to offer improvements over other baseline 

prosody-prediction models, they still fall short of reproducing the naturalness 

and range observed in natural speech. One possible shortcoming is that they 

are typically trained using a “localized” window of input patterns, i.e., the 

current output is predicted from the current input, plus possibly a few fixed-

length adjacent input observations to provide context. Such non-local 

dependencies are arguably one of the factors contributing to surface prosody. 

A Recurrent Neural Network (RNN) is a class of models that has been 

proposed as an alternative to address the challenge posed by time series that 

have complex contextual dependencies that go beyond a fixed time lag. 

A recurrent neural network (RNN) is a class of artificial neural network 

Figure 2.9. Bidirectional RNN architecture. ���⃗ (t) stands for the state of the sub-

RNN that moves forward through time; �⃖��(t) stands for the state of the sub-RNN 

that moves backward through time (Goodfellow et al, 2016).
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where connections between nodes form a directed graph along a sequence. 

This allows it to exhibit dynamic temporal behaviour for a time sequence. 

They can use their internal state (memory) to process sequences of inputs.  

One type of RNNS that is especially suited to work with speech is 

bidirectional RNN (see Figure 2.9). Bidirectional RNNs combine an RNN 

that moves forward through time begging from the start of the sequence with 

another RNN that moves backward through time beginning from the end of 

the sequence.

Additionally, these bi-directional, deep-in-time structures can be stacked to 

allow for more complex models that are also deep across layers and can, 

analogously to simple DNNs, progressively extract structure from the 

successive layer compositionality.

2.3.2 The Long Short-Term Memory Architecture
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Long short-term memory (LSTM) units (or blocks) are a building unit for 

layers of a recurrent neural network (RNN). An RNN composed of LSTM 

units is often called an LSTM network (Hochreiter and Schidhuber, 1997). A 

common LSTM unit is composed of a cell, an input gate, an output gate and a 

forget gate (see Figure 2.10). The cell is responsible for "remembering" 

values over arbitrary time intervals; hence the word "memory" in LSTM. The 

LSTM gates compute an activation, often using the logistic function. 

Intuitively, the input gate controls the extent to which a new value flows into 

the cell, the forget gate controls the extent to which a value remains in the cell 

and the output gate controls the extent to which the value in the cell is used to 

compute the output activation of the LSTM unit. There are connections into 

and out of these gates. A few connections are recurrent. The weights of these 

connections, which need to be learned during training, of an LSTM unit are 

used to direct the operation of the gates. Each of the gates has its own 

parameters, that is weights and biases, from possibly other units outside the 

Figure 2.10. LSTM architecture. xt is input at time t; ht is hidden state at time t

(Deng and Yu, 2014).
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LSTM unit.

An LSTM is well-suited to classify, process and predict time series given 

time lags of unknown size and duration between important events. LSTMs 

were developed to deal with the exploding and vanishing gradient problem 

when training traditional RNNs. Relative insensitivity to gap length gives an 

advantage to LSTM over alternative RNNs, hidden Markov models and other 

sequence learning methods.

2.3.3 Gated Recurrent Units

Gated recurrent units (GRUs) are a gating mechanism in recurrent neural 

networks, introduced in Cho et al. (2014). Their performance on polyphonic 

music modelling and speech signal modelling was found to be similar to that 

of (LSTM). 

GRU architecture was modelled after LSTM, but is simpler to compute and 

implement (see Figure 2.11). In this model, when the reset gate r is close to 0, 

the hidden state is forced to ignore the previous hidden state and reset with the 

current input only. This effectively allows the hidden state to drop any 

information that is found to be irrelevant later in the future, thus, allowing a 

Figure 2.11. An illustration of GRU. The update gate z selects whether the 

hidden state is to be updated with a new hidden state ��. The rest gate r decides 
whether the previous hidden state is ignored (Cho et al, 2014).
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more compact representation.

On the other hand, the update gate z controls how much information from 

the previous hidden state will carry over to the current hidden state. This acts 

similarly to the memory cell in the LSTM network and helps the RNN to 

remember long-term information. As each hidden unit has separate reset and 

update gates, each hidden unit will learn to capture dependencies over 

different time scales. Those units that learn to capture short-term 

dependencies will tend to have reset gates that are frequently active, but those 

that capture longer-term dependencies will have update gates that are mostly 

active.

2.3.4 Prosody Prediction Models
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Traditionally, majority of speech (and prosody) synthesis systems have 

been based on Hidden Markov Models Model (HMM). Since the middle of 

2000s, however, application of DNN’s to this task has seen a considerable 

increase and is continuing to increase at the moment. As for the prosody, deep 

neural networks have shown to be successful at predicting various acoustic 

values (such as duration, pitch, intensity) or prosodic labels. 

The first models to be successfully implemented were feed-forward neural 

networks (Sreenivasa Rao et al., 2007; Shreekanth et al., 2015). RNNs were 

applied later and began to consistently outperform basic models (Fernandez et 

Table 2.3. Review of previous research on DNN-based prosody prediction.

Paper
Target 

Parameter
Prediction 

Method
Features

Sreenivasa 
Rao et al. 
(2007)

Syllable 
duration

4-layer 
FFNN

Phonological, Positional, 
contextual features and gender 
(25 in total)

Shreekanth
et al. (2015)

Syllable 
duration

FFNN
Syllable identity, position 
within word

Fernandez et 
al. (2014)

F0, syllable 
duration

LSTM-
RNN

Categorical labels, counts 
(number of 
phones/syllables/words to a 
phrase/ sentence boundary, 
etc.), context.

Sheikhan 
(2017)

Pitch contour, 
syllable 
duration, vowel 
duration

BPSO–
PSO–
Optimized 
RNN

POS tags, syllable-level 
features, position, context

Gu et al. 
(2010)

Syllable 
duration, pitch 
contour

HMM-DNN
Discrete cepstrum 
computation (DCC) 
coefficients

Bernardy et 
al. (2017)

Tonal contour 
classification

LSTM, 
CNN

F0 contour

Ding et al. 
(2015)

Prosodic 
boundary labels

FFNN, 
BLSTM-
RNN

Embedding feature vectors of 
characters

Garbe et al 
(2017)

F0 LSTM
Text-derived linguistics and 
duration features

Su et al. 
(2016)

Pitch contour CNN spectrogram
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al., 2014; Ding et al., 2015; Su et al., 2016). DNNs can be used not only to 

predict acoustic features like duration or F0, but also to predict or determine 

entire pitch contours or numerous prosodic labels. We summarize selected 

papers on DNN-based prosody prediction in Table 2.3.
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Chapter 3. Vowel Duration and Fundamental 

Frequency Prediction Model

3.1 Data

Data for model training was taken from The Boston University Radio 

News Corpus, which includes speech from FM radio news announcers 

(Ostenford et al., 1996). This particular corpus seemed to be the best suited 

for our task for the following reasons: all the data are from the native speakers 

of American English – the variant of English that is mostly widely taught in 

South Korea. As such prosodic patterns from the corpus are well suited to be 

used as reference in self-imitation learning by Korean students. Second, FM 

newscaster are generally required to read out text in a pleasant way: that is the 

prosody should not be too monotonous. That means that this corpus should be 

especially good for prosodic parameters modelling. 

The corpus consists of two parts: main portion contains news stories 

recorded in the radio studio during broadcast (see Table 3.1). The second, 

smaller, part consists of news announcers reading short stories in lab 

environment (see Table 3.2).

For our research we decided to use only the data from female speakers. 

Female speech typically has much more variability when it comes to prosody, 

the F0 is higher, and pitch range is broader. As such, it is better suited for 

prosody modelling. Among the three female speakers, two were selected: F2B 

and F3A. F3A data has twice more data compared to other speakers; while 

F2B data is the only one that was fully hand-corrected for phonetic 

annotations. Data from the two speakers will be used to build two different 

models: one with a smaller amount of hand-corrected data, and the other with 

a bigger amount of automatically corrected data. The comparison of the 
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results from the two models will give us valuable information on optimal data 

selection for future projects. 

The data consists of paragraph sized units, each including several sentences. 

The annotation includes orthographic transcription, phonetic alignments, part-

of-speech (POS) tags, and prosodic labels (ToBI-based). The orthographic 

transcription and ToBI labels were marked by hand, while the rest were 

generated automatically. Only the data for F2B speaker received prosodic 

annotation. 

The phonetic alignment is based on the TIMIT phonetic labelling system 

(Zue and Seneff, 1996). The set consists of 61 labels that can be seen in 

Appendix 1, among them ux, ix, ax-h and epi are not used in the BURNC.  

Additionally, stressed vowels are marked with ‘+1’; segmentation times are 

provided in units of 10-msec frames. 

Table 3.1. Duration in minutes of speech, and other statistics about the radio 

news stories (Ostendorf et al., 1996).

Speaker F1A F2B F3A M1B M2B M3B M4B

Minutes 52 49 107 48 58 32 91

Stories 43 34 340 36 35 21 62

Clean 

Paragraphs
276 124 341 161 214 126 236

Noise Paragraphs 1 40 51 108 102 32 41

Words (times 

1000)
11.9 12.2 28.6 15.7 18.4 10.5 25.6
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POS tagging was done automatically based on Penn Treebank (Marcus and 

Santorino, 1993). The set consists of 47 POS tags; the 36 used word 

categories (excluding punctuation labels) are summarized in Appendix 2. And, 

finally, prosodic annotation was manually done according to the ToBI system 

(Silverman et al., 1992).

3.2. Input Feature Selection 

The aim of our research is to develop an automatic method of prosodic

parameters transplantation. That means, that, ideally, only information that 

can be obtained automatically, should be used as input features in our model. 

Yet, parts of the data in corpus received manual prosodic annotation. And 

seems the aim of this research is to build prosody prediction system, we 

decided to test two different models using F2B speaker data. The first model 

will use the following features:

l Phoneme identity

l Phoneme type

l Stress 

l Part-of-speech (POS) tag

l Boundary tone tag

l Pitch accent tag

The other model will have the same input features, with the exception of 

Table 3.2. Characteristics of the news stories recorded in the lab for multiple 

speakers (Ostendorf et al., 1996).

Speaker CJ CP TP SR

Paragraphs 6 4 7 7

Sentences 23 22 28 36

Words 445 388 577 713
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break indices and pitch accent tags. This way, all the features used in the 

second model can be automatically obtained, which is crucial for a self-

imitation learning system. Additional, third model will use data from the F3A 

speaker. It contains twice as much speech, but since phone alignment was not 

hand-corrected, we expect mixed results. When building a prosody prediction 

system, it is common to use many other features, like number of phones in a 

syllable, in a word, position of a syllable within the word, identity of 

neighbouring syllables, words, etc. But the nature of Bi-LSTM model is that it 

already takes into account contextual information, hence we consider 

inclusion of such features to be redundant. 

Phoneme identity. As the purpose of our model is to predict vowel 

duration and F0, only phones with the following vowel labels will be used (17 

in total): iy, ih, eh, ey, ae, aa, aw, ay, ah, ao, oy, ow, uh, uw, er, ax, axr. 

Besides that, we will also include syllabic consonants into our model: em, en. 

In English, syllabic consonant can take the role of syllable nucleus and play 

part in the rhythmic organization of speech. Besides, words with syllabic 

consonants are often transcribed as having a reduced vowel, and are 

pronounced like that by some speakers, e.g. bottom as /ˈbɒtəm/ or /ˈbɒtm/. In 

total, phoneme identity feature will consist of 19 labels in total. All of them 

were one-hot-encoded, that is are represented as a sequence of 'zeroes' with 

only single position marked by 'one'.
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Phoneme type. We classified vowel phonemes into monophones and 

diphones, plus syllable consonants. The reason for this is that intuitively, 

diphones or syllabic consonants should have longer duration, compared to 

monophones. To test this hypothesis, we analysed the differences between the 

three groups. We carried out ANOVA tests for data from both speakers: 

duration and F0 were set as dependent variables, and effects of phoneme type

labels MONO, DI and R-COL were tested. In this and following cases, we got 

rid of any outliers before conducting the tests. A value was considered an 

outlier if it fell below Q1–1.5*IQR or above Q3+1.5*IQR, where Q1 – lower 

quartile, Q3 – upper quartile, and IQR = Q3–Q1 – interquartile range.

There was a statistically significant difference between groups as 

determined by one-way ANOVA both for F2B data (F (2, 35291) = 3835.103, 

p < 0.01) and for F3A data (F(2, 79825) = 7121,356, p < 0.01). For F2B 

speaker, differences in duration between all three groups of phonemes were 

significant (p < 0.01). The test revealed that diphones have the longest 

Table 3.3. F2B speaker, duration by phoneme type.

Phoneme Type
Mean 

(m-sec)
Std. Error

95% Confidence Interval

Lower Bound Upper Bound

Monophone 76.4 40.0 75.9 76.9

Diphone 129.1 41.6 127.9 130.4

Syl. consonant 109.2 39.2 107.7 110.7

Table 3.4. F3A speaker, duration by phoneme type.

Phoneme Type
Mean 

(m-sec)
Std. Error

95% Confidence Interval

Lower Bound Upper Bound

Monophone 65.5 40.5 65.2 65.8

Diphone 116.2 46.1 115.3 117.2

Syl. consonant 92.2 42.7 91.2 74.6
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duration (129.1 ± 41.6 m-sec) followed by syllabic consonants (109.2 ± 39.2

m-sec) and monophones (76.4 ± 40.0 m-sec). Similar pattern was observed for 

F3A data as well: diphones (116.2 ± 46.1 m-sec) followed by syllabic 

consonants (92.2 ± 42.7 m-sec) and monophones (65.5 ± 40.5 m-sec) 

respectively.

As for the fundamental frequency, the results were significant as well (F(2, 

316455) = 324.361, p < 0.01 for F2B and F(2, 612247) = 1895.375, p < 0.01 

for F3A). All the differences between phoneme types were significant, 

although F0 value for monophones and diphones did not differ much (see 

Table 3.5): 165.2 ± 44.1 Hz for monophones and 166.1 ± 43.2 Hz for 

diphones respectively. While syllabic consonants F0 turned out to be 

somewhat lower: 158.8 ± 44.3 Hz. followed by monophones () and syllabic 

consonants (). The same correlation was found for F3A data: higher F0 for 

monophones and diphones (195.9 ± 44.3 Hz and 197.7 ± 43.7 Hz 

respectively), followed by syllabic consonants (185.7 ± 44.6 Hz). Overall, 

fundamental frequency for F3A speaker was significantly higher, compared 

to F2B data: 195.1 Hz against 164.8 Hz, which is 18.3% higher.
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Stress. For stress we used binary encoding: '1' for stressed phones and '0' 

for unstressed. For both speakers the difference between groups was 

significant (F(1, 35292) = 5493.117 p < 0.01 for F2B data and F(1, 79826) = 

3106.277 p < 0.01 for F3A data). Stressed vowels were on average 46.8% 

longer for F2B speaker (see Table 3.7), and 26.5% longer for F3A speaker

(see Table 3.8).

Table 3.5. F2B speaker, F0 by phoneme type.

Phoneme Type Mean (Hz) Std. Error
95% Confidence Interval

Lower Bound Upper Bound

Monophone 165.2 44.1 165.7 166.4

Diphone 166.1 43.2 165.0 165.4

Syl. consonant 158.8 44.3 158.4 159.3

Table 3.6. F3A speaker, F0 by phoneme type.

Phoneme Type Mean (Hz) Std. Error
95% Confidence Interval

Lower Bound Upper Bound

Monophone 195.9 44.3 195.8 196.1

Diphone 197.7 43.7 197.4 197.9

Syl. consonant 185.7 44.6 185.3 186.0
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Not surprisingly, in case of fundamental frequency similar correlation was 

Table 3.7. F2B speaker, duration by stress.

Stress
Mean

(m-sec)
Std. Error

95% Confidence Interval

Lower Bound Upper Bound

Stressed 101.9 44.5 68.8 69.9

Unstressed 69.4 37.6 .101 .103

Table 3.8. F3A speaker, duration by stress.

Stress
Mean

(m-sec)
Std. Error

95% Confidence Interval

Lower Bound Upper Bound

Stressed 85.4 46.4 84.9 86.0

Unstressed 67.5 42.6 67.1 67.9

Table 3.9. F2B speaker, F0 by stress

Stress Mean (Hz) Std. Error
95% Confidence Interval

Lower Bound Upper Bound

Stressed 171.9 43.0 171.7 172.1

Unstressed 153.6 43.1 153.4 153.9

Table 3.10. F3A speaker, F0 by stress.

Stress Mean (Hz) Std. Error
95% Confidence Interval

Lower Bound Upper Bound

Stressed 208.1 46.4 208.0 208.3

Unstressed 184.9 40.3 184.8 185.0
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observed. For F2B data stressed vowels have mean F0 of 171.9Hz against 

153.6 Hz for unstressed (F(1, 316456) = 13551.311 p < 0.01). And 208.1Hz 

F0 of stressed vs. 184.9Hz of unstressed vowels for F3A data respectively 

(F(1, 612249) = 43726.256 p < 0.01). 

Table 3.11. F2B speaker, duration by POS tag.

POS tag
Mean

(m-sec)
Std. Error

95% Confidence Interval

Lower Bound Upper Bound

CONT 90.7 45.2 90.2 91.2

FUN 67.8 35.4 67.0 68.8

Table 3.12. F3A speaker, duration by POS tag.

POS tag
Mean

(m-sec)
Std. Error

95% Confidence Interval

Lower Bound Upper Bound

CONT 78.3 45.8 77.9 78.7

FUN 59.6 38.5 59.1 60.2

Table 3.13. F2B speaker, F0 by POS tag.

POS tag Mean (Hz) Std. Error
95% Confidence Interval

Lower Bound Upper Bound

CONT 165.5 43.9 165.4 165.7

FUN 160.9 44.0 160.6 161.3

Table 3.14. F3A speaker, F0 by POS tag.

POS tag Mean (Hz) Std. Error
95% Confidence Interval

Lower Bound Upper Bound

CONT 196.4 45.2 196.3 196.5

FUN 188.7 40.6 188.4 188.9
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POS tag. The BURNC uses Treebank set for part-of-speech tagging. But 

for our task, the sheer number of tags it uses, seemed redundant. We tried to 

find possible way to narrow down the tag set. As was mentioned, in 

Chapter 2, one of the common area of mistakes for Korean learners of English 

is sentence stress. Content words receive full stress, while function words are 

typically reduced. This binary division seemed suitable for our task, and we 

grouped all tags into two categories:

l Content words – CD, EX, FW, JJ, JJR, JJS, LS, NN, NNS, NNP, 

NNPS, PRP, PRP%, RB, RBR, RBS, VB, VBD, VBG, VBN, 

VBP, VBZ (22 in total).

l Function words – CC, DT, IN, MD, PDT, POS, PP, PP$, RP, TO, 

WDT, WP, WP$, WRB (14 in total).

We analysed differences between the two groups. There was a statistically 

significant difference between durations for both speakers (F(1, 35292) = 

1690.85 p < 0.01 for F2B and F(1, 79826) = 2367.671 p < 0.01 for F3A). 

Similar results were found for both speakers. Content words’ duration was 

33.7% longer for F2B and 31.3% longer for F3A respectively (see Table 3.11 

and Table 3.12). They also had higher fundamental frequency: 165.5 against 

160.9 Hz for F2B speaker (F(1, 316456)= 485.812 p < 0.01) and 196.4 against 

188.7 Hz for F3A data (F(1, 612248) = 2595.859 p < 0.01) (see Table 3.13 

and Table 3.14).

Prosodic labels. The data were hand labelled according to the ToBI system. 

In this study we used boundary indices and pitch accent labels (see Table 3.15 

and 3.16). Break indices are typically assigned per word; so each phone (or 

frame0 was given the label of the word it belongs to. Only accented syllables 

are labelled for pitch accents. Phones (and frames) were assigned the same 

label as the syllable they belong to. We introduced an additional label for 

cases, when a phone belonged to an unlabelled syllable or the annotator was
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not sure which accent to mark.

Only F2B data were labelled for ToBI markers. We analysed F0 and 

duration differences both for break indices and pitch accents. The results for 

duration differences between break indices were significant (F(4, 35289) = 

378.499 p<0.01) (see Table 3.17). Only the difference between duration in 

labels 2 and 3 wasn’t significant ( p = 0.963). Break 0 have the shortest 

duration (69.7 ± 42.3 m-sec), followed by break 1 (76.8 ± 38.4 m-sec), breaks 

2 and 3 (86.7 ± 42.3 and 87.3 ± 44.4 m-sec), and break 4 exhibiting the 

longest duration (97.7 ± 49.7 m-sec). As such break indices are good 

indicators of vowel duration and can be useful in a prediction system.

Table 3.15. ToBI break index values.

Index Description

0 clear phonetic marks of clitic groups

1 most phrase-medial word boundaries

2
a strong disjuncture marked by a pause or virtual pause, but with no 

tonal marks

3 intermediate intonation phrase boundary

4 full intonation phrase boundary

Table 3.16. ToBI pitch accents.

Accent Description

H* peak accent

L* low accent

L*+H scooped accent

L+H* rising peak accent

H+!H*
a clear step down onto the accented syllable from a high               
pitch
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As for the fundamental frequency, results were significant as well, but 

much less conclusive (F(4, 316453) = 3005.228 p <0.01) (see Table 3.18). 

There was statistical difference in F0 between break indices 3 and 4 and the 

others, but not between labels 0, 1 and 2 (0 * 1 p=0.995; 0 * 2 p = 0.131). As 

such, F0 prediction model is unlikely to benefit from the inclusion of break 

labels.

Results for the duration and pitch accent tags were significant (F(5, 35288) 

= 764.523 p < 0.01) (see Table 3.19). But only unlabelled vowels (‘_’) and 

H+!H* were statistically different from the rest. All other tags did not differ 

enough, thus we can speculate, that the inclusion of pitch accent labels is 

Table 3.17. F2B speaker, duration by break tag.

Break tag
Mean

(m-sec)
Std. Error

95% Confidence Interval

Lower Bound Upper Bound

0 69.7 42.3 65.7 73.7

1 76.8 38.4 76.2 77.4

2 86.7 42.3 85.6 87.9

3 87.3 44.4 86.0 88.7

4 97.7 49.7 96.8 98.7

Table 3.18. F2B speaker, F0 by break tag.

Break tag
Mean

(Hz)
Std. Error

95% Confidence Interval

Lower Bound Upper Bound

0 168.7 42.9 167.2 170.2

1 168.4 43.6 168.2 168.7

2 170.6 41.6 170.2 171.0

3 178.2 43.5 177.8 178.7

4 154.3 43.2 154.1 154.6
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unlikely to improve performance of duration prediction model. 

Opposite results were observed in case of fundamental frequency F(5, 

316452) = 10350.711 p< 0.01) (see Table 3.20). Only difference between ‘_’

and L* + H was statistically insignificant (p = 0.489). L+H* showed the 

highest F0 (187.7 ± 35.9 Hz), followed by H* (185.9 ± 40.1 Hz), H+!H* 

(170.6 ± 45.9 Hz), and L* (133.0 ± 30.25 Hz). We can conclude, that pitch 

accent labels can be good predictors of fundamental frequency. 

Overall, the input to models F2B-ToBI will have the following dimensions 

(35 in total): 

Table 3.19. F2B speaker, duration by pitch accent tag.

Break tag
Mean

(m-sec)
Std. Error

95% Confidence Interval

Lower Bound Upper Bound

_ 76.7 41.2 76.1 77.2

H* 105.4 44.1 104.5 106.4

H + !H* 128.7 52.8 117.4 140.1

L* 111.7 47.1 107.4 116.0

L* + H 97.9 36.0 87.4 108.4

L + H* 110.3 43.0 108.3 112.3

Table 3.20. F2B speaker, F0 by pitch accent tag.

Break tag
Mean

(m-sec)
Std. Error

95% Confidence Interval

Lower Bound Upper Bound

_ 153.1 41.9 152.9 153.3

H* 185.9 40.1 185.7 186.2

H + !H* 170.6 45.9 168.1 173.2

L* 133.0 30.25 132.2 133.7

L* + H 149.8 37.7 146.3 153.2

L + H* 187.7 35.9 187.2 188.2
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l 19 for phoneme identity

l 3 for phoneme type

l 1 for stress

l 1 for POS tag

l 5 for break indices

l 6 for pitch accents

Models F2B and models F3A will have 19 input features each respectively. 

For duration prediction model, the input will be per phoneme. For 

fundamental frequency prediction model, the input will be per frame instead. 

In the data F0 is measured by the intervals of 10 milliseconds. We extracted 

F0 information from each phone and then measured the number of frames in 

each IP (For F2B data). The average length turned to be 67, the maximum –

228 and the minimal – 11.  For F3A data, the average length turned to be 

137, the maximum – 500, and the minimal – 9. We decided the use the input 

length of 40.

3.3 System Architecture and Training

To test the proposed approaches, we built 18 systems overall: 9 for vowel 

duration prediction and 9 for F0 prediction. The models were trained on 3 

different sets of input data: F2B, F2B-ToBI and F3A. And three different 

DNN architectures were tested: baseline RNN model, LSTM model and GRU 

model. Otherwise the models have the same amount of layers, nodes per 

layers and same hyper-parameters. That is done in order to be able to compare 

different DNN models’ performance with each other. The general network 

outline on the example of LSTM can be seen in Figure 3.1. Feature inputs and 

target values (duration or F0) are fed into a network that consists of 3 bi-

directional layers, followed by an output layer that does the prediction, 

followed by a loss function. The Python code for the model architecture 
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(baseline RNN model) can be found in Appendix 3.

Hidden layers. The network architecture consists of three stacked 

bidirectional hidden layers with 50, 40, and 30 units per layer (see Figure 3.2). 

The diminishing amount of nodes with each layer is supposed to help the net 

to generalize features better. Each layer consist of forward and backward cells, 

and after each layer their output is merged together, which allows the network 

to utilize both previous and following context. For this experiment, we built 

different models with basic RNN, LSTM and GRU cells respectively.

Activation function. The activation function used for all models is 

hyperbolic tangent:

This function is well-suited for the use in DNNs due to the fact that its 

output is bound to the range of (-1, 1), which is ideal (see Figure 3.3).

Figure 3.1. LSTM model architecture outline.
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Dropout. We applied dropout to all hidden cells. Dropout is a 

regularization technique for reducing overfitting in neural networks by 

preventing complex co-adaptations on training data. As the name suggests, a 

specified amount of nodes in a layer are ‘dropped’, that is they do not fire and 

do not connect to the same layer. Dropout was also implemented to both 

forward and backward cells, and set the rate to 0.7 (that means only 70% of 

nodes will activate). Dropout is only used during training, for testing all nodes 

are active again. In many ways this method is similar to cross validation.

Output layer. Three stacked hidden layers are then followed by an output 

layer, which computes the predicted value. We used a simply linear activation 

function:

� = �� + �, where

l y is output,

l x is input from previous layer,

l w are weights,

l b is bias.

Figure 3.2. Bi-directional LSTM layer.
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The output is one-dimensional: it predicts duration and F0 values in each 

type of model respectively.

Loss function. The loss function implemented was based on mean squared

error (MSE). MSE measures the average of the squares of the errors—that is, 

the average squared difference between the predicted values and what is 

expected. MSE is a risk function, corresponding to the expected value of the 

squared error loss. For a prediction model such as hθ(xi) = θ0 + θ1x, where the 

inputs are a feature vector xi, the MSE is given by summing across all N

training examples, and for each example, calculating the squared difference 

from the expected value yi and the prediction hθ(xi):

J = 	
1

�
�(�� − ℎ�(��)

�

�

���

Optimization algorithm. The network was trained with the 

backpropagation algorithm using mini-batch stochastic gradient descent (SGD) 

as the optimiser. The SGD algorithm we used was Adam (adaptive moment 

estimation) optimizer (Kingma and Lei Ba, 2015). Unlike other algorithms, 

instead of adapting the parameter learning rates based on the average first 

moment (the mean) as in Root Mean Square Propagation (RMSProp), Adam 

Figure 3.3. Tangent function.
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also makes use of the average of the second moments of the (see Figure). 

Specifically, the algorithm calculates an exponential moving average of the 

gradient and the squared gradient, and the parameters beta1 and beta2 control 

the decay rates of these moving averages. This algorithm is:

l Straightforward to implement

l Computationally efficient

l Little memory requirement.

l Invariant to diagonal rescale of the gradients

l Well suited for problems that are large in terms of data and/or 

parameters

l Appropriate for non-stationary objectives

l Appropriate for problems with very noisy/or sparse gradients

l Hyper-parameters have intuitive interpretation and typically 

require little tuning
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Input. Since we're using RNN architectures, we must also decide on the 

length of the input. For F2B data, we used ToBI break indices for the task. 

Index 4 is used to mark the end of an intonational phrase (IP), so it seemed a 

natural choice. We divided the data into chunks by break index 4, and then 

calculated the mean length of the IPs. It happened to be 7,5 phones, with the 

smallest IP having the length of 2, and the longest having the length of 30. 

The data for F3A speaker were not labelled for prosodic markers. We had to 

find another solution, but with a similar approach. Punctuation marks were 

used to divided the data into chunks. The average length turned to be 17,5, the 

maximum – 70, and the minimal – 2.  We settled on the input length of 15 

for the data from both speakers. Chunks, that were smaller than 15, received 

zero padding to reach the length of 15, while the bigger ones were split into 

smaller pieces. This way we try reduce the use of zero-padding as much as 

possible, while preserving input length the same for both models. Then the 
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input was fed into the network by batches of size 64. The input had the 

following dimensions for each model:

Vowel duration prediction models:

l Models F2B-ToBI – 35 by 15 dimensional vector

l Model F2B and F3A – 24 by 15 dimensional vector

F0prediction models:

l Models F2B-ToBI – 35 by 40 dimensional vector

l Model F2B and F3A – 24 by 40 dimensional vector

. As for the original values, fed into the net, first we checked for any 

outliers; if found, their values were adjusted to be within those boundaries. 

We considered such solution to be better, than outright eliminating them, 

since preserving the context is important. After that the input was z-score 

normalized to account for speaker differences. F0 values were additionally 

Figure 3.4. Scatter plot of loss value at each step. LSTM-F2B duration prediction 
model. The loss function is mean squared error (MSE). Each step corresponds to 
one batch of input data fed into the network.
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changed into log scale, as log-F0 has shown to work better in DNNs. And, 

finally, the data were regularized into (0,01, 0.99) range, since (-1, 1) range is 

optimal for the neural network input. Python code for all the data pre-

processing done can be found in Appendix 4.

Training. The entire data were divided into training and test sets with the 

ratio 85:15. The models have the following number of inputs:

l F2B,  F2B-ToBI  duration prediction –  36k phones

l F3A duration predictoin – 321k 10-msec frames

l F2B, F2B-ToBI F0 prediction – 81k phones

l F3A F0 predictoin – 630k 10-msec frames

We employed cross-validation technique: for each epoch, training set was 

split into training and validation subsets randomly (with the same ratio of 

85:15). All models were trained in batches of size 64, with a learning rate of 

0.01. Duration prediction models were trained for 30 epochs, F0 models – for 

20 epochs. The aim of the training is to minimize the loss function (MSE). 

After each step, the optimization algorithm back propagates the error value 

and adjusts the weights of the network as to minimize MSE value as much as 

possible. You can see how the loss value changes with each step on the 

example of LSTM-F2B duration prediction model in Figure 3.4.

3.4 Results and Evaluation

3.4.1 Objective Metrics

To test the accuracy the following metrics were used: root mean squared

error  (RMSE), coefficient of determination (R-squared), correlation (COR), 

average deviation, normalized variance (NVAR), and percent of correct 

predictions within one standard deviation. 

Root mean square error. RMSE is a measure of the differences between 

predicted values and observed values. RMSD is always non-negative, and a 
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value of 0 (never achieved in practice) would indicate a perfect fit to the data. 

In general, a lower RMSD is better than a higher one. RMSD is the square 

root of the average of squared errors:

���� = 	����(�)�

Coefficient of determination. "R squared" is the proportion of the variance 

in the dependent variable that is predictable from the independent variable:

�� = �−	
�����

�����
, where:

SSres is residual sum of squares,

SStot is total sum of squares.

R-squared is always between 0 and 100%. 0% indicates that the model 

explains none of the variability of the response data around its mean. 100% 

indicates that the model explains all the variability of the response data around 

its mean. R-squared cannot determine whether the coefficient estimates and 

predictions are biased, which is why it must be used in conjunction with other 

metrics.

Correlation. The Pearson correlation coefficient (COR) measures the linear 

relationship between two datasets, and is calculated by the following equation:

��,� =	
���(�,�)

����
, where:

cov – the covariance,

σx is the standard deviation of x;

σy is the standard deviation of y.

It varies between -1 and +1 with 0 implying no correlation. Correlations of 

-1 or +1 imply an exact linear relationship. Positive correlations imply that as 

x increases, so does y. Negative correlations imply that as x increases, y

decreases.

Normalized variance. Similar to R squared, variance is the expectation of 

the squared deviation of a predicted value from then mean. It is the square of 
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the standard deviation. It measures how far predicted values are spread out 

from their average value. Normalized variance indicates the ratio between the 

predicted variance and the natural variance of the test set. A value closer to 1 

would mean the predicted values are spread in the same manner as the values 

in the test set. This metric shows how well the model is capable of simulating 

the variability that occurs in natural speech.

3.4.2 Vowel Duration Prediction Models Results

The results for vowel duration prediction models are summarized in Table

3.21. Four objective metrics are shown: RMSE, R-squared (R2), Pearson 

coefficient of correlation (COR), and normalized variance (NVAR).

Overall,  LSTM-F2B and LSTM-F2B-ToBI models performed the best.

They had the lowest RMSE of 0.0221 and 0.0227, followed by GRU-F2B-

ToBI model (0.0272). Lower RMSE value indicates small difference between 

predicted and original duration values. But it is not indicative of a good model 

on its own. Sometimes a model predicts values that are clustered together, 

while in the original data they are widly distributed: although the RMSE 

would be low in that case, such a model would be bad overall. 

That’s why we need to look at other values that indicate the correlation 

between variances in origian and predicted gorups. Again, LSTM-F2B-T0BI

and LSTM-F2B models had the highest R-squared, COR, and NVAR values. 

The closer these values are to 1, the better the model represents natural 

distribution observed in the original data. If we compare LSMT-F2B-ToBI 

model with the basic LSTM-F2B model, the difference is not that big: 0.770

against 0.782 (R-squred), 0.889 against 0.885 (COR), and similar 0.783 of 
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NVAR.  Although inclusion of prosodic labels into the input did lead to slight 

increase in some of the metrics, in the others basic LSTM-F2B model 

outperformed it. If we consider, that prosodic labels have to be annotated 

manually, and as such can not be used in a fully automatic system, F2B model 

without ToBI labels seems a better choice for the automatic prosody 

transplantation system. Only in case of GRU models, the use of F2B-ToBI 

data lead to considerable gains in perfomance: 0.0272 against 0.0328 

(RMSE), 0.681 against 0.518 (R squared), 0.831 against 0.761 (COR), 0.690 

against 0.577 (NVAR).

If we compare F2B and F3A model, F2B model showed better results in 

Table 3.21. Objective metrics for the vowel duration model. The best score for 

each metric is shown in bold.

Model Data RMSE R2 COR NVAR

RNN F2B 0.0316 0.559 0.757 0.574

F2B-ToBI 0.0326 0.540 0.773 0.597

F3A 0.0382 0.392 0.650 0.417

LSTM F2B 0.0221 0.782 0.885 0.783

F2B-ToBI 0.0227 0.770 0.889 0.783

F3A 0.0264 0.711 0.843 0.711

GRU F2B 0.0328 0.518 0.761 0.577

F2B-ToBI 0.0272 0.681 0.831 0.690

F3A 0.0312 0.594 0.772 0.596
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case of baseline and LSTM models. For GRU models, on the other hand,  

F3A model outperformed F2B model. It has lower RMSE (0.0312 againt 

0.0328), and higher R2 (0.594 against 0.518), COR (0.772 against 0.761), and 

NVAR (0.596 against 0.577). The differences in performance for RNN and 

LSTM models can be explained by the difference in traning data. Although 

F3A had twice as much training data, which usually leads to better results, its 

annotations were not hand-corrected. For GRU model, however, hand-

corrected annotation do not seem to be that inportant, and instead, the amount 

of training data might be a more important factor.

Table 3.22. Objective metrics for the fundamental frequency model. The best 
score for each metric is shown in bold.

Model Data RMSE R2 COR NVAR

RNN F2B 52.49 0.036 0.378 0.141

F2B-ToBI 47.263 0.193 0.509 0.258

F3A 46.77 0..057 0.390 0.150

LSTM F2B 46.89 0.245 0.511 0.258

F2B-ToBI 38.60 0.482 0.707 0.499

F3A 40.357 0.305 0.584 0.339

GRU F2B 47.285 0.223 0.503 0.253

F2B-ToBI 36.371 0.536 0.736 0.538

F3A 42.163 0.243 0.606 0.358
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3.4.2 Fundamental Frequency Prediction Models Results

Different results for F0 prediction models (see Table 3.22). GRU-F2B-

ToBI and LSTM-F2B-ToBI models considerably outperformed all 

the other models. It showed better performance in all parameters, RMSE 

of 36.371 and 38.600, r squared of 0.536 and 0.482, COR of 0.736 and 0.707, 

and NVAR of 0.538 and 0.499. The obvious conclusion is that prosodic 

ToBI labels are much better predictors of F0, compared to duration. If the aim 

of self-imitation prosody traning system is to learn how to place correct pitch 

accents or boundary tones, the inclusion of prosodic labels into the prediction

system might be obligatory. If the aim of the CAPT system is to learn 

sentence stress or similar rythm-related phenomena,  the inclusion of prosodic 

labels will be redundant as we saw in the previous sub-chapter. One might 

even omit F0 transplantation all together, and perform duration 

transplantation only. These might help learners to pay more attention to 

problematic areas, and not be distracted by pitch differences. 

If we compare F2B and F3A models, F3A did better in  all cases: lower 

RMSE, higher COR and NVAR.  One possibility is that bigger amount of 

traning data leads to better resutls in F0 prediction, than it did for duration 

prediciton. It does not still explain F2B model’s very low R-squared score, 

and a further investigation of this is required. 

3.4.3 Comparison with other models

While in the previous section we compared our models with each other, it 

did not really tell us whether their perfomance was satisfactory or not. To find 

that out, we additionally compared our best duration prediction LSTM-F2B
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and F0 prediction GRU-F2B-ToBI models with duration and F0 prediciton 

models from other studies. You can see the results in Table 3.23. 

We compared our models with Bi-LSTM models from Fernandez et al. 

(2014). Their models have a similar archittectur: 3 stacks of bidirectional 

LSTMs with layr sizes of 67, 57 and 46. Their input consisted of text-based 

features, such as phonetic identity, POS tags, as well as different counts and 

context-related features, that were not used in our research. On the other hand, 

no prosodic labels were used in those models. The biggest differnce, though, 

comes in the amount of traning data: 7 and 10 hours compared to around 1 

and 2 hours for our models. Speakers for both traning sets were female 

speakers of American English, just like in our study.
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When it comes to F0 prediction, our model was significantly outperformed: 

RMSE of 0.207 against 0.010 (RNN2) and NVAR of 0.518 against 0.673 

(RNN2).  These huge differences ca be easiliy acounted for by the difference 

in the amount of training data ( 1 hour against 10 hour). But RNN2 model 

significantly outperfmed their other model as well, although in that case the 

difference in the amount of data is not that big (10 hours agaisnt 7 hours).  

One possible explanation might be the influence of the style of training data. 

RNN1 model was trained on news-style data, just like our model. RNN2, on 

the other hand, was trained on data from variuous genres and domains. 

Contrary to what was believed, news speech data might not be as good for 

prosody prediction. An additional investigation comparing prosody prediction 

based on data from different domains is required. 

As for the duration prediction, our LSTM-F2B model showed the best 

RMSE score of 0.0224, while RNN1 had better NVAR (0.872). RNN2 

model, on the other hand, showed the worst score in both cases, atlhough it 

Table 3.23. Comparison with other models. RNN1 and RNN2 models and their 
performance data is taken from Fernandez et al. (2014). The best score for each 

metric is shown in bold.

Model Parameter RMSE NVAR Architecture
Training 

Data

LSTM-F2B DUR 0.0221 0.786 Bi-LSTM 1 hour

GRU-F2B-

ToBI
log F0 0.207 0.518 Bi-GRU

RNN1 DUR 0.0622 0.872 Bi-LSTM 7 hours

log F0 0.037 0.437

RNN2 DUR 0.1040 0.668 Bi-LSTM 10 hours

log F0 0.010 0.673



71

had more training data. One possible explanation is that, unlike in case of F0 

prediction, news speech data might be more suitable for duration prediction.

Or it might also be that after some point, the increase in the amount of training 

data leads to diminishing returns in performance.
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Chapter 4. Automatic Prosody Transplantation

4.1 Data

Trial transplantation experiment was performed on Korean-accented 

English data. The utterances were taken from the ETRI corpus. They are

labelled with TIMIT set, which is the same one that is used in BURNC.

Overall, 20 utterances were selected: 5 utterances per speaker (all female, 4 

speakers in total). The data did not contain any POS tags, so first, it had to be 

labelled. We used NLTK library in Python, which contains pre-trained part-

of-speech taggers, that are also based on the Penn Treebank tag set. Labels 

were assigned for each phone (see Figure 4.1). Stress and phoneme type tags 

were assigned as well, and a sequence of vowels and syllabic consonants was 

extracted from each utterances.

The data was fed into the duration prediction model first. LSTM-F2B 

model was used for the trial experiment. After that, the results were used to 

calculate the number of 10 m-sec frames (per each phone), to be used in the 

F0 prediction model. All the F0 values were de-normalized to match the mean 

and deviation of the target speaker. To do that, we calculated the mean and 

Figure 4.1. Labelled non-native utterance.
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standard deviation of F0 in the utterance. For the F0 prediction LSTM-F3A

model was used instead. Although GRU-F2B-ToBI and LSTM-F2B-ToBI 

showed better results, we do not have a way to predict prosodic labels for the 

target utterance, and as such this models cannot be used.

You can see the comparison of original non-native and predicted duration 

and F0 values in Table 4.1 and Table 4.2. In case of duration, some predicted 

values are bigger, than original ones, while the others are shorter, although 

majority of the predicted values are significantly shorter, which is expected, 

as low proficiency foreign speaker’s speech is typically slower compared to 

native speakers. In case of fundamental frequency, the predicted F0 values 

turned out to be higher than original ones. We can also observe a falling F0 by 

the end of the utterance, which is characteristic of natural speech.

Table 4.1. Comparison of original non-native and predicted vowel duration 
values. The original utterance is: Yes, yesterday I played basketball all day. 
YEHS YEHSTERDEY AY PLEYD BAESKTAHTBAOL AOL DEY. 

Phone Original (m-sec) Predicted (m-sec)

EH 155 95

EH 101 52

ER 30 106

EY 365 135

AY 129 132

EY 208 107

AE 121 43

AH 54 60

AO 310 44

AO 106 59

EY 404 163
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4.2 Transplantation Method

After that, the predicted values were used for the prosody transplantation. 

The transplantation was performed using Python’s ProMo library. The library 

allows to perform F0 and duration manipulation using Python code, but the 

resynthesis itself is performed in Praat. The transplantation was done in 2 

stages: first duration transplantation was performed, followed by F0 

transplantation. 

The duration transplantation is done by comparing two TextGrid files 

segment by segment. To do that, we first had to create a ‘fake’ TextGrid’ file: 

it contained all the data from the original utterance’s TextGrid, but vowel and 

syllabic consonant values were switched for the predicted values (see Figure 

4.2). Durations within each pair are compared and the difference ratio is 

Table 4.2. Comparison of original non-native and predicted F0 values. Values 

are averaged for each phone.

Phone Frame Original (Hz) Predicted (Hz)

EH 1 230 253

EH 2 231 253

ER 3 207 254

EY 4 223 250

AY 5 201 248

EY 6 229 247

AE 7 233 236

AH 8 228 235

AO 9 194 219

AO 10 165 208

EY 11 175 221
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stored alone with the start and end time points of each segment. Additionally, 

we introduced a modification limit factor: minimum limit is 0.5 (can only be 

twice shorter), maximum limit is 2 (can only be twice longer). In case the 

ratio exceeds the limits, the limit is used instead of it (see Figure 4.3). It is 

done to minimize the introduction of artefacts, which severely worsens the 

quality. After that, TD-PSOLA algorithm either adds extra ST signals or 

removes redundant ones to match the specified ratio (if ratio is 1, no 

modification is performed). The output of the procedure is a new modified 

wav file and a new TextGrid file to match it. Python code for the duration 

transplantation can be find in Appendix 5. 

File type = "ooTextFile short"
Object class = "TextGrid"

0.0

3.5736305713431444
<exists>
1

"IntervalTier"
"seg"
0.0

3.5736305713431444
32
0.0

0.30109404001578416
"sil"

0.30109404001578416
0.4
"y"

0.4
0.4954436293893194
"eh"

0.4954436293893194
0.6149264787236076
"s"

0.6149264787236076
0.6835996635716458

"y"
0.6835996635716458
0.7365927311416653

Figure 4.2. Example of a TextGrid file with predicted duration values.
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The next step was F0 transplantation. First, we had to specify which 

segments from the TextGrid file should receive transplantation, and which 

should not. This way, we leave segments of the original pitch contour, that we 

don’t want to change, untouched by the morph process. After that we created 

a list of ‘fake’ target pitch regions and fill them with predicted F0 values. 

Then, the two lists are compared with each other and fundamental frequency

of the specified pitch regions in the original wav file is modified to match the 

target values. TD-PSOLA algorithm changes the pitch by moving 

neighbouring ST signals closer or further apart from each other. It is also 

possible to limit the scale of modification, in this experiment the limit of 0.5 

was implemented. The code for F0 transplantation can be found in Appendix 

6.

The original and modified (limit of 0.5) F0 contours can be seen in Figure 

4.4 and Figure 4.5. The modified contour differs significantly from the 

def getMorphParameters_ph(fromTGFN, toTGFN, tierName, mod_limit_min, 

mod_limit_max):

    fromEntryList = utils.getIntervals(fromTGFN, tierName, 

includeUnlabeledRegions=False)

    toEntryList = utils.getIntervals(toTGFN, tierName, includeUnlabeledRegions= 

False)

    assert (len(fromEntryList) == len(toEntryList))

    durationParameters = []

    for fromEntry, toEntry in zip(fromEntryList, toEntryList):

        fromStart, fromEnd = fromEntry[:2]

        toStart, toEnd = toEntry[:2]

        toStart += PRAAT_TIME_DIFF

        fromStart += PRAAT_TIME_DIFF

        ratio = (toEnd - toStart) / float((fromEnd - fromStart))

        if ratio < mod_limit_min:

            ratio = mod_limit_min

        elif ratio > mod_limit_max:

            ratio = mod_limit_max

        durationParameters.append((fromStart, fromEnd, ratio))

    return durationParameters

Figure 4.3. Python code for comparison of duration between segments.
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original one. The original contour contains many drops and rises, while the 

modified one looks more smooth. That overall makes the utterance to sound 

more smooth. 
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The length of the utterance also changed. It shortened from 4.56 sec

(original) to 3.87 sec (modified) due to the reduction in the duration of vowels. 

That is not surprising, as many of the speakers from ETRI corpus have 

relatively low level of English proficiency, so their speech is generally slower, 

compared to native speakers. 

Figure 4.4. Original F0 contour.

Figure 4.5. Modified F0 contour.

Figure 4.6. Evaluation spreadsheet.



79

4.3 Perceptual Evaluation

To investigate the effectiveness of the proposed transplantation method, a 

perceptual experiment was carried out. 

Listeners. Three native speakers of American English were recruited (two 

females and one male). All of them have been residing in Seoul, South Korea 

for over a year.

Materials. 60 utterances were presented to the listeners: 20 original 

utterances, 20 utterances that only received duration modification, and 20, that 

received both duration and F0 modification. Each listener had to listen to all 

of the utterances.

Procedure. The utterances were presented using Microsoft Excel 

spreadsheet. Each participant sat in front of a monitor and had to click on the 

audi0 file link to listen to it. Participant could listen to each utterances as 

Figure 4.7. Mean accentedness ratings for original and manipulated utterances. 
Duration = utterances that received duration transplantation only. F0 = 

utterances that received both duration and F0 transplantation.
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many times as they wanted, but no transcripts were provided (see Figure 4.6). 

The listeners were asked to rate each utterance’s accentedness and 

comprehensibility on a Likert scale from 1 to 5. In case of accentedness, 5 

signified “the most native-like”, and 1 – “the least native-like”. In case of 

comprehensibility, the scale as well ranged from 1 (“difficult to understand”) 

to 5 (“easy to understand”).

Before starting the experiment, the listeners were informed that some 

utterances were manipulated and might sound artificial. They were asked to 

ignore artificiality. Furthermore, they were instructed to ignore possible 

mistakes in consonant production and to pay more attention to vowels and 

sentence stress, instead.

4.4 Results

A one-way repeated measures analysis of variance (ANOVA) showed no 

Figure 4.8. Mean comprehensibility ratings for original and manipulated 
utterances. Duration = utterances that received duration transplantation only. 

F0 = utterances that received both duration and F0 transplantation.
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significant effects of prosody transplantation on accentedness ratings (F (2, 

177) = 1.721, p = 0.182) (see Figure 4.7). Although on average, utterances 

with duration transplantation only received a better rating of 2.77 compared to 

the original non-native utterances (2.40) or utterances with both duration and 

F0 transplantation (2.45). 

One possible explanation for the lack of any significant difference might 

the influence of consonants. Although the listeners were instructed not to pay 

attention to consonant production, it might not be possible to completely 

avoid it. One possible solution might be to substitute all consonantal segments 

with silence or noise, or employ another similar technique. 

For comprehensibility, on the other hand, the results were significant (F (2, 

177) = 3.986, p < 0.05) (see Figure 4.8). Utterances with duration 

transplantation showed the best results (rating of 4.37); slightly better than the 

original ones (4.33). Bad performance of utterances with both duration and F0 

transplantation (rating of 3.87) can be explained by the presence of more 

severe artefacts, which makes the entire utterance harder to understand. 

The results of the transplantation experiment are inconclusive. In case of 

accentedness, no significant difference was observed; as for the 

comprehensibility, utterances with modified duration received a slightly better 

score. The bad rating of utterances with both duration and F0 modification 

can be attributed to the influence of introduced artefacts. One of the ways to 

improve the quality is to adjust limit factor. The higher the factor, the closer to 

the target the modified utterance will sound; but at the same time the quality 

will degrade. Which means we need to find the optimal trade-off between 

accentedness and overall quality. 

Another possibility is to apply a smoothing technique, that is typically used 

in concatenative speech synthesis. This will ‘smooth’ the transitions between 

modified and unmodified segments, which should improve the overall quality 
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and potentially lead to the increase in comprehensibility rating.

Additionally, a new approach to perceptual evaluation is required, that will 

allow to filter out the influence of unmodified segments on the overall ratings.

First, a study that examines the influence of consonants and vowels on the 

accentedness and similar ratings. 

Chapter 5. Conclusion

5.1 Summary

In this study, we investigated the possibilities of automatic prosody 

transplantation procedure for self-imitation learning and suggested a new 

model, that predicts target parameters (vowel duration and F0) instead of 

extracting them from pre-recorded utterances. The results of this study 

answered research question proposed in Chapter 1.

In answering the first question, we surveyed prosodic transplantation 

research done so far, and pointed out the areas, that were still lacking. We also 

analysed the literature on the characteristics of Korean English, which showed 

that, when it comes to prosody, Korean learners struggle the most with 

sentence stress, especially with the reduction of unstressed function words. As 

such we suggested a selective transplantation strategy, when only the duration 
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and F0 of vowels would be transplanted onto non-native speech, to emphasize 

the possible areas of mistake.

The next research question was what kind of input features should be used 

in a prosody prediction model. We analysed the data from Boston University 

Radio News Corpus. The results showed that basic features that can be 

obtained automatically, like phoneme type, stress, POS tags, can be good 

predictors of vowel duration and F0.

Then in Chapter 3 we described our proposed prosody prediction models. 

The models are based on RNN, LSTM and GRU architecture, which utilize

the context around the target. This allows to get rid of many contextual input 

features, traditionally used, as they become redundant. All proposed models 

were trained on small amount of data and then compared to state-of-the-art 

prosody prediction models from speech synthesis, trained on larger amount of 

data. Although our models could not compare with them in terms of 

performance, nevertheless, considering the huge difference in the amount of 

training data and input features, the results of this study are still promising. 

We also compared models with prosodic labels (F2B-ToBI model) with 

those without, and the results showed, that omission of prosodic labels does 

not lead to any significant drop of performance in case of duration prediction. 

In case of F0 prediction, however, models without ToBI labels did 

significantly worse and the results are not satisfactory. That means that 

automatically derived features can be sufficient for duration transplantation

system. If the aim is to transplant F0, a reliable way to automatically assign 

prosodic labels is first required. For the duration transplantation, the proposed 

models seem satisfactory (LSTM-F2B model).

Finally, in Chapter 4 we showed how our model can be applied in practice. 

We performed selective prosody transplantation using predicted vowel 

duration and F0 values (LSTM-F2B and LSTM-F3A models). The results 
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lead to significant change in the overall length of utterance as well as 

individual phonemes. The shape of pitch contour changed as well. The results 

were evaluated by native speakers of English. No significant changes in 

accentedness ratings were observed; duration transplantation only lead to a 

slight improvement in comprehensibility rating. Both duration and F0 

transplantation lead to decrease in comprehensibility, and as such F0 

transplantation requires significant additional refinements, before it can be 

implemented in any CAPT environment.

5.2 Contribution

The results of this study can contribute significantly to the prosody 

transplantation research. We introduced a new automatic method of 

transplantation. The proposed prediction model can be used instead of pre-

recording native utterances. Duration prediction model’s performance was 

comparable to other existing models, used in speech synthesis, while our 

model used a significantly less amount of input features, that can be 

automatically obtained. Implementation of the model to the duration 

transplantation will remove the need to record each sentence with a native 

speaker. That can significantly cut down the costs of a self-imitation training 

system, that employs prosody transplantation. 

Additionally, when it comes to prosody transplantation procedure, we 

proposed a new selective transplantation method. We consider selective 

transplantation to be more effective for self-imitation prosody training, as it 

allows the learner to concentrate of potentially problematic areas, when 

listening to feedback.  The proposed duration prediction model can be used 

in an online CAPT system designed for Korean learners of English, especially 
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when learning sentence stress or other rhythm-related phenomena.

5.3 Limitations

This study had a number of limitations. The research was limited to the 

Korean-English language pair, although we believe, that the results can be 

extrapolated to other languages. The proposed models were trained on small-

scale corpus of English. As such, the results were not as good, as they could 

have been when using more data. 

We used data from two female speakers, based on the amount of speech 

available. As such, there was no criteria for speaker selection, although that 

might be one of the most crucial stages in prosody transplantation. 

Introduction of acoustic or similar criteria for choosing a perfect native voice, 

might be necessary. Additionally, only female voices were used for this 

experiment. Male voices are known to show narrower pitch range and less 

prosodic variability in general. A study, that compares the use of female and 

male voice for automatic prosody transplantation is required.

Finally, only a small-scale perceptual evaluation was carried out. An 

additional evaluation with more participants and more material can give a 

better result. Additionally, we were not able to limit the influence of 

unmodified consonantal segments on the accentedness and comprehensibility 

ratings. 

5.4 Recommendations for Future Study

The proposed model needs additional testing and refinement. More 

specifically, the model should be tested in a real learning environment. The 

results of the automatic transplantation experiment can be used as feedback in 

prosody training session. The speech of Korean learners of English then will 
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be recorded and evaluated before and the after the training and analysed for 

any possible improvement. This will give a more objective evaluation of the 

model’s performance, compared to a perceptual listening experiment.

Also, as was pointed out in the previous section, a number of models can be 

trained on a larger dataset of both male and female speech, and then compared 

with each other. Additionally, some kind of objective criteria for native 

speaker selection should be introduced.

For the F0 prediction model, a way to improve the performance without the 

inclusion of prosodic labels must be investigated. Alternatively, an automatic 

assignment of prosodic labels can be investigated and implemented, which 

can benefit both F0 and duration prediction models.

The optimal limit factor for transplantation must be found as well. 

Transplantation can be applied to the same utterance, but with a different limit 

factor, and the utterances then can be compared with each other in a 

perceptual evaluation or similar experiment.
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Appendix

Appendix 1. TIMIT phoneme set.

Phone Example Phone Example Phone Example

1 iy beet 22 r ray 43 jh joke

2 ih bit 23 w way 44 ch choke

3 eh bet 24 y yacht 45 b bee

4 ey bait 25 hh hay 46 d day

5 ae bat 26 hv ahead 47 g gay

6 aa bob 27 el bottle 48 p pea

7 aw bout 28 m mom 49 t tea

8 ay bite 29 n moon 50 k key

9 ah but 30 ng sing 51 dx muddy

10 ao bought 31 em bottom 52 q glottal stop

11 oy boy 32 en button 53 bcl b closure

12 ow boat 33 eng Washington 54 dcl d closure

13 uh book 34 nx winner 55 gcl g closure

14 uw boot 35 s sea 56 pcl p closure

15 ux toot 36 sh she 57 tcl t closure

16 er bird 37 z zone 58 kcl k closure

17 ax about 38 zh azure 59 epi
epenthetic 

silence

18 ix debit 39 f fin 60 pau pause

19 axr butter 40 th thin 61 h#
begin/end 

marker

20 ax-h suspect 41 v van

21 l lay 42 dh then

Appendix 2. Part-of-speech tags (excluding 11 punctuation labels) 



97

used in labelling the corpus, from the Penn Treebank set.

Tag Part of speech Tag Part of speech

CC coordinating conjunction PP$ possessive pronoun

CD cardinal number RB adverb

DT determiner RBR adverb, comparative

EX existential there RBS adverb, superlative

FW foreign word RP particle

IN
preposition/ subordinating 

conjunction
SYM mathematical symbol

JJ adjective TO to

JJR adjective, comparative UH interjection

JJS adjective, superlative VB verb, base form

LS list item marker VBD verb, past tense

MD model VBG
verb, gerund or present 

participle

NN noun, singular or mass VBN verb, past participle

NNS noun, plural VBP
verb, non-3rd person singular 

present

NP proper noun, singular VBZ
verb, 3rd person singular 

present

NPS proper noun, plural WDT wh-determiner

PDT pre-determiner WP wh-pronoun

POS possessive ending WP$ possessive wh-pronoun

PP personal pronoun WRB wh-adverb



98

Appendex 3. Python code for model architecture (RNN).

def build_rnn(batch_size, bi_lstm_size, learning_rate):

    tf.reset_default_graph()

    # Declare placeholders we'll feed into the graph

    inputs = tf.placeholder(tf.float32, [batch_size, max_time_step, embedding_size], 

name='inputs')

    length = tf.placeholder(tf.int32, [batch_size], name='length')

    durations = tf.placeholder(tf.float32, [batch_size, max_time_step, 1], 

name='durations')

    keep_prob = tf.placeholder(tf.float32, name='keep_prob')

    # Build uni-LSTM cell

    def lstm_cell(lstm_size):

        lstm = tf.nn.rnn_cell.LSTMCell(lstm_size, use_peepholes=True,        

initializer=tf.contrib.layers.xavier_initializer(), activation=tf.tanh,

reuse=tf.get_variable_scope().reuse)

        return tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob)

    cell_fw = [lstm_cell(ls) for ls in bi_lstm_size]

    cell_bw = [lstm_cell(ls) for ls in bi_lstm_size]

    initial_state_fw = [cfw.zero_state(batch_size, dtype=tf.float32) for cfw in 

cell_fw]

    initial_state_bw = [cbw.zero_state(batch_size, dtype=tf.float32) for cbw in 

cell_bw]

    outputs_bi, final_state_fw, final_state_bw = 

tf.contrib.rnn.stack_bidirectional_dynamic_rnn (cells_fw=cell_fw, cells_bw=cell_bw, 

inputs=inputs, initial_states_fw=initial_state_fw, states_bw=initial_state_bw, 

sequence_length=length, scope = 'bi_lstm')

    # Make the predictions

    outputs = tf.contrib.layers.fully_connected(outputs_bi, num_outputs=1, 

activation_fn= None, weights_initializer=tf.contrib.layers.xavier_initializer(), 

biases_initializer=  tf.zeros_initializer())

    # Calculate the cost

    with tf.name_scope('loss'):

        loss = tf.reduce_mean(tf.losses.mean_squared_error(labels = durations, 

predictions = outputs))

        tf.summary.scalar('loss', loss)

    # Train the model

    with tf.name_scope('optimizer'):

        optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)

    # Merge all of the summaries

    merged = tf.summary.merge_all()

    # Export the nodes

    export_nodes = ['inputs', 'length', 'durations', 'keep_prob', 'outputs', 'loss', 

'optimizer', 'merged']

    Graph = collections.namedtuple('Graph', export_nodes)

    local_dict = locals()

    graph = Graph(*[local_dict[each] for each in export_nodes])

    return graph
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Appendex 4. Python code for data pre-processing.

data = np.loadtxt(filename_1, delimiter = ' ', dtype = 'str', unpack = True)

phone_dic = np.loadtxt(filename_2, delimiter = ' ', dtype = 'str', unpack = True)

v_type_dic = np.loadtxt(filename_3, delimiter = ' ', dtype = 'str', unpack = True)

#Reading data

phone_dic = dict(zip(phone_dic[0], np.transpose(phone_dic[1:])))

v_type_dic = dict(zip(v_type_dic[0], np.transpose(v_type_dic[1:])))

#Getting rid of outliers and normalizing lable data to (0, 1)

durs_4 = [float(x) for x in data[8]]

m = np.mean(durs_4) # Used  to restore original data by x * m

std = np.std(durs_4)

q3, q1 = np.percentile(durs_4, [75, 25])        #Checking for outliers using 

interquartile percentile;

iqr = q3 - q1

durs_3 = []

i,j = 0, 0

for x in durs_4:

    if x > q3 + 1.5 * iqr:

        x = q3 + 1.5 * iqr

    elif x < q1 - 1.5 * iqr:

        x = q1 - 1.5 * iqr

    durs_3.append(x)

durs_3 = stats.zscore(durs_3)   #Doing z-score normalization

max_dur = max(durs_3)

min_dur = min(durs_3)

#Norlmalizing duration for [0.01, 0.99] range - optimal for neural networks

durs_3 = [ ((0.99 - 0.01) * (x - min_dur) / (max_dur - min_dur) + 0.01) for x in 

durs_3]
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Appendix 5. Duration transplantation code

PRAAT_TIME_DIFF = 0.000001

# Some convenience functions -- we'll be using these a lot

def pitchForPlots(pitchFN):

    pitchTier = dataio.open2DPointObject(pitchFN)

    x, y = zip(*pitchTier.pointList)

    return x, y

def doPlot(axis, title, pitchFN):

    axis.plot(*pitchForPlots(pitchFN))

    axis.set_title(title)

    axis.set_xlabel("time(s)")

    axis.set_ylabel("F0(hz)")

vowels = ['EN', 'EM', 'ENG' 'EL', 'ER', 'AXR', 'AH', 'AX', 'AE', 'AO', 'AA', 'IH', 'IY', 

'EH', 'UW', 'UH', 'AY', 'EY', 'OW', 'AW', 'OY']

#No modifiation of of stops and affricates

def getMorphParameters_ph(fromTGFN, toTGFN, tierName, mod_limit):

    fromEntryList = utils.getIntervals(fromTGFN, tierName, 

includeUnlabeledRegions=False)

    toEntryList = utils.getIntervals(toTGFN, tierName, includeUnlabeledRegions= False)

    #fromEntryList = [entry for entry in fromEntryList]

    #toEntryList = [entry for entry in toEntryList]

    assert (len(fromEntryList) == len(toEntryList))

    durationParameters = []

    for fromEntry, toEntry in zip(fromEntryList, toEntryList):

        fromStart, fromEnd = fromEntry[:2]

        toStart, toEnd = toEntry[:2]

        toStart += PRAAT_TIME_DIFF

        fromStart += PRAAT_TIME_DIFF

        #Introduce a new function that will look at phoneme type

        #fromEntry[2], toEntry[2] is phoneme type

        #Make a dictionary of phones and phoneme types

        if fromEntry[2].upper() in vowels:

            ratio = float((toEnd - toStart)) / float((fromEnd - fromStart))

            if ratio > 1 + mod_limit:

                ratio = 1 + mod_limit

            elif ratio < 1 - mod_limit:

                ratio = 1 - mod_limit

        else:

            ratio = 1.0

        durationParameters.append((fromStart, fromEnd, ratio))

    return durationParameters
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def changeDuration_ph(fromWavFN, durationParameters, outputName, outputMinPitch, 

outputMaxPitch, praatEXE, outputPath, toTGFN):

    rootPath = os.path.split(fromWavFN)[0]

    # Prep output directories

    outputPath = outputPath

    durationTierPath = outputPath

    fromWavDuration = audio_scripts.getSoundFileDuration(fromWavFN)

    durationParameters = copy.deepcopy(durationParameters)

    # Pad any gaps with values of 1 (no change in duration)

    durationPointList = []

    for start, end, ratio in durationParameters:

        durationPointList.append((start, ratio))

        durationPointList.append((end, ratio))

    outputPrefix = "%s" % (outputName)

    durationTierFN = join(durationTierPath, "%s.DurationTier" % outputPrefix)

    outputWavFN = join(outputPath, "%s.wav" % outputPrefix)

    durationTier = dataio.PointObject2D(durationPointList, dataio.DURATION, 0, 

fromWavDuration)

    durationTier.save(durationTierFN)

    #Saving a TextGrid file

    tg = tgio.openTextgrid(toTGFN)

    ph_tier = tg.tierDict["seg"]

    phones = [ph for _, _, ph in ph_tier.entryList]

    st = [s for s, _, _ in ph_tier.entryList]

    en = [e for _, e, _ in ph_tier.entryList]

    x = np.loadtxt(durationTierFN, dtype='float', skiprows=6)

    st_m = []

    en_m = []

    j = 0

    l = 0

    i = 0

    while i < len(x) - 1:

        if i == 0:

            j = 0

        else:

            j = x[i] * x[i + 1]

        i += 2

        k = x[i] * x[i + 1]

        i += 2

        st_m.append(l)

        l = l + (k - j)

        en_m.append(l)

    dr = []

    for i, x in enumerate(phones, 0):

        dr.append((st_m[i], en_m[i], x))

    new_ph_tier = ph_tier.new(entryList=dr)

    new_tg = tgio.Textgrid()

    new_tg.addTier(new_ph_tier)

    new_tg.save(join(outputPath, "%s.TextGrid" % outputPrefix))
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    praat_scripts.resynthesizeDuration(praatEXE, fromWavFN, durationTierFN, 

outputWavFN, outputMinPitch, outputMaxPitch)

praatEXE = r"C:/Users/Matvei/Desktop/praat6023_win64/Praat.exe"  # Windows

minPitch = 50

maxPitch = 600

# Define the arguments for the code

root_1 = "C:/Users/Matvei/Desktop/evaluation/originals/"

root_2 = "C:/Users/Matvei/Desktop/evaluation/pred_values/"

outputPath = "C:/Users/Matvei/Desktop/evaluation/results/"

fld = r'C:\Users\Matvei\Desktop\evaluation\originals\*'

for file in glob.glob(fld):

    if 'data' in file:

        print(file)

        fromName = file[-23:-9]

        fromWavFN = root_1 + fromName + ".wav"

        tierName = "seg"

        fromTGFN = root_1 + fromName + ".TextGrid"

        toTGFN = root_2 + fromName + "_dur_mod.TextGrid"

        mod_limit = 0.5

        utils.makeDir(outputPath)

        outputName = "%s_dur" % (fromName)

        outputTG = join(outputPath, "%s_dur.TextGrid" % outputName)

        durationParams = getMorphParameters_ph(fromTGFN, toTGFN, tierName, mod_limit)

        changeDuration_ph(fromWavFN,

                          durationParams,

                          outputName,

                          outputMinPitch=minPitch,

                          outputMaxPitch=maxPitch,

                          praatEXE=praatEXE,

                          outputPath = outputPath,

                          toTGFN = toTGFN)



103

Appendix 6. Fundamental frequency transplantation code

praatEXE = r"C:\Users\Matvei\Desktop\praat6023_win64\Praat.exe"  # Windows paths

minPitch = 75

maxPitch = 600

vowels = ['EN', 'EM', 'ENG' 'EL', 'ER', 'AXR', 'AH', 'AX', 'AE', 'AO', 'AA', 'IH', 'IY', 

'EH', 'UW', 'UH', 'AY', 'EY', 'OW', 'AW', 'OY']

fld = r'C:\Users\Matvei\Desktop\evaluation\originals\*'

for file in glob.glob(fld):

    if 'data' in file:

        print(file)

        name = file[-23:-9]

        inputWavFN = root_1 + name + "_dur.wav"

        pitchFN = root_1 + name + '_dur.PitchTier'

       filename_1 = root_2 + name + "_pred_f0.txt"

        filename_2 = root_1 + name + '_dur.TextGrid'

        fromPitchTier = pitch_and_intensity.extractPitchTier(inputWavFN, pitchFN, 

praatEXE, minPitch, maxPitch, forceRegenerate=False)

        tg = tgio.openTextgrid(filename_2)

        ph_tier = tg.tierDict["seg"]

        cv = f0_morph.getPitchForIntervals(fromPitchTier.pointList, filename_2, 'seg')

        fromPitchRegions = []

        toPitchRegions = []

        for i, (x, y, z) in enumerate(ph_tier.entryList):

            if z.upper() in vowels:

                fromPitchRegions.append(cv[i])

        f0 = np.loadtxt(filename_1, delimiter = ' ', dtype = 'float', usecols= (0, 2), 

unpack = True)

        j = 0

        ch = []

        y = [fromPitchRegions[i][0][0] for i in range(len(fromPitchRegions))]

        k = y[j]

        for i, x in enumerate(f0[0]):

            if int(x) == j:

                ch.append((k, f0[1][i]))

            else:

                toPitchRegions.append(ch)

                j += 1

                k = y[j]

                ch = []

                ch.append((k, f0[1][i]))

            if i == len(f0[0])-1:

                toPitchRegions.append(ch)

            k += 0.01

        stepList = [0.5]
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        f0_morph.f0Morph(fromWavFN= inputWavFN,

                         pitchPath = output,

                         stepList=stepList,

                         outputName= name,

                         doPlotPitchSteps=False,

                         fromPitchData=fromPitchRegions,

                         toPitchData=toPitchRegions,

                         outputMinPitch=minPitch,

                         outputMaxPitch=maxPitch,

                         praatEXE=praatEXE,

                         keepPitchRange=True,

                         keepAveragePitch=True,

                         sourcePitchDataList=fromPitchTier.pointList)
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요약(국문초록)

지난 수십년동안 컴퓨터를 사용하여 외국어의 발음을 가르치는

것은 급속히 증가하고 있었다. 이러한 컴퓨터 보조 발음 훈련

(CAPT – computer-assisted pronunciation training) 시스템들이

주로 정확한 음소 발음을 가르침에만 줍중했는데 운율은 별로

관심을받지 못했다. 운율 훈련에 대한 새로운 접근법 중 하나는

자기 모방 (self-imitation) 학습이다. 원어민의 발화에서 운율적

요소를 학습자의 발화로 복제하고 수정적 피드백으로 학습자에게

다시 제공해 주는 것이다. 이 기술의 제일 큰 단점은 원어민과

학습자의 똑 갘은 발화 두 개 꼭 필요한 것이다.

운율 복제의 새로운 방법을 개발하기위한 예비 연구인 제 1 장은

선행 연구를 조사하고 장점과 단점을 지적한다. 또한 한국어와

영어의 운율 쳬계를 비교하고, 한국인 학습자가 주로 하는 실수을

지적한 다음에 그런 실수와 관련있는 음향 특성을 분석한다. 모음

길이와 기본 주파수의 복제는 한국인 영어 학습자에게 제일

효과적이라고 제안한다.

본 연구의 두 번째 부분은 새로운 운율 복제의 기법을 소개한다. 

미리 녹음된 원어민 발화에서 음향 값을 복제하는 대신에

심층신경망(DNN)을 사용하는 예측 모데를 제안한다.  RNN 

(recurrent neural network), LSTM (long short-term memory) 및

GRU (gated recurrent unit) 세 가지 예측 모델을 기술하며

설명한다. 모델들은 Boston University Radio Speech Corpus로

훈련시켰는데  성능은 음성합성 연구의 최첨단 운율 예측 시스템

또한 서로와도 비교했다.
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제안한 운율 예측 모델을 이용하는 자동 운율 복제의 실행 방법을

설명하며 그의 결과를 분석한다. 영어 원어민에 의한 지각 평가

실험을 수행했다. 원래 한국인 학습자의 발화와 운율 복제를 받은

발화의 말투 및 이해도를 서로와 비교했다. 그의 결과는 모음 길이

복제가 이해드를 향상시킬 수 있음을 보여주었다. 본 연구는 완전

자동화된 자기 모방 운율 훈련 시스템의 초석을 마련한다. 본

연구의 결과는 한국인 영어 학습자가 문장 스트레스와 같은 영어

운율의 문제 영역을 마스터하는 데에 도움이 될 수 있다.

주요어: 컴퓨터 보조 발음 훈련, 한국인의 영어 운율, 운율 복제,

운율 예측, 심층 신경망.

학 번 : 2015-23283
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