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ABSTRACT 

Foreign accent conversion seeks to transform utterances from a non-native 

speaker (L2) to appear as if they had been produced by the same speaker but with a 

native (L1) accent. Such accent-modified utterances have been suggested to be effective 

in pronunciation training for adult second language learners. Accent modification 

involves separating the linguistic gestures and voice-quality cues from the L1 and L2 

utterances, then transposing them across the two speakers. However, because of the 

complex interaction between these two sources of information, their separation in the 

acoustic domain is not straightforward. As a result, vocoding approaches to accent 

conversion results in a voice that is different from both the L1 and L2 speakers. In 

contrast, separation in the articulatory domain is straightforward since linguistic gestures 

are readily available via articulatory data. However, because of the difficulty in 

collecting articulatory data, conventional synthesis techniques based on unit selection are 

ill-suited for accent conversion given the small size of articulatory corpora and the 

inability to interpolate missing native sounds in L2 corpus. 

To address these issues, this dissertation presents two statistical parametric 

methods to accent conversion that operate in the acoustic and articulatory domains, 

respectively. The acoustic method uses a cross-speaker statistical mapping to generate 

L2 acoustic features from the trajectories of L1 acoustic features in a reference utterance. 

Our results show significant reductions in the perceived non-native accents compared to 

the corresponding L2 utterance. The results also show a strong voice-similarity between 
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accent conversions and the original L2 utterance. Our second (articulatory-based) 

approach consists of building a statistical parametric articulatory synthesizer for a non-

native speaker, then driving the synthesizer with the articulators from the reference L1 

speaker. This statistical approach not only has low data requirements but also has the 

flexibility to interpolate missing sounds in the L2 corpus. In a series of listening tests, 

articulatory accent conversions were rated more intelligible and less accented than their 

L2 counterparts. In the final study, we compare the two approaches: acoustic and 

articulatory. Our results show that the articulatory approach, despite the direct access to 

the native linguistic gestures, is less effective in reducing perceived non-native accents 

than the acoustic approach. 
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1. INTRODUCTION  

A non-native speaker who learns to speak a second language after a “critical age” 

(Lenneberg, 1967) usually speaks with a foreign accent —a systematic deviation from 

the phonetic and prosodic norms of the native speech. In many cases, foreign accents 

lower the intelligibility of the speech (Munro and Derwing, 1995), but even when the 

intelligibility is not compromised, foreign-accented speakers may be subjected to 

discriminatory attitude (Giles, 1970; Kalin and Rayko, 1978; Rubin and Smith, 1990). 

Thus, by improving their pronunciation, adult second language learners have more to 

gain than mere intelligibility. A common pronunciation training approach consists of 

repeating after a native speaker. However, several studies have suggested that choosing a 

suitable target voice to imitate, a so called “golden speaker,” can be more effective for 

pronunciation training (Nagano and Ozawa, 1990; Probst et al., 2002; Bissiri et al., 

2006), the rationale being that by removing all voice-specific differences the learner can 

focus only on the accent related differences. Because finding such a native speaker for 

each learner is not practical, Felps et al. (2009) suggested using speech modification 

methods to provide the ideal “golden speaker” for each learner: their own voice, but with 

a native accent. This dissertation focuses on developing such speech modification 

methods, which we will refer to as foreign accent conversion. 

Foreign accent conversion can be performed both in the acoustic and in the 

articulatory domain. In the acoustic-domain, existing vocoding approaches seek to 

separate the linguistic (accents) and voice-identity information from a pair of time-
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aligned utterances of a native and a non-native speaker, then transpose them across the 

speakers (Felps et al., 2009; Aryal and Gutierrez-Osuna, 2013). However, these two 

sources of information are convolved in a complex way, and therefore are difficult to 

decouple when analyzing the acoustic signal. As a result, vocoding often results in 

accent conversions with the voice of a ‘third speaker,’ one that is different from either 

speaker (Felps et al., 2009). Unlike the vocoding-based acoustic methods, foreign accent 

conversion in the articulatory domain is inherently immune to the ‘third-speaker’ 

problem due to the voice-independent representation of linguistic gestures via 

articulatory data (Traunmüller, 1994). In the only existing articulatory-based method 

prior to this dissertation, Felps et al. (2012) showed that accent conversion can be 

performed by driving an articulatory synthesizer for the non-native speaker based on 

unit-selection (Hunt and Black, 1996) using articulatory gestures from a reference native 

utterance. However, the study reported only a moderate reduction in non-native accents 

and inconsistent acoustic quality due to the small size of the articulatory-acoustic corpus 

and the inability of unit selection to produce sounds that do not already exists in the 

corpus. 

Given the limitations of the existing methods, this dissertation investigates 

strategies in both acoustic and articulatory domains. In the acoustic domain, we propose 

a statistical mapping approach to estimate equivalent trajectories of acoustic parameters 

for the non-native (L2) speaker from a reference native (L1) utterance, while avoiding 

the difficulty of separating and transposing the sources of voice-identity and the 

linguistic information across the speakers. Statistical mappings of acoustic features from 
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a source to a target speaker have been effectively used in voice conversion, a closely 

related problem where the objective is to modify speech from a source speaker to match 

the voice of a target speaker (Kain and Macon, 1998; Stylianou et al., 1998; Toda et al., 

2007; Desai et al., 2010). However, the mappings in conventional voice conversion are 

trained on a set of acoustic feature vectors from the source and the target speaker paired 

based on their ordering within a parallel corpus. Thus, the mappings are likely to learn 

the accent-related differences too. We hypothesize that the mapping of accent-related 

characteristics can be avoided by modifying the conventional training process of voice 

conversion by pairing the frames from the L1 speakers with that of L2 speaker based on 

their linguistic-similarity.  

Similarly, in the articulatory domain, we propose using statistical parametric 

articulatory synthesizers (Toda et al., 2008). Unlike unit-selection, statistical parametric 

synthesis has low data requirement and the flexibility to interpolate new sounds that do 

not exist in the L2 corpus.  

The main objectives of the dissertation are:  

i) to investigate the effectiveness of the proposed acoustic-based method 

(cross-speaker statistical mapping) in reducing the perceived non-native 

accents,  

ii) to investigate the effectiveness of the proposed articulatory-based method 

(statistical parametric articulatory synthesis) in reducing the non-native 

accents, and  
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iii) to compare the performance of acoustic-based and articulatory-based 

strategies for accent conversion. 

This work has three major contributions. First, it presents an acoustic-based 

foreign accent conversion method free from (i) ‘third speaker’ issues, and (ii) the 

challenging problems of force-aligning L1 and L2 utterances. Second, it proposes a new 

articulatory-based method for foreign accent conversion that consists of driving a 

parametric articulatory synthesizer for the L2 speaker articulators from a reference L1 

speaker. Unlike the prior articulatory method (based on unit-selection), the proposed 

method has low data requirements and the flexibility to interpolate new sounds which a 

L2 may not produce. More specifically, we explore two articulatory synthesis models 

based on (i) Gaussian mixture models (GMM), and (ii) deep neural networks (DNN). 

The GMM-based synthesizer is explored because of its proven performance (Toda et al., 

2008). However, it is unsuited for the real-time conversion because of a computationally 

expensive trajectory-optimization required to reduce spectral discontinuities. Therefore, 

we also propose a DNN-based synthesizer that avoids the need for such costly trajectory 

optimization (and reduce the run-time computation costs) by exploiting the temporal 

nature of speech via contextualized input. This study also evaluates the performance of 

the DNN-based synthesizer in foreign accent conversion. The third and final 

contribution is an experimental comparison between the two strategies: acoustic-based 

and articulatory-based. Since the articulatory-based strategy uses articulatory synthesizer 

which results in lower acoustic quality synthesis compared to the acoustic-based method, 

the direct comparison of non-native accentedness between the two accent conversions is 
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biased (Felps and Gutierrez-Osuna, 2010). To account for the quality bias, we develop a 

method to generate the equivalent articulatory synthesis of the acoustic-based accent 

conversion strategy. 

The contributions made in this dissertation work have been published in several 

conferences and journals over the past three years. Specifically, the acoustic-based 

method using cross-speaker spectral mappings was presented at IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP) in 2014(Aryal and 

Gutierrez-Osuna, 2014b). A description of the GMM-based articulatory approach and its 

performance in foreign accent conversion is published in The Journal of Acoustical Society 

of America in 2015 (Aryal and Gutierrez-Osuna, 2015b). The DNN-based articulatory 

synthesizer was published at Computer Speech and Language (Aryal and Gutierrez-Osuna, 

2015 (in press)). The performance of the proposed DNN-based articulatory synthesizer in 

foreign accent conversion was presented at Annual Conference of International Speech 

Communication Association (INTERSPEECH) in 2015 (Aryal and Gutierrez-Osuna, 

2015a). Additional preliminary works not included in this dissertation were also published in 

different conferences. For example, a vocoding approach for foreign accent conversion was 

published at INTERSPEECH in 2013 (Aryal et al., 2013). The method uses the spectral 

slope and the details as the voice identity and linguistic components respectively. Similarly, 

a preliminary work on the articulatory synthesis driven by the articulators inverted from 

acoustic features is presented at ICASSP in 2013 (Aryal and Gutierrez-Osuna, 2013). 

Another work worth mentioning here is an articulatory-based accent conversion method 

published at ICASSP in 2014, which avoids the need to record articulatory data from the L2 
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speaker by implementing a cross-speaker forward mapping (Aryal and Gutierrez-Osuna, 

2014a). 

1.1 Thesis outline 

The remaining sections in this dissertation are organized as follows. Section 2 

provides background information on foreign accents and relevant speech processing 

methods for accent conversion. Section 3 reviews the existing foreign accent conversion 

methods and their limitations. Section 4 describes the statistical mapping technique for 

foreign accent conversion in acoustic domain and evaluates its effect on reduction of non-

native accents compared to conventional voice conversion. Section 5 explains the 

articulatory-based method for foreign accent conversion using Gaussian mixture model and 

its effectiveness in reducing non-native accents. In section 6, we present the DNN-based 

approach for the real-time conversion. Section 7 compares the acoustic-based and 

articulatory-based strategies we developed for foreign accent conversion. Finally, section 8 

concludes with a summary of this dissertation work and its future extensions. 
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2. BACKGROUND
1

Speech is a longitudinal compression wave, whose main purpose is to transfer 

linguistic information. In addition, speech also contains information such as identity, 

emotional state, accent, gender and age of the speaker. Speech processing methods seek 

to model the speech signal into parametric representations that capture these 

characteristics for identification and modification purposes. Among these several 

characteristics, this dissertation focuses on modifying accents, specifically, modifying 

non-native utterances to sound more native while preserving the identity of the non-

native speaker, a problem that is known as foreign accent conversion. 

In this section, we review several topics relevant to the problem of foreign accent 

conversion. First, we discuss non-native accents and how they affect communication. 

Second, we review speech production physiology in human and the relevant theories that 

explain the physiological origin of speech characteristics such as accent and voice 

identity. Third, we review speech analysis and synthesis techniques, which provide a 

platform to modify speech characteristics. Finally, we also review relevant topics in 

articulatory speech processing as our focus is on developing articulatory methods for 

foreign accent conversion. 

1
 The subsections on articulatory speech processing are reprinted with permission from "Reduction of non-

native accents through statistical parametric articulatory synthesis," by Aryal and Gutierrez-Osuna, 2015. 

J. Acoust. Soc. Am., 137, pp. 433-446. ©2015 Acoustical Society of America. 
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2.1 Non-native accents 

Speakers who start to speak a second language (L2) after a certain age—the so-

called “critical period” (Lenneberg, 1967; Scovel, 1969)—rarely acquire native-like 

pronunciation. The systematic deviation from the expected norms of a spoken language 

observed in such learners is known as foreign accent. The deviations can be observed in 

the choice of vocabulary, intonation, stress, or as the substitution, deletion or insertion of 

phones. Highlighting these characteristics in non-native speech, Jenner (1976) defines 

foreign accent as the “complex of interlingual or idiosyncratic phonological, prosodic 

and paralinguistic systems which characterizes a speaker of a foreign language as non-

native.” 

The cause for foreign accents has been a long-standing research question among 

linguists. Lenneberg (1967) and Scovel (1969) suggest that beyond the so-called critical 

period, which is suspected to run between two to the age of puberty, the brain loses its 

plasticity and the functional differentiation on the brain reaches completion. The 

inability to distinguish novel phones in adult second language learners makes it harder 

for them to produce the correct phones. Along the same line of reasoning, Kempen 

(1992) suggests that adults lose the knack of listening to speech sounds in isolation, 

focusing more on the higher semantic and textual level. The lower level phonological 

activities are, for the better part, automatized. The speech perception after a certain age 

is in the semantic level rather than the low level of phonetic sounds. Hence, the adult 

second language learners have difficulty in detecting and producing a new speech sound 

after a certain age. As a result, foreign accents are highly influenced by the differences in 
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phonetic inventory between the learner’s primary and the second languages (Goldstein, 

2001; Helman, 2004; You et al., 2005). 

As an example, we discuss how the phonological differences between Spanish 

and English manifest into the common characteristics of Spanish accented English. 

Several English consonants and vowels such as /z/, /ʃ/, /ʒ/, /dʒ/, /ɑ/, /ʌ/, and /æ/ do not 

exist in Spanish. Therefore, Spanish speakers tend to map these phones to the closest 

Spanish consonants. Similarly, English phones /b/ and /v/ are allophones in Spanish, 

thus, Spanish speakers often incorrectly substitute them. Furthermore, Spanish 

phonology allows only a few consonants (e.g. /θ/, /s/, /n/, /r/ and /l/) at the end of the 

word; therefore, many consonants at the end of the word are often dropped or 

mispronounced. For example, phone /ŋ/ is usually replaced by /n/ at the end of the word.  

The phonology of a language also dictates what kinds of consonants clusters 

(phonotactics) are allowed. As an effect, Spanish speakers tend to oversimplify some 

consonants clusters in English that does not exist in Spanish phonotactics (e.g., dropping 

/t/ at the end of the word ‘twist’). These languages also have significant prosodic 

differences. For example, in Spanish, the nuclear tone falls on the last stressed syllable in 

the sentence, which is not always the case in English. In addition, Spanish is syllable-

timed (syllables are of equal duration) whereas English is stress-timed (durations 

between stressed consecutive syllables are equal). Thus, the intonation and rhythm in 

Spanish-accented English differs significantly from that of native English. 

The influence of a speaker’s native language in his production of the second 

language is so strong that the speaker’s mother tongue can be identified with a high 
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accuracy. For example, Hansen and Arslan (1995) trained word HMMs for different 

accents and used them to identify accents. Focusing on the specific words that are 

sensitive to accents, the authors were able to recognize one of the four foreign accents 

(English, Turkish, German, and Chinese) with more than 93% accuracy. 

2.1.1 Non-native accents in communication 

Adult learners of a second language sometimes have difficulty making 

themselves understood. These learners often speak with distinct non-native accents, but 

the low-intelligibility is not necessarily due to their accent. In a study, Munro and 

Derwing (1995) reported cases where non-native utterances that had been rated as 

heavily accented were nonetheless transcribed perfectly by native speakers. While many 

(Abercrombie, 1949; Crawford, 1987; Morley, 1991) argue that a comfortably 

intelligible pronunciation is sufficient for second language learners, the negative attitude 

towards speakers with non-native accents cannot be ignored. 

The speakers with non-native accents are frequently received with indifference 

and subjected to disrespect or discriminatory attitudes towards them. Studies have shown 

that speakers with non-native accents are perceived as less intelligent (Campbell-Kibler, 

2009) and less trustworthy (Ryan and Carranza, 1975; Brennan and Brennan, 1981). 

They are also susceptible to negative stereotyping related to their perceived ethnicity and 

socio-economic classes (Gluszek and Dovidio, 2010; Dovidio and Fiske, 2012). The 

intolerance for foreign accents among employers (Kalin and Rayko, 1978; Sato, 1991) is 

even more destructive as it directly impacts the livelihood of a person. Thus, non-native 



 

11 

 

learners have more to gain than just the intelligibility by acquiring a more native-like 

pronunciation.  

2.1.2 Pronunciation training for second language learner 

Adult second language learners have difficulty losing the non-native accent 

despite their immersion in the language for a long time. However, studies show that it 

can be reduced significantly through pronunciation trainings. In a study by Neufeld 

(1978), a number of learners were subjected to an 18-hour course of pronunciation 

training. Three native speakers judged the learners’ imitations of sample sentences after 

training, and found half of them as native or near native. In another study, Abrahamsson 

and Hyltenstam (2008) investigated the proficiency and language aptitude of 42 near-

native L2 speakers of Swedish, and found that adult learners with a high degree of 

language learning aptitude can reach the proficiency of a native speaker.  

Regardless of the learner’s motivation level, pronunciation training techniques 

also significantly affect the learning process. The “listen-and-repeat” approach is 

commonly used in pronunciation training (Nagano and Ozawa, 1990; Probst et al., 2002; 

Bissiri et al., 2006). However, studies have suggested that the similarity in voice 

between the teacher and the learner effectively improves learning, the rationale being 

that by removing all other differences between the reference target utterance and the 

learner’s own production, the learner may focus only on accents-related differences. For 

example, Nagano and Ozawa (1990) compared two types of training utterances for 

teaching English pronunciation to Japanese learners. One group mimicked utterances 
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from a reference English speaker whereas the other group repeated after their own 

previous recording modified to match the prosody of the reference English speaker. The 

authors found that the group that trained on their own modified utterances improved 

more than the other group. Similar effects were also observed in prosody training for 

Italian speakers learning to speak German (Bissiri et al., 2006). Such effects of similarity 

in voice between the teacher and the learner are not limited to prosody training; similar 

effects had been observed also in training of segmental characteristics such as vowel 

quality.  For example, (Repp and Williams, 1987) found that the speakers were more 

accurate when imitating isolated vowel in /u/-/i/ and /i/-/æ/ continua when imitating their 

own previous production than when imitating those produced by a speech synthesizer.  

Instead of modifying the learner’s own utterance, Probst et al. (2002) 

investigated the effect of learner-teacher voice similarity in pronunciation training by 

pairing each learner with a teacher with similar voice quality. In their study, learners 

were divided into three groups based on the teacher’s voice: In these three groups, the 

teachers were (i) selected randomly, (ii) assigned based on their voice similarity to the 

learner, and (iii) selected by the learner, respectively. The study found that the group that 

repeated after the teacher with voice similar to their own —termed as the ”golden-

speaker”— was able to produce the most native like utterances after the training. Finding 

such “golden-speaker” for each learner is not practical. Thus, Felps et al. (2009) 

suggested using speech modification technique to generate the ideal “golden-speaker”, 

i.e. the learner’s own speech but with a native accent. Such speech modification, also 

known as foreign accent conversion, is the topic of this dissertation work.   
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2.2 Speech production physiology 

Speech production involves several organs (shown in Figure 1) including lungs, 

vocal cords, oral cavity, nasal cavity, velum, lips, and jaws, etc. A coordinated effort of 

these organs produces variations in the air pressure which is perceived as sound. In the 

case of voiced sounds, such as /b/ and /d/, the lungs pump the air out through trachea 

causing the vocal cords at the glottis to vibrate. The pulsating airwave then passes 

through the vocal tract and comes out of the mouth; the resonance in the vocal tract 

modulates the vibration giving specific linguistic characteristics to the sound. The 

articulators such as tongue, lips, velum and jaws are responsible for generating different 

sounds by altering the vocal tract configuration. In the case of unvoiced sounds, such as 

/f/ and /s/, the vocal cords stay open, but the articulators create a constriction in the vocal 

tract producing an air-flow turbulence, which is perceived as a speech sound. The 

articulators are involved in the formation of constriction, the manner and place of which 

determines the linguistic identity of the sounds. Since articulatory gestures are mainly 

responsible for producing different speech sounds (perceived as phones), they are often 

referred to as linguistic gestures. 
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Figure 1: Human speech production physiology. 

2.2.1 Acoustic theory of speech 

The acoustic theory of speech (Fant, 1970) suggests a computational model to 

relate the speech production physiology with the acoustic properties of speech sounds. 

The computational model –also known as the source-filter model– represents the speech 

signal in terms of a convolution between a source excitation signal and a filter impulse 

response as shown in Figure 2. In the case of voiced sounds, the source excitation signal 

is a glottal pulse, whereas in the case of unvoiced sounds, the source excitation signal is 

the turbulence at the vocal tract constriction. The filter impulse response is the spectral 

characteristic of the resonance in the vocal tract. In speech, the vocal tract resonance 

frequencies are known as formants, and are indicative of both the linguistic content and 

the size and the shape of the vocal tract.  
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Figure 2: Acoustic theory of speech: speech signal (right) is the convolution of the 

glottal source excitation signal (left) and the vocal tract filter response (middle).  

During speech production, the source and the filter characteristics keep changing 

over time. But, due to the quasi-stationary nature of speech, these characteristics can be 

treated as static for a small period of time (about 25 ms). Therefore, based on the 

acoustic theory of speech, we can model the speech production physiology as a slow-

varying linear system (Figure 3). The time-varying linear system consists of: (i) source 

excitation signal generators (a pulse train for voiced sounds and a white noise generator 

for unvoiced sounds); (ii) a switch that selects the appropriate source signal based on 

voicing; and (iii) a vocal tract filter that modulates the excitation signal. This linear 

system allows us to analyze the speech signal in terms of the parameters that relate to 

speech production physiology, and to synthesize speech from those parameters. 
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Figure 3: A simplified computational model of speech production physiology. 

Computational models of speech such as the source-filter model provide a useful 

platform for speech modification. These models allow us to represent speech with 

meaningful theoretically-motivated model parameters that correspond to perceptual 

characteristics such as pitch, loudness and formants, and to synthesize speech from the 

modified parameters. 

2.2.2 Speaker’s identity, voice and accent 

One of the evaluation criteria of the foreign accent conversion method is its 

ability to preserve the voice-quality of the non-native utterances. Although the voice-

quality refers to the speaker’s identity in many cases, in the context of foreign accent 

conversion, subtle differences between them needs to be emphasized. Several studies 

have shown that foreign accents, real or fake, deteriorate one’s ability to identify a 

speaker (Tate, 1979; Torstensson et al., 2004; Sjöström et al., 2006; Sullivan and 

Schlichting, 2007). These studies show that the perceived identity of a speaker is not 

limited to the organic characteristics of the speaker; the speaker’s identity is also 

associated with the linguistic gestures (e.g., accents) that arise from the cognitive and 

motor control of the articulators. 
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Because of the interaction between the speaker’s identity and the accent, in the 

context of foreign accent conversion, it is important to differentiate the organic aspects 

(voice-quality) from the linguistic aspects (i.e. accent) of the speaker’s identity. Thus, 

the objective of foreign accent conversion methods is to generate speech that matches 

the voice-quality of the non-native speaker, not necessarily the speaker’s identity. To 

represent the voice-quality aspect of the speaker’s identity, in this thesis, we use the term 

voice identity.  

In the next section, we present a theory that explains speech signal as the 

interaction between these two components, voice-quality and the linguistic gestures. 

2.2.3 Modulation theory 

The source-filter model separates speech signal into two components, but it is not 

obvious what they represent perceptually. It can be assumed that the source signal 

represents speaker’s identity while the filter represents the linguistic characteristics. 

However, Traunmüller (1985) observed that changing the formants alone can change the 

perception of voice quality. Similarly, changing the pitch alone can change the linguistic 

content of a sound. To accommodate for these observations, in the modulation theory of 

speech Traunmüller (2005) postulated, “A speech signal is basically the result of a 

process in which a carrier, characterized by the static properties of the speaker’s voice, 

has been modulated by phono-articulatory gestures.” In this view the ‘carrier’ or 

speaker’s voice-quality is not only determined by the glottal source but also by the shape 

and size of the neutral vocal tract. Similarly, phono-articulatory gestures, which consist 
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of pitch patterns and articulatory gestures, give linguistic color to the sound and are 

independent of voice-quality characteristics.  

The modulation theory of speech is the motivation behind the development of 

articulatory-based foreign accent conversion methods in this dissertation work. It offers 

a principled way to transpose the voice-identity or the linguistic information across 

speakers via articulatory recordings. While the articulatory synthesizer embodies the 

anatomy and organic quality of voice, the articulatory trajectory represents the linguistic 

gestures in speech. 

2.3 Speech analysis and synthesis 

In this subsection, we briefly review the most common speech analysis and 

synthesis techniques used in speech modification. Among the four techniques reviewed 

here, the first three techniques are based on the source-filter model and its variants. The 

fourth one is based on harmonic plus noise model, which represents speech as the 

combination of a harmonic and a noise component separated in frequency domain. 

2.3.1 Linear predictive analysis 

In linear predictive analysis (Atal and Hanauer, 1971), the vocal tract response 

is modeled as an all-pole filter. The transfer function of the filter      is given as  

     
 

  ∑       
 

   (1) 

where   is the order of the model,   is the gain, and    are the linear prediction 

coefficients (LPC). The underlying assumption is that the sequence of values can be 
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predicted as a linear combination of the finite number of preceding values. This model is 

widely used in speech analysis because estimating the model parameters and re-synthesis 

only requires linear filters. However, being an all-pole model, the linear predictive 

analysis is only appropriate to capture formants peaks, not the troughs (see Figure 4). 

Therefore, LPCs are not appropriate representation for nasals, which have a 

characteristic dip after the first formant in their spectrum. In addition to the 

misrepresentation, LPCs are also sensitivity towards small numerical errors, which 

significantly impacts the filter property (i.e. the pole locations), often leading to an 

unstable vocoding system. To improve stability, LPCs are generally converted into more 

stable representations such as linear spectral frequencies (LSF), specifically in speech 

modification problems (Arslan and Talkin, 1997; Kain and Macon, 1998). 

 
Figure 4: A typical FFT and LPC spectrum of a nasal speech segment. 
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2.3.2 Cepstral analysis 

Cepstral analysis transforms the speech signal into cepstral coefficients, where 

the source excitation and the vocal tract impulse response become additive so that a 

linear separation of these components is possible. The cepstral coefficients are calculated 

by taking linear cosine transform of log power spectrum of speech. The source and the 

filter components can then be separated by liftering. The Mel frequency scale is 

commonly used to match the human auditory system, and the resulting cepstral 

coefficients are called Mel cepstral coefficients (MCCs). MCCs are the most common 

spectral representation used in speech synthesis as the Mel log spectrum approximation 

(MLSA) filter devised for Mel cepstral coefficients is shown to result in better quality 

speech than the LPC vocoder (Imai, 1983). Mel cepstral coefficients are also found 

suitable for statistical modeling as shown by their performance in statistical parametric 

synthesizer (Toda et al., 2007; Zen et al., 2007).  

In another variant of cepstral analysis, the vocal tract spectra are represented as 

Mel frequency cepstral coefficients (MFCCs)(Davis and Mermelstein, 1980). MFCCs 

are calculated by passing the audio signal through Mel frequency filterbanks and taking 

DCT of the logarithms of output energies. Mel frequency filterbanks are the overlapping 

triangular filters uniformly spaced in Mel scale frequency inspired by human auditory 

perception. Due to the relation with human auditory system, MFCCs have become de-

facto representation for speech recognition (Young, 1996).  

It is also possible to mix cepstral analysis with other speech analysis techniques. 

For example, instead of using the power spectrum of speech signal, spectral envelope 
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extracted from linear predictive analysis can also be used to estimate log spectral 

energies required to calculate cepstral coefficients. Such mixed analysis combines the 

advantages of both analysis techniques. For example, cepstral coefficients extracted 

from the LPC spectrum (known as LPC cepstrum) not only enjoy the robustness and 

naturalness of cepstral coefficients, but also the high intelligibility of LPC synthesis. In 

addition, LPCCs can be extracted more efficiently than MFCCs. 

2.3.3 STRAIGHT analysis 

STRAIGHT (Speech Transformation and Representation using Adaptive 

Interpolation of weiGHTed spectrum) analysis uses bilinear interpolation over the time-

frequency representation of the speech signal to estimate the smooth spectrogram 

(Kawahara, 1997). Illustrated in Figure 5, STRAIGHT analysis decomposes the speech 

signal into three independent components: (i) a smooth spectrogram free from the 

interference of fundamental frequency and the harmonics, (ii) a trajectory of 

fundamental frequency     , and (iii) aperiodicity signal, which is the spectrogram of the 

nondeterministic excitation signal (e.g. noise). This model allows independent 

modification of these three components without any significant impact on the 

naturalness and the acoustic quality of the synthesis. Due to the naturalness of the 

synthesis and the flexibility of the model, STRAIGHT analysis and synthesis engine has 

gained popularity in applications such as voice conversion (Ohtani et al., 2006; Toda et 

al., 2007) and parametric text-to-speech synthesis (Zen et al., 2013). For these same 

reasons, we use STRAIGHT as the speech analysis and synthesis platform in this 
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dissertation work. To reduce the dimensionality of the STRAIGHT spectrum for 

statistical modeling, we extract MFCCs from the STRAIGHT spectrum. 

 

Figure 5: STRAIGHT analysis and synthesis. 

2.3.4 Sinusoidal analysis and harmonics plus noise model 

Sinusoidal analysis (McAulay and Quatieri, 1986) represents the speech signal 

as the sum of sinusoids as given by the equation (2), where   is the number of 

harmonics,    is the fundamental frequency, and    and    represent the amplitude and 

phase of the     harmonic, respectively. Representing speech as the sum of a 

fundamental frequency component and the harmonics preserves the naturalness of 

speech. Specifically, in the case of voiced sounds, the sinusoidal analysis gives more 

accurate representation of harmonics amplitudes than the LPCs and MFCCs. While 

MFCCs are known for smoothening of the vocal tract spectra, which leads to muffled 

speech, the LPCs are known for emphasizing the formants which makes the speech more 

robotic.  

Analysis

Waveform

Synthetic 
waveform

F0 extraction

Pitch adaptive 
spectral smoothing 
in time-frequency

space

Smooth spectrogram

Aperiodicity

Synthesis

Mixed 
excitation

+

Phase 
manipulation

trajectory



 

23 

 

      ∑                 

 

   

 (2) 

However, the sum of sinusoids is not an appropriate representation for unvoiced 

sounds, and the voiced fricatives and affricates with high frequency noise. As a solution, 

Stylianou (2005), proposed a popular variation of sinusoidal model known as harmonic 

plus noise model (HNM). In HNM analysis model, spectra are divided in two frequency 

bands whose boundary can vary across frames. The lower band is represented as 

sinusoids at harmonic frequencies whereas the upper band is represented as whit-noise 

excited linear predictive model. In the case of unvoiced sounds, the boundary is at 0Hz. 

Such a hybrid representation is found to improve synthesis quality, especially, in pitch-

time scaling (Stylianou, 2001) and voice-conversion (Stylianou et al., 1998). 

2.4 Articulatory speech processing  

Articulatory methods capture the underlying mechanics of speech production by 

recording both the vocal tract anatomy and the kinematics of the articulators responsible 

for linguistic coloring of the speech signal. Because of the extra information, articulatory 

data allows more natural way to modify certain speech characteristics than the audio 

signal. For example, modifying vowel /i/ to /e/ only requires modifying the tongue 

height parameter in the articulatory data, a process that is more complex if done in the 

acoustic space. Similarly, articulatory data also provides the voice-quality independent 

representation of the linguistic content in speech. This property of the articulatory data is 

important in the context of foreign accent conversion because it allows transposing 

native linguistic gestures to the non-native speaker without altering the voice-quality. 
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Separating the voice-quality component from the linguistic content in the acoustic signal 

is known to be a challenging task (Felps et al., 2009).  

In this subsection, we review the speech processing techniques for speech 

modification in the articulatory domain. First, we discuss various articulatory 

representations and the common techniques to collect articulatory data during speech 

production. Secondly, we present the articulatory normalization techniques to account 

for the speaker-specific individual differences. Next, we review some of the data-driven 

articulatory synthesis methods as a vehicle to perform articulatory speech modification. 

Finally, we discuss articulatory inversion methods to estimate articulatory features from 

acoustic recordings. The inverted articulatory features allow us to use articulatory speech 

modification techniques without having to record the articulatory data, which is an 

expensive and invasive process. 

2.4.1 Articulatory representation 

Toutios and Margaritis (2003) classify articulatory representations into three 

groups. The first group is based on physical measurements such as electromagnetic 

articulography (EMA). The second group is based on theoretical models of speech 

production such as Maeda (Maeda, 1979), lossless tube and tract variables (TVs) 

(Browman and Goldstein, 1990). The third group is based on articulatory phonetics, a 

representation of speech in terms of abstract features such as manner and place of 

articulation, voicing, front-back, nasality, rounding, and stress. In what follows, first, we 

review the techniques for physical measurement of the articulatory configuration. Then, 
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we discuss the different types of articulatory representations in the context of 

articulatory normalization and articulatory synthesis. 

2.4.2 Articulatory measurements 

Articulatory measurements provide two types of articulatory information: (i) the 

physical shape and size of the vocal tract and the articulators of a speaker, and (ii) the 

linguistic gestures. The shape and size of the vocal tract can be measured using magnetic 

resonance imaging (MRI). Such 3D images are useful in developing physical model of 

vocal tract (Birkholz et al., 2006), but these images are highly redundant as the 

representative of the linguistic gestures. According to Ladefoged (1980), only sixteen 

articulatory parameters are necessary and sufficient to characterize all the possible 

sounds in all the known languages (see Table 1). Thus, the articulatory recording during 

speech production usually tracks the movement of certain flesh-points in the midsagittal 

plane of the vocal tract. For example, in the well-known XRMB dataset (Westbury, 

1994) articulatory configurations were captured using x-ray microbeam that tracked the 

position of eight gold pellets attached to the different points of interest in the vocal tract. 

Similarly, the MOCHA-TIMIT corpus (Wrench, 1999) contains the coordinates of 8 

flesh-points in the vocal tract captured using electromagnetic articulography (EMA) 

sampled at 200Hz. 
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Table 1: Sixteen articulatory parameters necessary and sufficient to characterize all 

possible sounds in human languages (Ladefoged, 1980). 

i. Front raising 

ii. Back raising 

iii. Tip raising 

iv. Tip advancing 

v. Pharynx width 

vi. Tongue bunching 

vii. Lateral tongue contraction 

viii. Lip height 

ix. Lip width 

x. Lip Protrusion 

xi. Velic opening 

xii. Larynx lowering 

xiii. Glottal aperture 

xiv. Phonation tension 

xv. Glottal length  

xvi. Lung Volume decrement 

   

EMA has gained popularity for multiple reasons over other articulatory recording 

technologies. Compared to X-ray microbeam, EMA is safer and hence more suitable for 

collecting larger corpus. Compared to MRI, the high temporal resolution of EMA makes 

it more beneficial, specifically, to capture the dynamics of vocal tract configurations 

during continuous speech. In contrast, due to the low temporal resolution, MRI can miss 

some short lived articulatory configurations. Unlike EMA, MRI-based recordings also 

suffer from equipment noise.  

However, the low spatial resolution of EMA data may not be sufficient to 

differentiate between a complete closure (in stops) and the formation of a small 

constriction (in fricatives). To overcome this problem, EMA recordings are often 

supplemented with additional measurement. Electropalatography (EPG) is commonly 

used in conjunction with EMA to record complementary information such as the 

location and duration of contacts between tongue and the hard palate.  

In this dissertation work, we use EMA recordings as the articulatory 

representation. The corpus contains simultaneous recordings of EMA and audio signal 
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from a native and a non-native speaker of American English (Felps et al., 2012). The 

articulatory recording consists of six EMA pellet positions in the midsagittal cross 

section of the vocal tract. Illustrated in Figure 6, the EMA data are collected for the 

fleshpoints at the frontal oral cavity only —the EMA pellets cannot be placed at the back 

cavity because of the possible gag reflex. However, this limitation of EMA is not critical 

to this work. Since, according to the frontal cavity hypothesis (Hermansky and Broad, 

1989) the frontal cavity is primarily responsible for linguistic coloring; “the back-cavity 

geometry is only a causal consequence and contributes mainly speaker-dependent 

information.” 

 

Figure 6: Position of the 6 EMA pellets used in our study; UL: upper lip; LL: lower lip; 

LI: lower incisor; TT: tongue tip; TB: tongue blade; TD: tongue dorsum. An additional 

pellet (red cross-hair) was placed on the upper incisor and served as a reference. 

2.4.3 Articulatory normalization 

Articulatory data needs to be normalized to remove the effect of anatomical 

differences in the vocal tract across speaker so that it can be applied across different 

TT
TB TD

UL

LL
LI

REF



 

28 

 

speakers. One approach is to parameterize the measured articulatory positions into a 

speaker-independent representation. Several such representations have been suggested in 

the literature. As an example, Maeda (1990) proposed a set of relative measurements of 

the vocal tract that explain the majority of articulatory variance. In Maeda’s 

representation, the vocal tract is represented by seven parameters: lips opening, jaw 

opening, lip protrusion, tongue tip height, tongue body shape, tongue dorsum position, 

and velum position. Al Bawab et al. (2008) developed a method to approximate Maeda 

parameters from EMA pellet positions; to remove individual differences, the method 

performed within-speaker z-score normalization of the approximated Maeda parameters. 

This normalized representation was then used for automatic speech recognition from 

articulatory positions derived from acoustics via analysis-by-synthesis. Hashi et al. 

(1998) proposed a normalization procedure to generate speaker-independent average 

articulatory postures for vowels. Using data from the X-ray microbeam corpus 

(Westbury, 1994), the authors scaled articulatory positions relative to a standard vocal 

tract, and then expressed the tongue surface relative to the palate. This procedure was 

able to reduce cross-speaker variance in the average vowel postures. Tract variables 

(TVs) (Browman and Goldstein, 1990) have also been used as speaker-independent 

articulatory representations. As an example, Ghosh and Narayanan (2011a) converted 

EMA articulatory positions into TVs, which were then used as the articulatory 

representation in a subject-independent articulatory inversion model. The authors 

reported inversion accuracies close to subject-dependent models, particularly for the lip 

aperture, tongue tip and tongue body articulators.  
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A second approach to account for individual differences is to learn a cross-

speaker articulatory mapping. As an example, Geng and Mooshammer (2009) used the 

Procrustes transform, learned from a parallel corpus containing articulatory trajectories 

of multiple speakers during vowel production. The objective of the study was to unveil 

speaker-independent strategies for vowel production by removing speaker-specific 

variations. The authors reported a 30% improvement in subject-independent articulatory 

classification of vowels following Procrustes normalization. Qin et al. (2008) described 

a method to predict tongue contours (as measured via ultrasound imaging) from a few 

landmarks (EMA pellet positions). Using a radial basis function (RBF) network, the 

authors were able to reconstruct full tongue contours with 0.3-0.2mm errors using only 

3-4 landmarks. In a follow-up study (Qin and Carreira-Perpinán, 2009), the authors 

proposed an articulatory mapping to adapt the previous predictive model to a new 

speaker using a 2D-wise linear alignment mapping. Their results show that a small 

adaptation corpus (about ten full tongue contours) is sufficient to recover very accurate 

(0.5 mm) predictive models for each new speaker. These studies suggest that a linear 

mapping can model a significant amount of inter-speaker differences in the vocal tract 

geometry.  

More recently, Felps et al. (2014) extended the Procrustes transformation of 

EMA position data by allowing independent local translation at each articulatory 

fleshpoint and observed further reduction in the inter-speaker differences. The 

independent translation parameters for each fleshpoint allowed the transform to adjust 

for the non-uniform positioning of the articulatory fleshpoints across speakers. 
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Additional reduction in inter-speaker differences may be achieved by allowing 

independent scaling and rotation parameters for each fleshpoint. 

2.4.4 Articulatory synthesis 

Articulatory synthesizers have had a long tradition in speech research, starting 

with the electrical vocal tract analogue of Stevens et al. (1953). These models have 

improved our understanding of the speech production mechanism and in recent years 

have also provided alternative speech representations to improve the performance of 

automatic speech recognition systems (King et al., 2007; Ghosh and Narayanan, 2011a; 

Arora and Livescu, 2013).  

Articulatory synthesis methods can be grouped into two broad categories, 

physics-based models, and data-driven models. Physics-based models approximate 

vocal tract geometry using a stack of cylindrical tubes with different cross section areas. 

Speech waveforms are then generated by solving the wave propagation equation in the 

approximated tube model. In a classical study, Mermelstein (1973) analyzed midsagittal 

x-ray tracings to extract ten parameters that represented the configuration of the lips, 

jaw, tongue, velum and larynx. This parameterization was then geometrically converted 

into a vocal tract area function and the corresponding all-pole filter model, This study 

showed that the midsagittal position of a few critical articulators is sufficient to generate 

intelligible speech, and served as the basis for the articulatory synthesizer of Rubin et al. 

(1981). The midsagittal representation of articulators was also emphasized in another 

classical articulatory model by Maeda (1990). The author analyzed X-ray motion 
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pictures of the vocal tract from two speakers to extract seven articulatory parameters, 

and found that 88% of the variance during phonetic articulation could be explained with 

only four articulatory parameters (three tongue points and jaw position). These early 

studies cemented the use of the vocal tract midsagittal plane as an articulatory 

representation in speech production research. Later research addressed the issue of 

generating articulatory trajectories from text using principles from articulatory 

phonology (Browman and Goldstein, 1990), leading to the development of the Task 

Dynamic Model (Saltzman and Munhall, 1989), and that of speech motor skill 

acquisition, resulting in the DIVA (Directions Into Velocities of Articulators) model 

(Guenther, 1994). A concern with articulatory synthesis models is the large number of 

parameters that need to be specified in order to produce an utterance, and the lack of 

guarantees that the resulting trajectories correspond to the actual articulatory gestures of 

a speaker. This makes it difficult to determine whether poor synthesis results are due to 

the generated articulatory gestures or the underlying articulatory-to-acoustic model. To 

address this issue, Toutios and Maeda (2012) coupled Maeda’s model with articulatory 

positions measured from EMA and real-time magnetic resonance imaging (rtMRI). 

Visual alignment between EMA pellet positions, the standard Maeda vocal tract grid, 

and rtMRI was performed manually; from this, two geometrical mappings were 

computed: (i) a mapping from EMA to standard Maeda control parameters, and (ii) a 

mapping from the standard Maeda control parameters to a set of speaker-specific vocal 

tract grid variables. The authors were able to synthesize “quite natural and intelligible” 

VCV words; a subsequent study (Toutios and Narayanan, 2013) using the same 
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procedure reported successful synthesis of French connected speech. However, voice 

similarity between the original speaker and the articulatory synthesis was not assessed as 

part of the study.  

In contrast with physics-based models, data-driven models use machine 

learning techniques to build a forward mapping from simultaneous recordings of 

articulators and acoustics (Kaburagi and Honda, 1998; Toda et al., 2008; Aryal and 

Gutierrez-Osuna, 2013). Because these models are generally trained on individual 

speakers, the resulting forward model automatically captures the voice characteristics of 

the speaker, making them ideally suited for accent conversion. In an early study, 

Kaburagi and Honda (1998) used a k-nearest-neighbors method to predict acoustic 

observations from articulatory positions. Given a target articulatory frame, estimating its 

(unknown) acoustic observation consisted of finding a few closest articulatory frames in 

the corpus, and then computing a weighted average of their acoustic observations. The 

authors found that synthesis quality improved when the search for the closest articulator 

frames was limited within phoneme category. In an influential study, Toda et al. (2008) 

proposed a statistical parametric approach to learn the forward mapping. The approach 

consisted of modeling the joint distribution of articulatory-acoustic vectors with a GMM. 

Given a target articulatory frame, its acoustic observation was estimated from the GMM 

using a maximum likelihood estimate (MLE) of the acoustic trajectory considering its 

dynamic. 

Considering the dynamics of estimated acoustic features reduces unnatural 

spectral discontinuities across adjacent frames and improves the acoustic quality. But as 
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Nakamura et al. (2006) reported, the use of dynamic information not only at the output 

(acoustics) but also at the input (articulators) by modeling their trajectories using 

context-dependent hidden Markov models (HMM) increases the accuracy of 

articulatory-to-acoustic mapping. However, these improvements come at the expense of 

much higher computational costs during synthesis because of the iterative estimation 

process. Moreover, these methods also require the complete sequence of articulatory 

frames from a test utterance before their corresponding acoustics can be estimated –a 

further limitation for real-time synthesis applications. Thus, exploiting the temporal 

structure of speech without adversely impacting articulatory-synthesis time remains 

challenging. As a possible solution, we present a forward-mapping based on deep neural 

networks (DNN) for real-time articulatory synthesis in this work. 

2.4.5 Articulatory inversion 

Extraction of the articulatory configuration from the acoustic signal —known as 

articulatory inversion— is a well-studied hard problem in speech processing (Atal et al., 

1978; Richmond et al., 2003; Livescu et al., 2007; Qin and Carreira-Perpinán, 2007a; 

Ghosh and Narayanan, 2011b). Because of the expensive and invasive nature of the 

existing articulatory recording technologies, articulatory inversion offers a method to 

approximate the articulatory representations of speech without directly measuring them. 

The benefits of using inverted articulatory features have been established in several 

applications. For example, inverted articulatory features can be used to provide 

articulatory visual feedback in computer assisted pronunciation training (Youssef et al., 
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2011). The inverted features have also been shown to boost speech recognition 

performance because of their relation with the speech production physiology, especially 

in noisy or pathological speech (Mitra et al., 2010; Arora and Livescu, 2013). Moreover, 

the study of articulatory inversion has also enhanced our understanding of phonetics and 

phonology (Browman and Goldstein, 1992). 

Articulatory inversion is a challenging problem. Given an articulatory 

configuration, acoustic signal can be generated by solving the wave propagation 

equations (Maeda, 1982; Birkholz and Jackel, 2003), but the inverse is not trivial. There 

is no analytical solution to the wave equations, and the problem is ill-posed, i.e. the same 

acoustic state can be the outcome of multiple articulatory configurations. Nonetheless, 

the physical constraints in the articulatory movement can be exploited to find unique 

solutions to the inverse problem (Qin and Carreira-Perpinán, 2007b). Several statistical 

models such as Gaussian mixture model (Toda et al., 2008), canonical correlation 

analysis (Livescu and Stoehr, 2009), hidden Markov model (Hiroya and Honda, 2004), 

neural networks (Kello and Plaut, 2004), and deep neural networks (Uria et al., 2012) 

have been explored to represent inverse mappings. Among them, the DNN-based 

inversion method is found to be the most accurate to date (Uria et al., 2012), possibly 

because of the DNNs ability to exploit the temporal nature of speech by using 

contextualized input.  

Most of the inversion methods mentioned above are speaker-dependent and 

require articulatory data from the speaker during the training phase. The one exception 

we are aware of is a study by Ghosh and Narayanan (2011a) that proposed a method for 
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speaker-independent articulatory inversion using tract variables (TVs), a constriction-

based relative measure of the articulatory configuration. The authors found that the 

inversion accuracy comparable to the speaker-specific inversion and that inverted 

features were effective in boosting speaker-independent recognition performance in 

noisy speech.     

2.5 Summary 

In this section, we discussed causes and consequences of foreign accents and 

reviewed several topics in acoustic and articulatory speech processing that are relevant 

to accent modification. We started with a review of speech production physiology in 

human and a simplified computational model known as the source-filter model. 

Computational models are useful because they represent speech in a parametric form 

suitable to modify specific speech characteristics. Then, we discussed the modulation 

theory of speech as the motivation behind our articulatory-based method for foreign 

accent conversion. The articulatory data captures the linguistic gestures independent of 

the voice-quality, while the complex interaction between linguistic gestures and voice-

quality information makes it difficult to separate them in acoustic signal. Finally, we 

reviewed the existing methods to record the articulatory gestures and to synthesize 

speech using those gestures as the control parameters. 
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3. LITERATURE REVIEW
2
 

This section reviews existing foreign accent conversion methods. Earlier work in 

accent modification was motivated by its application in spoken language conversion 

system, where the objective was to generate speech in language other than the one in 

which the speech corpus is available (Campbell, 1998). Later, the possible application of 

accent modification techniques in computer aided pronunciation training (Repp and 

Williams, 1987; Nagano and Ozawa, 1990; Probst et al., 2002; Bissiri et al., 2006) for 

non-native speakers motivated further research in this area. Because of the difficulty in 

modifying segmental characteristics, the focus was only on modifying the prosodic 

aspects of non-native accents in the earlier pronunciation training tools (Eskenazi, 1999). 

While the prosody is critical in parsing continuous speech (Celce-Murcia et al., 1996), 

segmental errors are also equally responsible for degrading intelligibility (Rogers and 

Dalby, 1996). Thus, Derwing et al. (1998) suggested considering both segmental and 

supra-segmental (prosodic) features in pronunciation training. In this section, we review 

the existing methods for both the prosodic and segmental modifications of non-native 

accented speech. We also review prior work on evaluation of the foreign accent 

conversion methods.   

                                                 

2
 The review on the existing foreign accent conversion methods are reprinted with permission from 

"Reduction of non-native accents through statistical parametric articulatory synthesis," by Aryal and 

Gutierrez-Osuna, 2015. J. Acoust. Soc. Am., 137, pp. 433-446. ©2015 Acoustical Society of America. 
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3.1 Foreign accent conversion 

Foreign accent conversion is closely related to voice conversion but seeks a more 

elusive goal. In voice conversion, the objective is to convert an utterance from a source 

speaker to sound as if it had been produced by a different (but known) target speaker 

(Sundermann and Ney, 2003; Turk and Arslan, 2006). To do so, voice conversion 

techniques attempt to transform the two main dimensions of a speaker’s voice 

individuality: physiological characteristics (e.g. voice quality, pitch range), and linguistic 

gestures (e.g. speaking style, accent, emotional state, etc.) Because the target speaker is 

known, evaluation of voice conversion results is relatively straightforward. In contrast, 

accent conversion seeks to combine the vocal tract physiology of a non-native learner 

(L2) with the linguistic gestures of a native teacher (L1). This is a far more challenging 

problem because it requires separating both sources of information; it also seeks to 

synthesize speech for which there is no ground truth –the L2 voice with a native accent, 

which also makes evaluation more challenging than in the case of voice conversion.  

The existing foreign accent conversion methods can be grouped into two 

categories; the acoustic-based and the articulatory-based. While acoustic-based methods 

perform accent conversion in the acoustic domain, articulatory-based methods use 

articulatory data to transfer native accent to a non-native speaker. 

3.2 Acoustic-based approach 

Some aspects of accent are acoustically realized as prosodic features such as 

pitch trajectory, phoneme durations, and stress patterns. In these cases, a simple prosody 

modification alone can significantly reduce the perceived accent of an L2 utterance. As 
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an example, modification of vowel durations can reduce the foreign accentedness in 

Spanish-accented English (Sidaras et al., 2009) because there is a significant difference 

in vowel durations between both languages.  

Modifying the prosody of an L2 utterance is straightforward because the target 

pitch and energy patterns and phoneme durations can be directly obtained from an L1 

utterance of the same sentence. Once these prosodic features have been extracted, 

various techniques such as TD-PSOLA (Sundström, 1998; Yan et al., 2004), FD-PSOLA 

(Felps et al., 2009), and STRAIGHT (Aryal et al., 2013) have been found effective in 

modifying prosodic cues to foreign accents. The phoneme durations of the L2 utterance 

can be matched with the reference L1 utterance by learning their ratio between the L1 

and L2 speakers (Sundström, 1998; Felps et al., 2009), or by force-aligning the L1 and 

L2 utterances using dynamic time warping (Aryal et al., 2013). In the case of pitch, 

however, the L1 pitch trajectory needs adjustment to match the vocal range of the L2 

speaker so that the identity of the L2 speaker is preserved. For this purpose, Sundström 

(1998) computed the mean pitch values of the L1 and L2 speaker. She used the quotient 

of these two values to scale the L1 pitch trajectory so that it matches the pitch range of 

L2 speaker. Felps et al. (2009) used a slightly different approach and shifted the L1 pitch 

trajectory (instead of scaling) to match the mean pitch value of the L2 speaker.  

In most cases, though, prosodic modifications are not sufficient to achieve accent 

conversion. As an example, a few studies have shown that modification of phonetic 

realizations (i.e., segmental modification) is far more effective for accent reduction than 
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prosody modification alone, both within regional accents of the same language (Yan et 

al., 2004) and different languages (Felps et al., 2009). 

In early work, Yan et al. (2004) developed an accent-conversion method by 

exploiting differences in vowel formant trajectories for three major English accents 

(British, Australian, and General American). The authors learned a speaker-independent 

cross-accent mapping of formant trajectories by building a statistical model (a two-

dimensional HMM) of vowel formant ratios from multiple speakers, and then extracting 

empirical rules to modify pitch patterns and vowel durations across the three regional 

accents. Once these 2D-HMMs and empirical rules had been learned from a corpus, the 

authors then adjusted the formant frequencies, pitch patterns and vowel durations of an 

utterance to match a target accent. In an ABX test, 78% of Australian-to-British accent 

conversions were perceived as having a British accent. Likewise, 71% of the British-to-

American accent conversions were perceived to have an American accent. In both 

evaluations, changing prosody alone (pitch and duration pattern) led to noticeable 

changes in perceived accent, though not as significantly as incorporating formant 

modifications as well. The method hinged on being able to extract formant frequencies, 

so it cannot be easily extended to larger corpora because formant frequencies are ill-

defined for unvoiced phones and cannot be tracked reliably even in voiced segments.  

A segmental modification method for accent conversion suitable for both the 

voiced and unvoiced phones was proposed by Felps et al. (2009). The authors used 

SEEVOC (Paul, 1981) to split short-time spectra into a spectral envelope and a flat 

glottal spectrum. Then, they replaced the spectral envelope of an L2 utterance with a 
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frequency-warped spectral envelope of a parallel L1 utterance and recombined it with 

the L2 glottal excitation; frequency warping was performed using a vocal tract length 

normalization function that matches the average formant frequencies of the two speakers 

(Sundermann and Ney, 2003). Modification of prosodic cues (phone duration and pitch 

contour) was performed via FD-PSOLA (Moulines and Charpentier, 1990). Listening 

tests showed a significant reduction in accent following segmental modification: when 

listeners were asked to rate accentedness in a 7-point Likert scale
3
, accent-converted 

utterances were rated as being ‘somewhat’ accented (1.97 numeric rating) whereas 

original L2 utterances were rated as being ‘quite a bit’ accented (4.85 numeric rating). In 

contrast, prosodic modification did not achieve a significant reduction in accent (4.83 

numeric rating). Listening tests of speaker identity with forward speech showed that 

segmental transformations (with or without prosodic transformation) were perceived as a 

third speaker, though the effect disappeared when participants were asked to 

discriminate reversed speech. The authors concluded that listeners used not only organic 

cues (voice quality) but also linguistic cues (accentedness) to discriminate speakers, 

which suggests that something is inevitably lost in the identity of a speaker when accent 

conversion is performed.  

A few studies have attempted to blend L2 and L1 vocal tract spectra instead of 

completely replacing one with the other, as was done in (Felps et al., 2009). In one such 

study, Huckvale and Yanagisawa (2007) reported improvements in intelligibility for 

Japanese utterances produced by an English test-to-speech (TTS) after blending their 

                                                 

3
 1: Not at all, 3: Somewhat, 5: Quite a bit, 7: Extremely  
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spectral envelope with that of an utterance of the same sentence produced by a Japanese 

TTS. More recently, we presented a voice morphing strategy that can be used to generate 

a continuum of accent transformations between a foreign speaker and a native speaker 

(Aryal et al., 2013).  The approach performs a cepstral decomposition of speech into 

spectral slope and spectral detail as shown in Figure 7. Accent conversions are then 

generated by combining the spectral slope of the foreign speaker with a morph of the 

spectral detail of the native speaker. Spectral morphing is achieved by first representing 

the spectral detail through pulse density modulation and then averaging pulses in a pair-

wise fashion (Shiga, 2009).  This morphing technique provides a tradeoff between 

reducing the accent and preserving the voice identity of the L2 learner, and may serve as 

a behavioral shaping strategy in computer assisted pronunciation training.  

 

Figure 7: Cepstral decomposition of speech into spectral slope and spectral detail (DCT: 

Discrete cosine transform). 

A limitation of both vocoding-based methods for accent conversion (Felps et al., 

2009; Aryal et al., 2013) is that they require a careful alignment (at the frame level) of 

the parallel utterances from an L1 and L2 speaker. Given the common occurrence of 

deletion, substitution and insertion errors in L2 speech, however, obtaining a good 
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alignment is not always possible. As mentioned earlier in the discussion of modulation 

theory of speech, the complex interaction of linguistic gestures and vocal tract 

physiology when looking at a spectrogram makes it difficult to separate them. As a 

result, accent conversions tend to be perceived as if they had been produced by a ‘third-

speaker,’ one who is different from the original L1 and L2 speakers. Both of these issues 

disappear by operating in the articulatory domain. First, once an articulatory synthesizer 

has been built, there is no need for further alignment between L1 and L2 utterances: new 

accent conversions can be generated by driving the synthesizer directly from L1 

articulators. Second, and more importantly, the linguistic gestures are readily available 

via the measured L1 articulators, whereas the voice identity is captured by the mapping 

from L2 articulators to L2 acoustics. Thus, in principle articulatory methods make it 

possible to achieve good accent conversion accuracy without compromising the voice 

identity of the L2 learner.  

3.3 Articulatory-based approaches 

The only prior work on articulatory accent conversion that we are aware of is a 

study by Felps et al. (2012) using unit-selection synthesis. Illustrated in Figure 8, the 

approach consisted of three stages, analysis, accent conversion and synthesis. During the 

analysis stage, the L1 and L2 utterances of the same sentences are segmented into 

diphone units. In the accent conversion stage, the mispronounced diphones in the L2 

utterance are detected, and then replaced with other L2 diphone units (from L2 corpus). 

The replacing diphone units were selected such that they match the articulatory 

configurations of the corresponding diphone units in a reference native utterance. After 
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segmental modifications during the accent conversion stage, the diphone units were 

concatenated during the synthesis stage and passed through the STRAIGHT engine to 

generate the audio waveform. During the synthesis phase, STRAIGHT is used to modify 

the pitch pattern of the concatenated speech to match the prosody of the reference L1 

utterance. 

The target articulatory feature vector consisted of six Maeda parameters (all but 

larynx height, which could not be measured with EMA), velocity for each of those 

parameters, normalized pitch, normalized loudness, and diphone duration. By replacing 

mispronounced diphones with other diphone units from the same speaker, this 

articulatory-based approach preserved the identity of the L2 speaker. 

Unfortunately, the unit-selection synthesizer lacked the flexibility needed for 

accent conversion. First, the articulatory corpus contained 20,000 phones (or about 60 

minutes of active speech) which, despite being larger than other articulatory databases 

(e.g., MOCHA-TIMIT (Wrench, 1999), X-Ray Microbeam (Westbury, 1994)), is 

considered small for unit-selection synthesis. Second, the unit-selection framework does 

not have a mechanism to interpolate between units, so it cannot produce sounds that 

have not been already produced by the L2 learner. Finally, the approach requires that L2 

utterances be segmented and transcribed phonetically, which makes it impractical for 

pronunciation training settings. Based on these findings, we decided to explore other 

methods for articulatory synthesis that may have the flexibility and low-data 

requirements needed for accent conversion. 
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Figure 8: Articulatory foreign accent conversion based on unit selection (from Felps 

(2011)). 
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3.4 Evaluation of foreign accent conversion  

The objective of foreign accent conversion methods is to generate native like 

utterances with the voice of a non-native learner. In addition, the resulting utterances are 

also required to be intelligible, natural and free from speech processing artifacts. 

Therefore, foreign accent conversions must be evaluated along three perceptual 

dimensions: acoustic quality, degree of non-native accents, and voice quality. In 

addition, intelligibility is also another important measure of foreign accent conversion, 

especially, in the evaluation of articulatory-based accent conversions. Because 

articulatory methods involve speech synthesis from articulatory data, which only 

provides partial information of the speech production apparatus that result in less 

intelligible synthesis (Kello and Plaut, 2004). In some cases, increased intelligibility has 

also been treated as the indicator of reduction in the perceived non-native accents 

(Huckvale and Yanagisawa, 2007). However, one must be careful when making such 

inferences since improved intelligibility may also be linked to the increased acoustic 

quality. 

While the realistic evaluation of the accent conversion in all these perceptual 

dimensions requires subjective listening tests, several objective measures of these 

perceptual dimensions have been suggested for fast, low-cost and automatic assessment 

(Huckvale and Yanagisawa, 2007; Felps and Gutierrez-Osuna, 2010; Peabody, 2011). 

The objective measures, however, are restrictive in their application. For example, the 

objective measure based on ITU recommendation (ITU-T, 2004) was found highly 

correlated to the subjective quality ratings for a few speech coders in special test 



 

46 

 

conditions, but in the quality assessment of foreign accent conversions (Felps and 

Gutierrez-Osuna, 2010) the measure was reliable only when averaged over 20 sentences, 

but not for evaluating the quality of individual utterance. Similarly, some objective 

measures (e.g., accent measure of Huckvale (2004)) are not applicable in foreign accent 

conversion because they are specific to a speaker, language or a set of words.  

Since we use subjective evaluation of foreign accent conversion in this work for 

reliable measurements, in the following, we review various subjective perceptual 

evaluation methods in detail. 

3.4.1 Acoustic quality assessment 

The international telecommunication Union (ITU-T, 2006) recommends rating 

the utterances using mean opinion score (MOS) in a 5-point discrete scale (1:bad to 

5:excellent). MOS is considered as a de-facto standard for subjective assessment of 

acoustic quality, and widely used in evaluation of the speech-modification techniques 

(Felps et al., 2009). A more involved approach for quality assessment uses relative 

comparison between pairs of utterances. From a large set of pairwise similarity ratings 

between the utterances in the scale of 3 (much better) to -3 (much worse), a low 

dimensional embedding of the responses can be extracted that categorizes the utterances 

into groups that differ in quality ratings. One such low dimensional embedding can be 

extracted using Multi-dimensional scaling (Kruskal, 1964). This approach results in a 

more granular and reliable measurement of quality than MOS but also requires a large 

number of responses from the participants.  
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3.4.2 Intelligibility assessment 

Intelligibility measures how accurately one can perceive the linguistic 

information in an utterance. One common measurement is the ratio of correctly 

identified words in the utterance calculated from the transcription (Lane, 1963; Barefoot 

et al., 1993). Because the lexical context strongly influences the listener’s ability to 

identify ambiguous sounds, the listener’s familiarity with the language increases the 

word identification accuracy in a sentence level evaluation. Studies often use 

semantically unpredictable sentences (Pisoni and Hunnicutt, 1980; Goldstein, 1995) to 

account for such effect of linguistic structure in intelligibility. Similarly, due to learning 

effects, familiarity with a sentence (Davis et al., 2005) also increases its intelligibility. 

Thus, when comparing multiple conditions using the same set of test sentences, we use 

different groups of listeners for each condition to account for the possible learning 

effect.  

Subjective ratings have been used as a measure of intelligibility (Fayer and 

Krasinski, 1987; Munro and Derwing, 1995) to supplement word identification or 

transcription accuracy. These ratings provide an estimate of how confident the listeners 

are about the accuracy of the perceived linguistic information. 

3.4.3 Assessment of non-native accents 

The degree of non-native accents in an utterance can be evaluated using absolute 

rating in a scale spanning from a native to a reference non-native accented utterance 

(Munro and Derwing, 1995; Felps et al., 2009; Felps et al., 2012). The reference 
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utterances are used to provide the anchor points for the listeners to calibrate their 

perceptual scale. However, it does not guarantee the consistency in their ratings over 

several sessions. In addition, the absolute ratings may not capture the subtle but 

perceivable differences in non-native accentedness between two utterances, because a 

high inter-rater variability can mask small differences in the accentedness. To detect 

such subtle differences, pairwise comparison of non-native accents tend to be more 

effective (Aryal et al., 2013).  

Who is a good judge of the non-native accents? Scovel (1988) found that the 

ability to gauge the degree of non-native accents develops in native speakers as they 

grow older, and among the non-native speakers with their exposure to the language. He 

also found that the adult native speakers have the best judgment of non-native accents. 

Therefore, adult monolingual native speakers of the language are the optimal 

participants for accent assessment tests. Furthermore, the known interaction between the 

acoustic quality of an utterance and its perceived non-native accentedness should also be 

considered in designing accent evaluation tests. By adding white noise to the utterances, 

Felps and Gutierrez-Osuna (2010) showed that utterances with lower acoustic quality are 

rated more non-native. Thus, when comparing the non-native accentedness in a pair of 

utterances, it is important to keep their acoustic quality comparable to avoid the quality 

bias in the perception of non-native accentedness. 
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3.4.4 Assessment of voice-identity 

In voice conversion, ABX tests are commonly used to evaluate how close the 

voice conversion is to the target utterance compared to the source utterance (Kain and 

Macon, 1998; Toda et al., 2007; Toth and Black, 2007). ABX test has also been used in 

accent conversion (Felps et al., 2009). But, in order to reduce the effect of accents in 

perceived identity, Felps et al. (2009) played the utterances backward. The backward 

speech has recognizable timbre, variability on pitch (Black, 1973) but the prosodic and 

segmental information related to the accent is largely inaccessible to the listener (Munro 

et al., 2010).  

However, as Kain and Macon (2001) pointed out, the ABX test is not a true test 

of voice-similarity but the test of relative closeness to the target speaker as opposed to 

the source speaker. Instead, a same/different test is a more realistic test. In one such 

voice-similarity assessment, Kreiman and Papcun (1991) had participants listen to a pair 

of utterances and then asked them if the pair was from the same speaker or not and rate 

their confidence in a 7-point empirically grounded, well anchored (EWGA) scale. This 

measure provides the voice-similarity between the two speakers independent of any 

reference speaker. 
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4. ACOUSTIC-BASED FOREIGN ACCENT CONVERSION USING

VOICE CONVERSION
4
 

The existing accent conversion methods in acoustic domain follow a direct 

approach where a non-native utterance (L2) is modified such that it matches the prosodic 

and segmental characteristics of a reference native (L1) utterance (Campbell, 1998; 

Huckvale and Yanagisawa, 2007; Yan et al., 2007; Felps et al., 2009; Aryal et al., 2013). 

These vocoding techniques attempt to decompose the spectral envelopes from a native 

(L1) and a non-native (L2) utterance into the components responsible for the linguistic 

gestures (e.g. accents) and the voice-identity components, then transpose these 

components across speaker. 

In this section, we present an acoustic-based foreign accent conversion method 

that uses cross-speaker spectral mappings to estimate the trajectories of equivalent L2 

acoustic features from a given sequence of L1 acoustic features from a reference native 

utterance as in voice conversion. By using cross-speaker spectral mappings, we not only 

avoid the difficulty of separating the linguistic and voice-quality related information 

from the spectral envelopes, but also obviate the error-prone time-alignment between the 

L1 and L2 utterances during conversion, the two main limiting factors in vocoding-based 

techniques. Unlike voice conversion, foreign accent conversion seeks to preserve the 

speaking style (accents) of the source speaker; therefore, the mappings learned for voice 

4
 The description of the method and the experimental results are reprinted with permission from "Can 

voice conversion be used to reduce non-native accents?" by Aryal and Gutierrez-Osuna, 2014. 

Proceedings of ICASSP, pp. 7929-7933, ©2014 IEEE. 
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conversion cannot be directly applied to the accent conversion. This section shows how 

the cross-speaker statistical mappings of voice conversion can be adjusted during the 

training phase so that the trained mappings can be used for foreign accent conversion. 

4.1 Foreign accent conversion based on spectral mapping 

As shown in Figure 9, the proposed accent conversion method consists of two 

phases: training and conversion. During the training phase, we first use STRAIGHT use 

STRAIGHT (Kawahara, 1997) to extract the spectral features (MFCCs) and fundamental 

frequency      for the parallel training utterances from both the L1 and L2 speakers. 

After segmenting the utterances into frames, we pair each L1 frame with the acoustically 

closest L2 frames and vice versa. Then, using the frame pairs, we train a Gaussian 

mixture model (GMM) on the joint distribution of the spectral feature vectors from L1 

and L2. Finally, we calculate means and standard deviations of          for both the 

speakers and build a pitch modification (PM) function. 
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Figure 9: Foreign accent conversion method using cross-speaker statistical mappings. 

During the conversion phase, we pass a test L1 utterance through the same 

feature extraction module as in the training phase. Once the pitch and spectral features 

are extracted, we use the pitch modification module and the trained cross-speaker 

spectral mappings to estimate the equivalent pitch trajectory and the spectral features for 

the L2 speaker, respectively. Given these modified parameters, STRAIGHT, finally, 

generates audio signal. More details on STRAIGHT feature extraction and synthesis, 

pairing of the L1 and L2 frames, pitch modification, and GMM-based mapping are given 

below. 
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4.1.1 STRAIGHT feature extraction and synthesis 

We use STRAIGHT to extract acoustic features and synthesize the resulting 

speech waveform. Given an utterance, we extract     aperiodicity and spectral envelope 

with STRAIGHT. For each frame (sampled at every 5ms in this study), we then compute 

         by warping the STRAIGHT spectral envelope according to the Mel 

frequency scale (25 Mel filterbanks, 8 kHz cutoff frequency) and applying a type-II 

discrete cosine transformation (DCT).  

During synthesis, we reconstruct the STRAIGHT spectral envelope from the 

estimated spectral coefficients (MFCC0-24). Specifically, given a vector of predicted 

MFCCs, the least-squares estimate of the spectral envelope is   ̂             , where 

  is the Mel Frequency Filter Bank (MFB) matrix used to extract MFCCs from the 

STRAIGHT spectrum, and   is the exponential of the inverse DCT of MFCCs. In a final 

step, we use the STRAIGHT synthesis engine to generate the waveform using the 

estimated spectral envelope   ̂, the aperiodicity and the modified   .  

4.1.2 Pairing acoustic vectors 

In conventional voice conversion the source and target acoustic vectors are 

paired using forced alignment in a parallel corpus (Abe et al., 1988; Toda et al., 2007). 

Because of the systematic nature of the accent-related deviations, the mapping learned 

using the time-aligned parallel corpus is also likely to learn the accents of the non-native 

speaker. As a solution, our approach consists of pairing source and target vectors based 
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on their acoustic similarity following vocal tract length normalization (VTLN). Both 

pairing approaches are illustrated in Figure 10.   

 

Figure 10: (a) Conventional approach to voice conversion; source and target 

utterances are paired based on their ordering in a forced-aligned parallel corpus,  (b) 

Our approach to accent conversion: source and target utterances are paired based on 

their acoustic similarity following vocal-tract-length normalization (VTLN),  MCD: 

Mel Cepstral Distortion. 

The first step in our acoustic-similarity based pairing is to apply VTLN in order 

to reduce physiological differences in the vocal tract of the two speakers
5
. For this 

purpose, we use dynamic time warping to align parallel utterances from the L1 and L2 

speakers, each utterance represented as a sequence of 24 Mel Frequency Cepstral 

Coefficients (MFCCs).  Following Panchapagesan and Alwan Panchapagesan and 

Alwan (2009), we then learn a linear transform between the MFCCs of both speakers 

using least squares: 

                                                 

5
 More elaborate forms of speaker normalization may be used, such as context-dependent VTLN 

(Maragakis and Potamianos, 2008) or even speaker adaptation techniques, but this increases the risk of 

capturing not only physiological differences but also accent. 

L1 L2

(a) VC: force-alignment

L1’ L2

(b) AC: acoustic similarity

L1
VTLNMCD
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        ‖      ‖
  (3) 

where   and   are vectors of MFCCs from the L1 and L2 speakers, respectively, and 

 is the VTLN transform.  Next, for each L1 vector    we find its closest L2 vector   
  

as: 

  
         

  
‖     ‖   (4) 

To make the search for the closest frame more efficient, we first group all L2 

acoustic frames into 512 clusters using k-means. Then, for each L1 frame   , we first 

find the closest L2 cluster and then the closest frame from those within that cluster. We 

repeat the process for each L2 vector    to find its closest match   
 : 

  
          

  
‖     ‖

   (5) 

This results in a lookup table where each L1 and L2 vector in the database is 

paired with the closest vector from the other speaker.  It is this lookup table that we then 

use to train a GMM, as explained next.  

4.1.3 Cross-speaker spectral mapping 

The cross-speaker spectral mapping is adopted from Toda et al. (Toda et al., 

2007), which uses we a GMM-based method for maximum likelihood estimation of 

spectral parameter trajectories considering the global variance of the target speaker
6
. Let 

   [      ] be a vector of static and dynamic (delta) MFCCs for the L1 speaker at 

                                                 

6
 For this study, we used our own MATLAB implementation of the GMM method of Toda et al. (2007). 
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frame  , and    [      ] be the corresponding vector for the L2 speaker. Then, we 

model the joint distribution    [     ]  as  

 (  | 
   )   ∑           

      
    

 

   

  (6) 

where      {     
      

   } are the GMM parameters (weight, mean and covariance of 

the  th 
mixture component, respectively), learned from a training set of joint vectors 

   using expectation-maximization (EM).  

Given a trained GMM, we calculate the maximum likelihood estimate of acoustic 

features considering the dynamics and the global variance (GV) as follows. Let   

[        ] denote the sequence of L1 acoustic vectors in a source sentence. Consider 

also the within-sentence variance of the  th 
acoustic feature       given by      

 [        [     ]  ]. Thus, the GV of the static acoustic feature is written as 

     [               ] where   is the dimension of   , and   is the sequence 

[        ]. Now, the time sequence of estimated acoustic vectors (static only) is 

given by: 

 ̂         
 

                  (7) 

where       {  
      

    },    
    is the vector of average variance for all acoustic 

features and   
     is the corresponding covariance matrix, learned from the distribution 

of      in the training set. The likelihood                   is computed as  

 ( |           )   ( |      )
 
    (    |    )  (8) 



 

57 

 

The distribution of GV,              , is modeled by a single Gaussian 

 (       
      

    ). The power term        ⁄   in equation (8) controls the balance 

between the two likelihoods.  

Following Toda et al. (2007), we solve for  ̂ in equation (7)(23) iteratively via 

Expectation-Maximization. Namely, we define the auxiliary function with respect to 

 ̂ as:  

 (   ̂)    ∑ ( |        )     ( ̂  |      )

 

     (   ̂ |    ) (9) 

At each M-step, we iteratively update the estimate of the trajectory (static 

elements only) as: 

 ̂     ̂      ̂ (10) 

where   is a step-size parameter, and the steepest-descent gradient   ̂ is given by 

  ̂    (   ̂)   ̂⁄       ̂   ̅     ̅    [            ] (11) 

Vector    in equation (11) is the GV-related adjustment of the target acoustic 

features at frame  , the d
th

 element of which is computed as: 

  
      

 

 
          ̂        ̂     ∑ ̂    

 

   

  (12) 

where        is the d
th

 column of         
.   is the 2DT DT matrix that translates a 

trajectory of the static parameters to a trajectory of the complete acoustic feature vector 

as given by:  
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   : : :  :        
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        0 0 ....… 0 0 1 

      0 0 …… 0 -0.5 0  DxD 
 

(13) 

In equation (11),  ̅ is a block-diagonal matrix whose diagonal consists of   

covariance sub-matrices ∑            
     

     
     

         and  ̅ is a row 

vector of length     consisting of T sub-vectors of length    given by 

∑            
     

     
     

    
   

          , where  

   
   

   
    

   
    

  
      

  
    

 (14) 

and     
   

 is the conditional expected value as given by  

     
   

   
   

       
   

   
      

    
 (15) 

The algorithm requires an initial estimate of the trajectory of the static acoustic 

features  ̂. In our implementation, we initialize with the minimum mean square error 

(MMSE) estimate, which ignores the dynamics and global variance of the acoustic 

features. Given a trained GMM       
      

    , the MMSE estimate is calculated by 

summing the conditional expected values from all Gaussian mixture components, 

weighted by their conditional membership probability for the given articulatory feature 

vector   : 
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 ̂       ∑  ( |    
   )    

   

 

   

 (16) 

where     
   

 is the static-feature-only subset of      
   

, as given by equation (15).  

4.1.4 Prosody modification  

Following Toda et al. (2007), we use the aperiodicity and pitch trajectory of the 

source (L1) speaker, which captures the native intonation pattern, but normalize it to the 

pitch range of the target (L2) speaker to preserve his or her natural vocal range (see 

Figure 11). More specifically, given an L1 pitch trajectory      , we follow the methods 

commonly used in voice conversion (Stylianou et al., 1998; Toda et al., 2007), and 

generate the modified L2 pitch trajectory       as:  

   (     )  [             ]
  

  
    (17) 

where         and         are the mean and standard deviation of log-scaled pitch of 

the L1 and L2 speakers, respectively, calculated from the training corpus. This approach 

has two main advantages. First, it accounts for the dynamic range (not only the mean 

value) of the speaker. Secondly, it manipulates pitch in logarithmic scale similar to the 

human auditory system. 
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Figure 11: Shifting and scaling L1 pitch trajectory to match the vocal range of the L2 

speaker. 

4.2 Experimental 

4.2.1 Conversion from non-native to native accent 

To test the effectiveness of our accent conversion (AC) model, we compared it 

against the utterances from the L1 and L2 speakers. To evaluate the effect of acoustic-

similarity based frame pairing, we also compared AC against the conventional voice 

conversion (VC). The baseline VC model was similar to the AC model except that the 

GMM model was trained on DTW-aligned pairs from source and target speakers –see 

Figure 10a, whereas the AC model was trained on acoustically-matched pairs as 

described in section 4.1.2.  In both cases, the GMM consisted of 128 Gaussian 

components.  
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We performed two sets of perceptual listening tests: 

1. Perceived accent: subjects listened to pairs of utterances (AC-VC, AC-L2, VC-

L2) and were asked to select the utterance that sounded the least accented.  Order 

of presentation in the pairs was randomized within subjects. 

2. Perceived speaker identity: subjects listened to three utterances (A,B,X) and 

were asked to select whether the speaker in utterance X sounded closer to the 

identity in A or B. Utterances in X were AC; utterances A, B were either L1 or 

L2 (order of presentation was randomized within subjects). Following (Felps et 

al., 2009), utterances were played backward to avoid interactions between accent 

and identity. 

To ensure that the loss of quality in the AC and VC methods due to the MFCC 

compression step did not affect the perceptual ratings, control utterances from the L1 

and L2 speaker were compressed to MFCC and then resynthesized as described in 

(Aryal and Gutierrez-Osuna, 2013).   

4.2.2 Conversion from native to non-native accent  

We also tested the effectiveness of our AC method to map accents in the opposite 

direction, i.e., imparting a non-native accent to the voice of a native speaker.  For this 

purpose, we trained AC and VC models in a manner similar as in section 4.2.1, except 

we used L2 as the source speaker, and L1 as the target speaker. The six types of 

synthesis evaluated are summarized in Table 2. 
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Table 2: Summary of the six synthesis models
7
 (AP: aperiodicity from STRAIGHT; 

DTW: dynamic time warping; AC: accent conversion; VC: voice conversion; ‘12’ 

denotes transformation from L1 to L2). 

Synthesis 

model 

Frame 

pairing 

Source 

MFCC 

Target 

MFCC 
AP 

AC12 Acoustic L1 L2 L1 

VC12 DTW L1 L2 L1 

AC21 Acoustic L2 L1 L2 

VC21 DTW L2 L1 L2 

L1 - L1 L1 L1 

L2 - L2 L2 L2 

  

4.2.3 Experimental corpus  

The speech corpus  consisted of parallel recordings from a non-native speaker 

(whose first language was Spanish) and a native speaker of American English, 

previously described in (Felps et al., 2012). Both subjects recorded the same 344 

sentences chosen from the Glasgow Herald corpus. In addition, the non-native speaker 

recorded 305 sentences not spoken by native speaker. Out of the 344 sentences shared 

among both speakers, we randomly selected 294 sentences to train the GMM, and saved 

the remaining 50 sentences for testing purposes. For each sentence, we computed 25 

MFCCs (MFCC0: energy; MFCC1-24: spectral envelope) as well as pitch and aperiodicity 

from the STRAIGHT (Kawahara, 1997) spectrum sampled at interval of 5ms
8
.  

  

                                                 

7
 Audio samples are available in http://psi.cse.tamu.edu/samples/acvc.html 

8
 STRAIGHT was also used to resynthesize utterances from the output of the GMM-GV model. 
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4.3 Results 

Listening tests were performed on Amazon’s Mechanical Turk. Following (Felps 

et al., 2012), in order to qualify for the experiments participants first had to pass a 

screening test that consisted of identifying various American English accents: Northeast 

(i.e. Boston, New York), Southern (i.e. Georgia, Texas, Louisiana), and General 

American (i.e. Indiana, Iowa). Participants were also asked to list their native 

language/dialect and any other fluent languages that they spoke. If a subject was not a 

monolingual speaker of American English then their responses were excluded from the 

results. In the quality and accent evaluation tests, participants were asked to transcribe 

the utterances to ensure they paid attention to the recordings. Participants with 

incomplete responses were excluded from the study. 

4.3.1 L1→L2 accent/voice conversion 

Twenty participants rated the accent and identity of the AC12 and VC12 models 

on a set of 12 sentences, randomly selected from the 50 sentences in the test set.  Both 

models were perceived to be less foreign-accented than the original L2 utterances.  On 

average, listeners found VC12 to be less accented than the original L2 utterances 90% of 

the times (std. 9%).  Likewise, listeners found AC12 less foreign-accented than L2 89% 

of the times (std. 9%).   This result would suggest that there is no significant difference 

in accent reduction between conventional voice conversions (VC12) and our proposed 

method (AC12). However, when both models were compared against each other, 

participants found AC12 to be less accented than VC12 60% of the times (std. 10%). 
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The difference in perceived accent between the two models was statistically significant 

(      ,        , single-tail).  

Results from the ABX identity test show that participants found AC12 closer to 

L2 than to L1 an average of 77% of the times (std. 22%), which is statistically 

significant (      ,        , single-tail) compared to chance levels (50%).  

In summary, these results indicate that the proposed AC method is more effective 

in reducing accent than conventional VC, while at the same time it preserves the identity 

of the L2 speaker. 

4.3.2 L2→L1 accent/voice conversion 

Twenty participants rated the accent and identity of the AC21 and VC21 models 

on a set of 12 sentences, randomly selected from the 50 sentences in the test set.  Both 

models were perceived to be more foreign-accented than the original L1 utterances. On 

average, VC21 was rated as more foreign-accented than L1 (mean 97%; std. 8%), and 

AC21 was rated as more foreign-accented than L1 as well (mean 97%; std. 8%).  More 

importantly, when compared against each other AC21 was rated as more foreign-

accented than VC21 (mean 64%, std. 15%) which was statistically significant (     , 

       , single-tail).  

Results from the ABX test show that the voice identity of AC21 was found to be 

more similar to L1 than to L2 (mean 67%; std. 28%), which is statistically significant 

(      ,        , single-tail) compared to chance levels (50%).  
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In summary, these results show that the proposed AC method is also more 

effective than the baseline VC method in imparting a non-native accent to a native 

speaker, while it also preserves the identity of the L1 speaker. Results are summarized in 

Table 3.  

Table 3: Summary of perceptual results; percentage denotes preference for the first item 

in the pair (second item in ABX); SA: source accent; ID: speaker identity. 

   

 L1→L2 Pref.  L2→L1 Pref. 

SA 

VC12-L2 90%  VC21-L1 97% 

AC12-L2 89%  AC21-L1 97% 

AC12-VC12 60%  AC21-VC21 64% 

ID AC12-L2-L1 77%  AC21-L1-L2 67% 

4.3.3 Correlation with differences in the L1 and L2 phonetic inventories  

As a final step, we analyzed whether the effectiveness of the AC model could be 

explained from differences in the phonetic inventory of the two languages (Goldstein, 

2001; Helman, 2004; You et al., 2005). In particular, the English language includes a 

number of consonants that do not exist in Spanish, most significantly the fricatives /v/, 

/z/, /θ/, /ʃ/, /ʒ/ and /ð/, the affricate /dʒ/, the pseudo-fricative /h/, and the liquid /ɹ/.  

Spanish also does not have lax vowels, the schwa as well as r-colored vowels. 
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Figure 12: The number of missing phonemes in L2 inventory          and the 

proportion of listeners who found the AC12 synthesis less foreign accented than the 

VC12 synthesis for each test sentence are highly correlated         . 

Thus, for each sentence in the listening tests we computed the number of 

phonemes that did not exist in Spanish (     ), our rationale being that the larger this 

number the more difficult it would be for the L2 speaker to pronounce the sentence.  

Then, we computed the correlation coefficient between       and the proportion of 

listeners who found the AC12 synthesis less accented than the VC12 synthesis. Results 

reveal a very strong correlation (      ) between both measures (see Figure 12), 

which indicates that the benefits of the AC method are more significant for sentences 

that are harder to produce by the L2 speaker.   

We also computed the correlation between       and the proportion of listeners 

who found AC12 less accented than L2; in this case, the correlation was       , 

which adds further support to the previous conclusion. In contrast, the performance of 
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the baseline voice conversion method (VC12) appears to be unrelated (      ) to the 

difficulty of the test sentence. 

4.4 Discussion 

This section has presented a speech modification method that can be used to 

transform L2 utterances to sound more native-accented. The method is based on 

conventional GMM techniques for voice conversion, but uses a different strategy to 

match frames from the source (L1) and target (L2) speakers. Namely, we apply vocal 

tract length normalization and then perform a bidirectional match between frames of the 

two speakers using Mel Cepstral Distortion as a measure of similarity; the resulting 

lookup table of source-target vectors is then used to train a GMM. 

To test the effectiveness of our method, we compared it against a baseline voice-

conversion model trained on DTW-aligned pairs of source-target utterances.  Listening 

tests show that our accent conversion method can transfer the accent of the source 

speaker more effectively than voice conversion, regardless of the direction in which the 

transformations are applied, i.e., making L2 utterances less foreign-accented as well as 

making L1 utterances more foreign-accented.  

Our results also show that the accent conversion method is most beneficial when 

used on utterances that are difficult to produce by L2 speakers, as measured by the 

number of phones in the utterance that do not exist in the L2 phonetic inventory.  Further 

insights may be obtained by analyzing phonotactic differences between the two 

languages. A classic example in Spanish is the lack of word-initial clusters that begin 

with /s/; in these cases, Spanish speakers tend to produce such words (e.g., star, scar, 
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small, Spain) with an initial /e/.  One may also consider whether the particular error has 

high or low functional load (its importance in making distinctions in the language); as an 

example, contrast between initial /p/-/b/ has a high relative functional load, whereas final 

/t/-/d/ has a lower functional load (Jesse, 2012). 

Further improvements in the accent conversion model may also be obtained by 

imposing constraints on the pairing of acoustic vectors.  As an example, one may 

eliminate source-target pairs that have high Mel Cepstral Distortion.  Performance may 

also be improved by considering additional information when matching source-target 

pairs, such as dynamic features (delta and delta-delta), features from the STRAIGHT 

aperiodicity spectrum, or linguistic features predicted from speech acoustics such as 

sound classes (e.g., place and manner of articulation). 

In this section, we presented an acoustic-based strategy for foreign accent 

conversion. However, this dissertation focuses of developing foreign accent conversion 

techniques that exploits the voice-independent representation of linguistic gestures 

captured in articulatory data. In the next section, we will describe how the articulatory 

data provides a straightforward mechanism to transfer linguistic gestures (including 

accents and speaking styles) across speakers, and facilitates foreign accent conversion. 
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5. STATISTICAL PARAMETRIC ARTICULATORY FOREIGN 

ACCENT CONVERSION
9
 

In this section, we present an articulatory-based strategy for foreign accent 

conversion. Unlike the acoustic-based approach, the articulatory-based approach has a 

strong theoretical basis. According to the modulation theory of speech (Traunmüller, 

1994) speech is viewed as the result of process in which a carrier, characterized by the 

static properties of the speaker’s voice, has been modulated by phono-articulatory 

gestures to give linguistic color. Based on this view, a speech synthesizer driven by 

articulatory gesture can be treated as the voice-quality carrier while the input articulatory 

gestures provide the modulating signal. Given the input articulatory gestures from a 

reference native speaker (L1) and the articulatory synthesizer built for a non-native 

speaker (L2), we can generate native-like utterance in the voice of the non-native 

speaker.  

The method consists of building an articulatory synthesizer of the L2 speaker, 

then driving it with articulatory gestures
10

 from an L1 speaker. As shown in Figure 13, 

the approach requires (i) a flexible articulatory synthesizer that can capture subtle 

accent-related changes in articulators, and (ii) an articulatory normalization method that 

                                                 

9
 The description of the method and the experimental results are reprinted with permission from 

"Reduction of non-native accents through statistical parametric articulatory synthesis," by Aryal and 

Gutierrez-Osuna, 2015. J. Acoust. Soc. Am., 137, pp. 433-446. ©2015 Acoustical Society of America. 
10

 We used the term articulatory gestures in a broader sense to represent the dynamics of vocal tract 

configurations. Not to be confused with ‘gestures’ and ‘gestural scores’ in the gestural framework of 

articulatory phonetics developed at Haskins Laboratories (Browman and Goldstein, 1990). 
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can account for physiological differences between the two speakers. This approach 

builds on a prior work on data-driven articulatory synthesis (Felps et al., 2012), which 

illustrated the limitations of unit-selection techniques when used with small articulatory 

corpora
11

. For this reason, the method proposed here uses the Gaussian mixture model of 

Toda et al. (2008) to generate a forward mapping from L2 articulators to L2 acoustics. 

Compared to unit selection, this statistical parametric articulatory synthesizer does not 

require a large articulatory corpus and provides a continuous mapping from articulators 

to acoustics, so it can interpolate phonemes that do not exist in L2 inventory. 

 

Figure 13: Articulatory accent conversion is a two-step process consisting of L1-L2 

articulatory normalization and L2 forward mapping.  

Given the differences in vocal tract physiology between the two speakers and in 

articulatory measurement procedures (e.g., pellet placement in electromagnetic 

articulography, or EMA), driving the resulting model with L1 articulators is unlikely to 

produce intelligible speech. To address this issue, Felps et al. (2012) mapped L1 and L2 

articulators (EMA positions) into the 6-point Maeda parameter approximations of Al 

Bawab et al. (2008). While this parameterization can reduce individual speaker 

                                                 

11
 Previous work on text-to-speech unit-selection synthesis shows that at least two hours of active speech 

are needed to synthesize intelligible speech, a number that is rarely (if ever) achieved with articulatory 

corpora.  
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differences, it also reduces synthesis quality because it removes important information 

available in the raw EMA positions. For this reason, we achieve articulatory 

normalization by transforming EMA articulators between the two speakers by means of 

a pellet-dependent Procrustes transformation derived from articulatory landmarks of the 

two speakers, as proposed by Geng and Mooshammer (2009). 

5.1 Method description 

Our proposed articulatory method for accent conversion follows the generic 

outline shown in Figure 13. The method takes an acoustic-articulatory trajectory from an 

L1 test utterance and transforms it to match the voice quality of the L2 speaker. In a first 

step, the method normalizes the L1 articulatory trajectory (EMA pellet coordinates) to 

the L2 articulatory space. Then, it uses the normalized L1 trajectories as an input to a 

GMM-based articulatory synthesizer trained on an L2 acoustic-articulatory corpus. The 

result is an utterance that has the articulatory gestures and prosody of the L1 speaker but 

the voice quality of the L2 speaker. Both procedures are described in detail in the 

following sections.  

5.1.1 Cross-speaker articulatory mapping  

The articulatory mapping transforms a vector     of EMA articulatory 

coordinates for the L1 speaker into the equivalent articulatory positions  ̂           , 

where        denotes a set of Procrustes transforms, one for each fleshpoint. Namely, 

given an L1 fleshpoint with antero-posterior and supero-inferior 
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coordinates              , the function estimates the L2 fleshpoint coordinates 

  ̂      ̂      as:  

[ ̂      ̂    ]  [     ]    [           ]   (18) 

where [     ] is the translation vector,   is the scaling factor and   is a     matrix 

representing the rotation and reflection. We estimate the Procrustes 

parameters            by solving the minimization problem:  

   
           

 ∑ ‖[           ]  ([     ]    [           ]   )‖ 

             

 (19) 

where [           ] and [           ] are the coordinates of corresponding landmarks in 

the L2 and L1 speaker respectively. These parameters are learned for each pellet in the 

articulatory corpus. 

  

Figure 14: Overview of the cross-speaker articulatory normalization procedure. A 

separate set of parameters is obtained for each EMA pellet. 

Following Geng and Mooshammer (2009), we select a set of articulatory 

landmarks from the phonetically-transcribed corpus. Namely, for each phone in the L1 

inventory and for each speaker, we calculate the centroid of the EMA articulatory 
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coordinates as the average across all frames that belong to the phone (according to the 

phonetic transcription). These pairs of phone centroids (one from the L1 speaker, one 

from the L2 speaker) are then used as the corresponding landmarks in equation (19). The 

overall approach is summarized in Figure 14. 

5.1.2 Forward mapping  

To generate acoustic observations from articulatory positions, we use a GMM-

based forward mapping (Toda et al., 2008) that incorporates global variance (GV) of the 

acoustic features (Toda et al., 2007). The forward mapping estimates the temporal 

sequence of static acoustic parameters,           , from the trajectory of articulatory 

features  . For each frame at time     the articulatory feature vector    consists of 15 

parameters: the anteroposterior and superoinferior coordinate of six EMA pellets, 

pitch        , loudness         and nasality. Since the velum position is not available 

in our EMA corpus, we used the text transcription of the utterances to generate a binary 

feature that represented nasality. In the absence of a transcription, the nasality feature 

may be derived from acoustic features –see (Pruthi and Espy-Wilson, 2004), as in the 

case for fundamental frequency and loudness. 

For completeness, we include a detailed description of the forward mapping in 

(Toda et al., 2007; Toda et al., 2008). In a first step, we model the joint distribution of 

articulatory-acoustic features    [     ]
 , where    is the articulatory feature vector at 

time  , and    [      ] is an acoustic feature vector containing both static and delta 

MFCCs. Using a Gaussian mixture, the joint distribution becomes:  
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 (20) 

where    is the scalar weight of the     mixture component and      
      

     is the 

Gaussian distribution with mean   
   

and covariance matrix   
     We use symbol 

           
      

     to denote the full parameter set for the GMM. The mean vector 

  
   

 and covariance matrix   
   

 denote the joint statistics of articulatory and acoustic 

features for the     mixture:  

  
   

  [  
   

   
   

]    
   

  [
  

    
  

    

  
    

  
    

] . (21) 

In a second step, we model the global variance (GV) of predicted acoustics to 

account for over-smoothing effects of the GMM. Consider the within-sentence variance 

of the  th 
acoustic feature      , given by       [        [     ]  ]. The GV of 

these features in an utterance      [        ]  is then given by a vector      

[               ], where   is the dimension of acoustic vector   . We model the 

distribution of GVs for all the utterances in the training set,  (    |    ), with a single 

Gaussian distribution: 

 (    |    )   (       
      

    ) (22) 

where model parameters       {  
      

    } denote the vector of average global 

variance   
    and the corresponding covariance matrix   

    , learned from the 

distribution of      in the training set. 
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At synthesis time, given the trained models [          ] and a test sequence of 

articulatory vectors   [           ], we obtain the maximum-likelihood acoustic 

(static only) trajectory  ̂:  

 ̂         
 

  ( |      )
 
  (    |    ) (23) 

where   [                      ] is the time sequence of acoustic vectors (both 

static and dynamic) and      is the variance of static acoustic feature vectors. The 

power term        ⁄   in equation (23) provides a balance between the two 

likelihoods. We solve for  ̂ in equation (23) via Expectation-Maximization; for details 

refer to section 4.1.3.  

5.1.3 System diagram 

Figure 15 shows a more detailed view of the conversion process. The system 

takes audio and articulatory recordings from a reference L1utterance as the input. From 

the audio signal, STRAIGHT extracts pitch, aperiodicity and energy. Given the trained 

pitch modification module as described in section 4.1.4, the L1 pitch trajectory is shifted 

and scaled to match the pitch range of the L2 speaker.  

Given the trained cross-speaker articulatory mappings (described in section 

5.1.1), the L1 articulatory trajectories (EMA pellet positions) are transformed to the 

equivalent L2 articulatory trajectories. The frame energy (     ) and the modified 

pitch (   ) are combined with the normalized L1 EMA positions and the binary nasality 

feature to form an input articulatory feature vector for the L2 forward mapping 

(described in section 0), which estimates the L2 spectral coefficients           .  



 

76 

 

We then reconstruct the STRAIGHT spectral envelope from the estimated L2 

spectral coefficients (MFCC1-24) and the L1 energy (MFCC0). In a final step, we use the 

STRAIGHT synthesis engine to generate the waveform using the estimated spectral 

envelope  ̂, the L1 aperiodicity and the modified pitch.  

 
Figure 15: Block diagram of accent conversion method (PM: pitch modification). 

5.2 Experimental corpus 

We performed a series of perceptual listening experiments to evaluate the 

proposed method in terms of its ability to improve intelligibility, reduce non-native 

accentedness, and preserve voice individuality. For this purpose, we used a corpus of 

audio and articulatory recordings from a native speaker of American English, and a non-

native speaker whose first language was Spanish (Felps et al., 2012; Aryal and 
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Gutierrez-Osuna, 2013) collected at the University of Edinburgh by means of 

Electromagnetic Articulography (EMA; Carstens AG500). Both speakers recorded the 

same 344 sentences chosen from the Glasgow Herald corpus. The non-native speaker 

recorded an additional 305 sentences from the same corpus. Out of the 344 common 

sentences, we randomly selected 50 sentences (220 seconds of active speech in total; 

4.40 seconds/sentence on average) for testing, and used the remaining 294 sentences 

(1,290 seconds total; 4.39 seconds/sentence) to train the forward mapping and the 

articulatory mapping. Six standard EMA pellets positions were recorded: upper lip, 

lower lip, lower jaw, tongue tip, tongue body, and tongue dorsum. Four additional pellets 

(placed behind the ears, the upper nasion and the upper jaw) were used to cancel head 

motion and provide a frame of reference. EMA pellet positions were recorded at 200Hz. 

From each acoustic recording, we also extracted pitch, aperiodicity and spectral 

envelope using STRAIGHT (Kawahara, 1997). MFCCs were then estimated from the 

STRAIGHT spectrum and resampled to match the EMA recordings. The result was a 

database of articulatory-acoustic feature vectors containing pitch,          and six 

EMA positions per frame. 

5.2.1 Experimental conditions 

We considered five different experimental conditions for the listening tests: the 

proposed accent conversion method (  ), articulatory synthesis of L2 utterances 

(     ), articulatory synthesis of L1 utterances (     ), MFCC compression of L2 
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speech (      ), and normalization of L1 utterances to match the vocal tract length and 

pitch range of L2 (       ). The conditions are summarized in Table 4. 

Table 4: Five experimental conditions for listening test. 

   

Experimental 

condition 

Aperiodicity 

and energy 
Pitch Articulators Spectrum 

   L1 L1 scaled to L2 L1 mapped to L2 L2 forward mapping 

      L2 L2 L2 L2 forward mapping 

      L1 L1 L1 L1 forward mapping 

       L2 L2 N/A L2 MFCC 

        L1 L1 scaled to L2 N/A L1 warped to L2 

The first experimental condition (  ) was the proposed accent conversion 

method, illustrated in Figure 13. Namely, we built an L2 forward mapping by training a 

GMM with 128 mixtures on L2 articulatory-acoustic frames, and the Procrustes 

articulatory registration model by training on the articulatory landmarks of equation 

(19); only non-silent frames in the 294 training sentences were used for this purpose. 

Once the cross-speaker articulatory mapping and L2 forward mapping had been trained, 

we performed accent-conversion for each of the L1 utterances not used for training, 

following the procedure outlined in Figure 15.  

The second experimental condition (     ) consisted of articulatory synthesis 

of L2 utterances, obtained by driving the L2 forward model with L2 articulators. This 

condition was used as the baseline for non-native production of the utterances since it 

had similar acoustic quality as AC. Because articulatory synthesis results in a loss of 

acoustic quality, and considering that acoustic quality interacts with accent perception 
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(Felps et al., 2010), comparing AC against the L2 original utterances would have been 

problematic. 

The third experimental condition (     ) consisted of articulatory synthesis of 

L1 utterances, obtained by driving an L1 forward model with L1 articulators. This 

condition served as the baseline for native production of the utterances, accounting for 

the loss of quality due to articulatory synthesis. This condition may also be taken as an 

upper bound of what accent conversion may be able to achieve in terms of intelligibility 

and accentedness.  

The fourth experimental condition (      ) consisted of re-synthesizing the 

original L2 utterances following compression into MFCCs. Utterances in this condition 

underwent a four-step process: (1) STRAIGHT analysis, (2) compression of STRAIGHT 

smooth spectra into MFCCs, (3) reconstruction of STRAIGHT smooth spectra from 

MFCCs, and (4) STRAIGHT synthesis; refer to section 4.1.1 for more detail on steps (2) 

and (3). This modification enabled a fair comparison against    utterances by factoring 

out losses in acoustic quality caused by the MFCC compression step in Figure 15.  

The fifth experimental condition (       ) consisted of modifying L1 utterances 

to match the pitch range and vocal tract length of the L2 speaker. This condition allowed 

us to test whether a simple guise could achieve similar accent-conversion performance 

as the proposed    method: as shown in a number of studies (Lavner et al., 2000, and 

references therein) , pitch range and formant frequencies are good indicators of voice 

identity. Utterances in the         condition were synthesized as follows. First, the L1 

pitch trajectory was rescaled and shifted to match the pitch range of L2 speaker(17). 
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Then, we performed vocal tract length normalization by warping the L1 STRAIGHT 

spectrum to match the global statistics of the L2 speaker. Following Sundermann et al. 

(2003), we used a piecewise linear warping function governed by the average formant 

pairs of the two speakers, estimated over the training corpus; formants were extracted 

from the roots of the LPC coefficients of non-silent frames. For similar reasons as those 

described above,         utterances also underwent the same MFCC compression 

procedure of        utterances. 

5.2.2 Participant recruitment 

We evaluated the proposed method (  ) by comparing against the other four 

experimental conditions (     ,      ,       ,        ) in terms of intelligibility, 

accentedness and speaker individuality through a series of perceptual listening tests. 

Participants for the perceptual studies were recruited through Mechanical Turk, 

Amazon’s online crowdsourcing tool. In order to qualify for the studies, participants 

were required to reside in the United States and pass a screening test that consisted of 

identifying various American English accents: Northeast (i.e. Boston, New York), 

Southern (i.e. Georgia, Texas, Louisiana), and General American (i.e. Indiana, Iowa). 

Participants who did not pass this qualification task were not allowed to participate in 

the studies. In addition, participants were asked to list their native language/dialect and 

any other fluent languages that they spoke. If a subject was not a monolingual speaker of 

American English then their responses were excluded from the results. In the quality and 

accent evaluation tests, participants were asked to transcribe the utterances to ensure 
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they paid attention to the recordings. Participants with incomplete responses were 

excluded from the study. 

5.3 Results 

5.3.1 Accuracy of articulatory normalization 

In a first experiment, we analyzed the effect of the Procrustes transforms on the 

distribution of articulatory configurations. First, we compared the spatial distribution of 

the six EMA pellets for the L1 and L2 speakers before and after articulatory 

normalization. Figure 16a shows the distribution before articulatory normalization; 

differences between the two speakers are quite significant, not only in terms of the 

average position of each pellet but also in terms of its spatial distribution (e.g., variance). 

These discrepancies can be attributed largely to differences in vocal tract geometry 

between the two speakers, though inconsistencies in pellet placement during the EMA 

recordings also play a role. Regardless of the source of these discrepancies, the results in 

Figure 16b shows that the articulatory normalization step achieves a high degree of 

consistency in the spatial distribution of pellets between the two speakers.  
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(a) (b) 

Figure 16: (a) Distribution of six EMA pellet positions from the L1 speaker (solid 

markers) and L2 speaker (hollow markers) from a parallel corpus. Large differences 

can be seen in the span of the measured positions of articulators (UL: upper lip; LL: 

lower lip; LI: lower incisor; TT: tongue tip; TB: tongue blade; and TD: tongue 

dorsum). The upper incisor (UI) was used as a reference point. (b) Distribution of 

EMA pellet positions for the L1 speaker (solid markers) and L2 speaker (hollow 

markers) following articulatory normalization. 

Next, we compared articulatory trajectories for the L1 speaker, the L2 speaker, 

and the L1 after articulatory normalization. Figure 17 shows the trajectory of tongue tip 

for the word ‘that’ in a test utterance. As a result of the normalization step, the L1 

articulatory trajectory becomes closer to the L2 trajectory but also preserves the 

dynamics of the L1 production; this makes it easier to spot articulatory errors in the L2 

utterance. Namely, the figure shows a noticeable difference between the L2 trajectory 

and the L1-normalized trajectory in antero-posterior position towards the end of the 

word. This discrepancy can be traced back to a typical phonetic substitution of alveolar 

stop /t/ with the dental one /t / in L2 speakers whose mother tongue is Spanish, which 

results from moving the tongue tip forward to make a constriction at the teeth instead of 
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the alveolar ridge. Such display of normalized trajectories may also be used as 

supplementary feedback mechanism to the learner in computer-assisted pronunciation 

training. 

 
Figure 17: Trajectory of the tongue-tip pellet in L1 and L2 utterances of the word 

‘that’. The L1 trajectory normalized to the L2 articulatory space is also shown. 

Arrows indicate the direction of trajectories. 

Finally, we analyzed the effect of articulatory normalization on the distribution 

of articulatory configurations at the phonetic level; the middle frame of vowel segments 

was used for this purpose. Figure 18a shows the centroid and half-sigma contour (i.e., 

half standard deviation) of the tongue tip pellet position, a critical articulator for the 

frontal vowels (/ɪ/, /i/, /ɛ/, /e/ and /æ/), for the two speakers (L1 and L2). As shown in 

Figure 18a, the half-sigma contours for corresponding vowels in the two speakers have 

no overlap, with the exception of /ɪ/ and /ɛ/. Notice also the larger spread in articulatory 

configurations for the L2 speaker compared to the L1 speaker, a result that is consistent 
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with prior studies showing larger acoustic variability and phonemic overlap in non-

native speech productions (Wade et al., 2007). Figure 18b shows the articulatory 

configurations following the articulatory normalization step; vowel centroids for the 

normalized L1 speaker are within the half-sigma contour of the corresponding vowel for 

the L2 speaker.  

 

(a) (b) 

Figure 18: (a) Distribution of tongue tip position in frontal vowels for the L1 speaker 

(dark ellipses) and L2 speaker (light) speaker; ellipses represent the half-sigma contour 

of the distribution for each vowel. (b) Distribution of tongue tip position in frontal 

vowels for the L1 speaker after articulatory mapping (dark) and the L2 speaker (light).  

5.3.2 Assessment of intelligibility 

In a first listening test we assessed the intelligibility of    as compared to       

and       utterances. Three independent groups of native speakers of American English 
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(N=15 each) transcribed the 46 test utterances
12

 for the three experimental conditions 

(  ,      ,      ). From each transcription, we calculated word accuracy        as 

the ratio of the number of correctly identified words to the total number of words in the 

utterance. Participants also rated the (subjective) intelligibility of the utterances (      ) 

using a 7-point Likert scale (1: not intelligible at all, 3: somewhat intelligible, 5: quite a 

bit intelligible, and 7: extremely intelligible). 

Figure 19 shows the word accuracy and intelligibility ratings for the three 

experimental conditions. Accent conversions                               were 

rated as being significantly more intelligible                 than L2 articulatory 

synthesis                                , a result that supports the feasibility of 

                                                 

12
 Four of 50 test sentences for the L2 speaker had missing EMA data and were removed from the 

analysis.  

  

(a) (b) 

Figure 19: Box plot of (a) word accuracy and (b) subjective intelligibility ratings for 

     ,       and    utterances.  
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our accent-conversion approach, though not as intelligible                 as the 

upper bound of L1 articulatory synthesis                               . In all 

three conditions, the two intelligibility measures (    ,       ) were found to be 

significantly correlated              ; for this reason, in what follows we will 

focus on      as it is the more objective of the two measures.  

The scatter plot in Figure 20 shows the    and       word accuracies for the 46 

test sentences. In 70% of the cases (32 sentences; those above the main diagonal in the 

figure) accent conversion improved word accuracy compared to that obtained on       

utterances, further supporting our approach. Notice, however, the lack of correlation 

between the two conditions, an unexpected result since one would expect that the initial 

word accuracy (i.e., on       utterances) would have a strong influence on word 

 
Figure 20: Word accuracy for    and       for the 46 test sentences. The diagonal 

dashed line represents The sentences for which                       are above 

the dashed line and the vice versa. 

0.0

0.5

1.0

0.0 0.5 1.0

L word accuracy

w
o

rd
 a

cc
u

ra
cy



 

87 

 

accuracy following accent conversion. As will be discussed next, this result suggests the 

presence of two independent factors affecting intelligibility in the two conditions. 

The results in Figure 19a also show a large variance in word accuracy for L2 

articulatory synthesis (     ) compared to L1 articulatory synthesis (     ). In our 

analysis of the acoustic-based accent conversion in section 4.3.3, we found that accent 

conversions are most beneficial when used on utterances that are difficult to produce by 

L2 speakers based on differences between the L1 and L2 phonetic inventories. 

Accordingly, we examined whether the variance in word accuracy for       could be 

explained by the phonetic complexity of each sentence, measured as the number of L1 

phones in the sentence that do not exist in the L2 inventory. Differences in phonetic 

inventories are a known reason behind non-native accents; see e.g. (You et al., 2005). In 

our case, the English language includes a number of consonants that do not exist in 

Spanish (our L2 speaker’s mother tongue), most significantly the fricatives /v/, /z/, /θ/, 

/ʃ/, /ʒ/ and /ð/, the affricate /ʝ/, the pseudo-fricative /h/, and the liquid /ɹ/. Spanish also 

does not have lax vowels, the schwa as well as r-colored vowels. Thus, for each test 

sentence we computed the number of phones that did not exist in Spanish (     ) and 

compared it against the       word accuracy. Both variables (      ,            ) are 

significantly correlated                      , suggesting that variance in 

intelligibility for       utterances can be explained by differences in the L1 and L2 

phonetic inventory. We found, however, no significant correlation                 

between       and word accuracy for    utterances, which suggests that the accent 



 

88 

 

conversion process is able to cancel out the main source of (poor) intelligibility: phonetic 

complexity from the perspective of the L2 learner.  

What then, if not sentence complexity, drives the intelligibility of    utterances? 

Since both conditions (  ,      ) use the same articulatory synthesizer, we 

hypothesized that interpolation issues would be at fault. To test this hypothesis, for each 

frame in an    utterance we computed the Mahalanobis distance between the L1 

registered articulators and the centroid of the corresponding L2 phone, then averaged the 

distance over all non-silent frames in the utterance. The larger this measure, the larger 

the excursion of the registered L1 articulatory trajectory from the L2 articulatory space. 

We found, however, no significant correlation                  between this 

measure and word accuracy on    utterances, which suggests that the total amount of 

interpolation present in an    utterance does not explain its lack of intelligibility.  
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Table 5: Correlation between word accuracy and the proportion of phones in a sentence 

containing a particular articulatory-phonetic feature. 

 

Articulatory 

features 
               

Manner 

Stops -0.43 0.22 -0.21 

Fricatives  -0.01 0.04 -0.02 

Affricates 0.05 -0.17 0.05 

Nasals 0.31 -0.10 0.17 

Liquids -0.19 -0.08 -0.22 

Glides 0.40 0.01 0.17 

  

    

Place 

Bilabials -0.07 0.28 -0.07 

Labiodentals  0.14 -0.11 -0.03 

Lingual dental -0.18 -0.03 -0.12 

Lingual alveolar -0.04 -0.12 0.10 

Lingual palatal 0.02 -0.21 -0.04 

Lingual velar 0.01 0.25 -0.08 

Glottal 0.01 0.14 -0.09 

 
    

Voicing 
Voiced 0.01 -0.07 -0.18 

Unvoiced -0.10 0.14 0.07 

   

In a final analysis we then decided to test whether the phonetic content of the 

utterance would explain its intelligibility, our rationale being that the acoustic effect of 

interpolation errors is not uniform across phones. As an example, due to the presence of 

critical articulators, a small error in the tongue tip height can transform a stop into a 

fricative whereas the same amount of error in tongue tip height may not make much of a 

difference in a vowel. Accordingly, we calculated the correlation between word accuracy 

and the proportion of phones in an utterance with a specified phonetic-articulatory 

feature. Results are shown in Table 5 for six features of manner of articulation, seven 

features of place of articulation, and voicing. Correlation coefficients found to be 
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significant          are shown in bold. In the case of       and       utterances, 

we found no significant effect on intelligibility for any of the articulatory features, an 

indication that the GMM articulatory synthesizer was trained properly. In the case of    

utterances, however, we found a strong negative correlation between intelligibility and 

the proportion of stops in the sentence. Thus, it appears that small registration errors, to 

which stops are particularly sensitive, are largely responsible for the loss of intelligibility 

in accent-converted utterances
13

.  

5.3.3 Assessment of non-native accentedness  

In a second listening experiment we sought to determine whether the proposed 

accent-conversion method could also reduce the perceived non-native accent of L2 

utterances. For this purpose, participants were asked to listen to       and    

utterances of the same sentence and select the most native-like
14

 among them. For this 

test, we focused on the subset of sentences for which    and       utterances had 

higher intelligibility (        ); i.e., those on the upper-right quadrant in Figure 20. In 

this way, we avoided asking participants to rate which of two unintelligible utterances 

was less foreign-accented (a questionable exercise) or whether an unintelligible 

                                                 

13
 The table also shows a strong positive correlation between intelligibility and glides, an unexpected result 

because it suggests that lowering the proportion of glides in an utterance reduces its intelligibility. A closer 

look at the phonetic composition of our 46 test utterances, however, shows that the proportion of glides is 

negatively correlated with the proportion of stops                  . This provides a more plausible 

explanation: as the proportion of glides decreases, so does the proportion of stops increase, in turn 

lowering the intelligibility of the utterance. 
14

 Native relative to a monolingual speaker of general American English 
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utterance was more foreign-accented than an intelligible one (an exercise of predictable 

if not obvious results).  

 
 Figure 21: Subjective evaluation of non-native accentedness. Participants were asked 

to determine which utterance in a pair was more native-like.  

Participants (N=15) listened to 30 pairs of utterances (15          pairs, and 

15          pairs) presented in random order to account for order effects. Their 

preferences are summarized in Figure 21.    utterances were rated as being more native 

than       utterances in 62% of the sentences        , which is significantly higher 

than the 50% chance level                                  . This result 

indicates the proposed accent-conversion method can be effective in reducing the 

perceived non-native accent of L2 utterances. To verify that these results were not 

accidental (e.g., caused by the lower acoustic quality of articulatory synthesis), we 

performed an additional listening test to compare accent ratings for native (     ) and 

non-native (     ) articulatory synthesis. In this test, a different group of listeners 
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(N=15) compared 30 pairs of utterances (15             pairs, and 15       

      pairs), and selected the most native-like utterance in a pair. As expected, 

      utterances were rated as more native than       in 96% of the cases, which 

indicates that articulatory syntheses do retain dialect/accent information. 

Closer inspection of the listeners’ responses to the accent perception comparisons 

showed an influence of presentation order within pairs. Namely, AC was rated as more 

native than       53% of the times whenever AC appeared first, but the proportion 

increased to 70% if AC was the second utterance in the pair; this difference was 

statistically significant                                     . This bias is 

consistent with the ‘pop-out’ effect (Davis et al., 2005), according to which a degraded 

utterance is perceived as being less degraded if presented after a clean version of the 

same utterance, i.e. when the lexical information is known. Extending this result to the 

perception of native accents,       may then be treated as the degraded utterances 

relative to the AC condition, which would explain why       utterances were rated as 

less accented if they were presented after AC. 

5.3.4 Assessment of voice individuality  

In a third and final listening experiment we tested the extent to which the accent 

conversion method was able to preserve the voice identity of the L2 speaker. For this 

purpose, we compared AC utterances against        utterances (MFCC compressions 

of the original L2 recordings) and         utterances (a simple guise of L1 utterances to 

match the vocal tract length and pitch range of the L2 speaker). 
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Figure 22: Average pairwise voice similarity scores. Scores range from -7 (different 

speaker with high confidence) to +7 (same speaker with high confidence).  

Following Felps et al. (2009), we presented participants with a pair of 

linguistically different utterances from two of the three experimental conditions. 

Presentation order was randomized for conditions within each pair and for pairs of 

conditions. Participants (N=15) rated 40 pairs, 20 from each group (         , 

              ) randomly interleaved, and were asked to (1) determine if the 

utterances were from the same or a different speaker (forced choice), and (2) rate how 

confident they were in their assessment using a 7-point Likert scale. Once the ratings 

were obtained, participants’ responses and confident levels were combined to form a 

voice similarity score (VSS) ranging from    (extremely confident they are different 

speakers) to    (extremely confident they are the same speaker).  

Figure 22 shows the mean VSS between pairs of experimental conditions. 

Listeners were ‘quite’ confident that    and        utterances were from the same 

speaker (               . This result suggests that the method is able to preserve 

-7

-5

-3

-1

1

3

5

7

vo
ic

e 
si

m
ila

ri
ty

 s
co

re



94 

the voice-identity of the L2 learner. Likewise, listeners were very confident       

            that        and       utterances were from different speakers, 

which indicates that a simple guise of the L1 speaker cannot capture the voice quality of 

the L2 learner. 

5.4 Discussion 

This section has presented an accent-conversion method that transforms non-

native utterances to match the articulatory gestures of a reference native speaker. Our 

approach consists of building a GMM-based articulatory synthesizer of a non-native 

learner, then driving it with measured articulatory gestures from a native speaker. 

Results from listening tests show that accent conversion provides statistically-significant 

increases in intelligibility as measured by objective scores (i.e. word recognition) and 

subjective ratings, and overall preference (70%) when compared to synthesis driven by 

L2 articulators. More importantly, unlike in the case of synthesis driven by L2 

articulators, the intelligibility of accent conversions is not affected by the proportion of 

phones outside the phonetic inventory of the L2 speaker. This result suggests that the 

method can successfully remove one of the primary causes of non-native accents. 

Subsequent pairwise listening tests of native accentedness also show a preference 

towards accent conversions (62%) when compared to synthesis driven by L2 

articulators. Finally, listening tests of speaker identity indicate that driving the L2 

articulatory synthesizer with (registered) articulatory gestures from a different speaker 

does not change the perceived voice quality of the resulting synthesis. When combined 

with our results on intelligibility and accentedness, this finding suggests that our overall 
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approach (L1→L2 articulatory normalization followed by L2 articulatory synthesis) is 

an effective strategy to decouple those aspects of an utterance that are due to the speaker 

physiology from those that are due to the language.  

Further analysis indicates that the intelligibility of accent-converted utterances 

decreases with the proportion of stop consonants in the sentence. Given that stops 

require the formation of a complete constriction, small articulatory registration errors 

can have a significant effect on the acoustic output of the model; as an example, a small 

error in tongue-tip height may cause a lingua-alveolar stop to become fricative (e.g., 

from /t/ to /s/). A potential solution to this problem may be to incorporate knowledge of 

critical articulators by replacing the mapping in equation (18) with one that is context-

dependent. To this end, Felps et al. (2010) have shown that the accuracy of articulatory-

acoustic mappings can be increased by using phone-specific weights for the EMA 

coordinates of critical articulators. Likewise, context-dependent articulatory mappings 

could be used to minimize errors in EMA pellet positions that are critical to each phone, 

in this fashion improving synthesis quality and accent-conversion performance. 

Additional information on vocal tract geometry may also be used to improve synthesis 

performance. As an example, having access to the palate contour may be used to 

compute the distance (or contact) between passive and active articulators, or to extract 

tract constriction variables, which are known to have less variability than EMA pellet 

positions (McGowan, 1994; Mitra et al., 2011). 

The foreign accent conversion method described in this section uses GMM-based 

forward mapping. The GMM-based forward mapping is selected because of its accuracy 
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and the flexibility to interpolate new sounds for the articulatory configuration not 

available in the training database. However, the GMM-based synthesizer uses the 

dynamics of estimated acoustic features to reduce temporal spectral discontinuities, 

hence, increasing the computational costs and latency during run-time. A few low-delay 

approximations are available but they are known to reduce the acoustic quality 

(Muramatsu et al., 2008; Toda et al., 2012). The method is thus unsuited for real-time 

conversion. In the next section, we describe a real-time articulatory synthesizer that 

exploits the temporal nature of speech in the articulatory feature. We also evaluate how 

effective is the synthesizer in foreign accent conversion. 
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6. ARTICULATORY-BASED CONVERSION OF FOREIGN

ACCENTS WITH DEEP NEURAL NETWORKS
15

 

In the previous section, we presented a GMM-based articulatory method for 

foreign accent conversion. The method was able to reduce the perceived non-native 

accents while preserving the voice-quality of the non-native speaker. However, the 

method suffers from a run-time inefficiency that involves the estimation of maximum-

likelihood trajectories of acoustic features considering their dynamics in order to reduce 

the spectral discontinuities across adjacent frames. Such trajectory optimization is 

necessary to improve acoustic quality, but is computationally expensive as it requires the 

entire utterance to be processes at once, making the GMM-based approach inadequate 

for real-time accent conversion. Low-delay and low-latency implementations of the 

trajectory optimization process are available (Muramatsu et al., 2008; Xingyu et al., 

2014), but only at the cost of reduced acoustic quality. In this section, we present a 

method that exploits the temporal nature of speech in articulatory input features to 

reduce discontinuities and avoid the expensive trajectory optimization of estimated 

acoustic features (output features), such that accent conversion is possible in real-time. 

The method utilizes deep neural networks (DNN) in modeling articulatory-acoustic 

mappings. 

15
 The description of the method and the experimental results are reprinted with permission from "Data 

driven articulatory synthesis with deep neural networks," by Aryal and Gutierrez-Osuna, 2015(in press), 

Computer Speech & Language, ©2015 Elsevier B.V., and from "Articulatory-based conversion of foreign 

accents with deep neural networks," by Aryal and Gutierrez-Osuna, 2015, Proceedings of 

INTERSPEECH, pp. 3385-3389. ©2015 ISCA. 
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6.1 Deep neural network in articulatory-acoustic mappings 

Non-parametric models such as neural networks have rarely been used in 

forward-mapping problems, where GMMs are considered the de-facto standard. One 

notable exception is the work by Kello et al. (2004), who used a single-layer multilayer 

perceptron (MLP) to estimate acoustic features (Fourier transform coefficients) from 

electromagnetic articulography (EMA), electropalatograph and laryngograph 

measurements. In an intelligibility test, the authors reported a word identification rate of 

84% for synthesized speech, only 8% lower than that of the actual recordings.  

Compared to single-layer MLPs, DNNs can be expected to provide higher 

forward-mapping accuracy. First, the presence of multiple hidden layers makes DNNs 

more flexible models, allowing them to represent complex functions with fewer hidden 

units. Second, DNNs are pre-trained as generative models in an unsupervised mode, a 

step that has been shown to guide the learning process towards parameters that support 

better generalization (Erhan et al., 2010). These predictions have been corroborated in 

several speech-related applications (Hinton et al., 2012; Uria et al., 2012; Zen et al., 

2013), where DNN-based methods have surpassed the performance of state-of-the-art 

methods based on the HMM-GMM framework. Among these, a study on articulatory 

inversion by Uria et al. (Uria et al., 2012) is particularly relevant here given the 

similarity between both problems. Using a DNN, the authors were able to estimate EMA 

pellet positions with an average root mean square error of 0.95mm on the MNGU0 test 

dataset, an error that was not only lower than that of a single-layer MLP but also the 

lowest among all previously published results on that dataset. A recent study by Andrew 
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et al. (2013) on joint articulatory-acoustic modeling also highlights the superiority of 

deep learning techniques in this domain. The authors proposed a deep architecture for 

canonical correlation analysis (CCA) and tested it on the Wisconsin X-ray Microbeam 

Database (Westbury, 1994). Their deep CCA method achieved significantly higher 

correlation between the transformed acoustic and articulatory spaces than conventional 

CCA and kernel-based CCA (Arora and Livescu, 2013) and also compared favorably 

against kernel-CCA in terms of flexibility and the computational complexity. These 

results motivate our exploration of DNNs for real-time articulatory synthesis and its 

application in foreign accent conversion. In the following, we describe the proposed 

DNN-based method for real-time accent conversion. 

6.2 DNN-based foreign accent conversion method 

As shown in Figure 23a, the overall approach for foreign accent conversion 

consists of four main stages: (1) articulatory normalization to map L1 EMA positions 

into L2 articulatory space, (2) DNN forward mapping to estimate L2 acoustic parameters 

from normalized L1 EMA positions, (3) scaling of the L1 pitch contour to match the 

pitch range of the L2 speaker, and (4) reconstructing the speech waveform via 

STRAIGHT synthesis. The approach is similar to the GMM-based conversion in the 

previous section except for the DNN-based forward mapping, which we describe next. 

The other three phases have been already described in previous section (see section 5.1 

for more detail). 
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(a) (b) 

Figure 23: (a) DNN-based foreign accent conversion (PM: pitch modification) (b) 

Forward mapping using a DNN with a tapped-delay line input. 

6.2.1 DNN-based forward mapping 

Given a trajectory of articulatory features    [           ] for an utterance, 

the DNN estimates the corresponding sequence of acoustic feature vectors    

 [        ]. As illustrated in Figure 23b, the DNN consists of an input layer, an 

output layer, and multiple layers of hidden units between them. In this particular 

topology, units in a layer are fully connected to units in the immediate layer above it, but 

there is no connection among units within a layer. The network contains a tapped-delay 

line to contextualize the input with features from past and future frames, resulting in the 

input vector    {     ⁄            ⁄  }, where    is the articulatory configuration at 

frame  , and   is the number of delay units. The DNN consists of Gaussian input units 

and binary hidden units, all units with sigmoid activation function. 
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Training the DNN is a two stage process. First, a Gaussian-Bernoulli Boltzmann 

machine (Cho et al., 2013) is trained in an unsupervised fashion. Finally, a layer of 

output nodes (one node for each acoustic parameter) is added on top of the trained 

GDBM to form a DNN, which is then fine-tuned via back-propagation (Rumelhart et al., 

1986). See Appendix A for more detail. 

6.2.2 Global variance adjustment 

Statistical mappings are known to over-smooth the acoustic trajectories resulting 

in muffled sounds (Toda et al., 2007). For this reason, our GMM-based accent 

conversion method incorporated the global variance (GV) of the acoustic feature vectors 

to reduce the over-smoothing effects. To ensure a fair comparison with the GMM-based 

method, we adjust the DNN estimated acoustic features as follows. Let the acoustic 

feature vector estimated by the DNN at frame   of the test utterance be   , then, the GV-

adjusted feature vector  ̂  is given by: 

 ̂  (    )    (24) 

where   is the mean of the estimated acoustic feature vectors, and   is a diagonal matrix 

whose elements are the square roots of the ratios between the GVs for the natural and 

estimated trajectories. Calculating the exact values for   and   requires the estimated 

acoustic features for the entire utterance, which is not possible in real-time conversion. 

Therefore, we calculate these parameters       for all the training sentences and use 

their average value as an approximation during run-time. 
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6.3 Performance of DNN-based forward mapping  

Before evaluating the performance of DNN forward mapping in accent 

conversion, we set out to evaluate how effective the DNNs are in articulatory-to-acoustic 

mapping. For this purpose, we compared the proposed DNN-based mapping method 

against two GMM-based methods based on Toda et al. (2004). Since the GV 

adjustments reduce the mapping accuracy which would distort results from the objective 

tests
16

, the DNN-based and GMM-based methods in this comparison do not incorporate 

GV. 

6.3.1 GMM-based baseline methods 

The first method, which we denote by sGMM, ignores dynamic information and 

serves as a baseline for real-time synthesis. Namely, sGMM performs a frame-by-frame 

mapping from articulatory positions onto static acoustic features (MFCCs). The second 

method, dGMM, incorporates the dynamics of acoustic features to improve the forward-

mapping accuracy. Namely, dGMM predicts not only MFCCs but also delta-MFCCs, 

and then performs the computationally-intensive trajectory optimization (Toda et al., 

2004). As such, dGMM is unsuited for real-time synthesis so it should be taken as an 

upper bound on accuracy.  

The GMMs required for both methods are trained to model the joint distribution 

of articulatory and acoustic features     [     ] 
 where    is the articulatory feature 

                                                 

16
 The foreign accent conversion methods are evaluated through subjective listening tests. Thus, 

incorporating the global variance in their mapping methods does not distort the comparison results. 
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vector and    [      ] is an acoustic feature vector containing both static and delta 

values at frame  . The joint distribution is given by: 

 (  | 
   )   ∑           

      
    

 

   

 (25) 

where    is the scalar weight of the     mixture component and      
      

     

is the Gaussian distribution with mean   
   

and covariance matrix   
   

:  

  
   

  [  
   

    
   

]         
   

   [
  

    
  

    

  
    

  
    

] (26) 

In what follows, we use the symbol            
      

     to denote the full 

parameter set for the GMM. Given a trained GMM and a test sequence of articulatory 

feature vectors   [           ], we generate separate predictions of acoustic 

feature vectors   [          ] for the two GMM variants as follows: 

1. For sGMM, we ignore the acoustics dynamics and calculate the static acoustic 

feature vector at frame   as the minimum mean square error (MMSE) estimate: 

 ̂       ∑  ( |    
   )    

   
 

   
 (27) 

where     
   

 is the subset of static features in the conditional expected value     
   

, 

as given by 

     
   

   
   

       
   

   
      

    
. (28) 

2. For dGMM, we calculate the maximum likelihood estimate of the acoustic 

trajectory considering the dynamics, as given by: 
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 ̂           
 

  ( |      ) (29) 

where   [                      ] is the time sequence of acoustic vectors 

(both static and dynamic). We solve for  ̂ in equation (23) iteratively via the EM 

algorithm; see (Toda et al., 2004) for more details. 

6.3.2 Experimental 

We evaluated the three forward mappings (DNN, sGMM, dGMM) on the corpus 

described earlier in section 5.2. The corpus contained simultaneous recordings of 

acoustics and articulatory trajectories recorded via electromagnetic articulography 

(EMA) from a native and a non-native speaker of American English. Out of the two 

speakers, we used the native speaker of American English to avoid effects of 

inconsistencies in non-native productions in the evaluation. Out of the 344 sentences 

recorded, 294 randomly-selected sentences were used to train the model and the 

remaining 50 sentences were used only for test synthesis. As explained in section 5.2, we 

extracted articulatory and acoustic features for all the utterances in the corpus. For each 

frame, the articulatory feature vector consisted of 15 parameters: the anteroposterior and 

superoinferior coordinate of six EMA pellets, pitch        , loudness         and 

nasality; the acoustic feature vector consists of acoustic parameters           . All the 

acoustic and articulatory parameters were normalized to zero-mean and unit-variance.  

For the two GMM-based mappings, we trained GMMs with 128 mixture 

components on the joint distribution of articulatory and acoustic features (including 

delta) using the Netlab toolbox (Nabney, 2002). Once the GMMs were trained, we 
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estimated acoustic features using sGMM and dGMM methods as described by equations 

(27) and (23), respectively. For the DNN mapping, we used a tapped-delay line with 

delay units of 10 ms ( 2 frames), and evaluated tapped-delays with 2, 4, 6, and 8 delay 

units. As an example, for a delay line with 6 units the input vector contains features from 

7 frames covering 60 ms of articulatory context (30ms backward, 30 ms forward). DNNs 

were implemented using the Deepmat toolbox (Cho, 2013).  

Once a vector of MFCCs was predicted by either of the three mappings (DNN, 

sGMM, dGMM), we used the STRAIGHT synthesis engine to generate the waveform 

using the estimated spectral envelope, and the signal aperiodicity and pitch. The overall 

process is illustrated in the figure below. 

 
Figure 24. Signal processing flow during articulatory synthesis. 
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Following Toda et al. (2004), we evaluated the forward mappings based on the 

Mel-Cepstral distortion between ground-truth and estimated acoustic features:  

     
  

    
√  ∑ (  

   
  ̂ 

   
)
   

   
 (30) 

where  ̂ 
   

 is the     component of the estimated acoustic feature vector (i.e., MFCC) at 

the  -th frame in a test utterance, and   
   

 is the ground-truth value extracted from the 

acoustic recording. MCDs were calculated only on non-silent frames.  

Acoustic predictions for the three forward mappings on a typical test utterance 

are illustrated in Figure 25 alongside the ground truth. Because of the large number of 

inputs and outputs, we have only included trajectories for three articulatory coordinates 

(   ,    , and    ) and one acoustic feature        . Predictions from the sGMM 

display a number of unnatural transitions or glitches (see arrows in the figure), which are 

perceptible and have a detrimental effect on synthesis quality. Although the dGMM 

avoids such unnatural transitions by accounting for the dynamics of acoustic features in 

the trajectory optimization stage, it suffers from over-smoothing
17

 effects, which are also 

perceptible and also clearly seen in the figure. By comparison, predictions from the 

DNN follow the target trajectory closely without introducing discontinuities in the 

derivative or over-smoothing. 

 

                                                 

17
 A method known as global variance (Toda et al., 2007) has been suggested as a solution to the over-

smoothing problem in the dGMM. However, the global variance method also increases prediction errors, 

so was not considered in this study as it would distort results from the objective tests.  
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Figure 25: Trajectories of selected acoustic and articulatory features from a typical test 

utterance. The top plot shows the second MFCC predicted by the DNN, sGMM and 

dGMM alongside the target trajectory extracted from the audio recording of the same 

sentence. The bottom plots show the trajectories of a few articulatory input features for 

the same utterance.    : anteroposterior position of the tongue tip,    : height of the 

tongue tip,    : height of the upper lip. 

We evaluated the forward mappings through a series of objective and subjective 

tests. In a first experiment, we compared the DNN against the two GMM mappings 

(sDNN, dGMM) in terms of their mapping accuracy (Mel-Cepstral distortion). Next, we 
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evaluated the effect of tapped-delay length (experiment 2) and network depth 

(experiment 3) on Mel-Cepstral distortion, followed by a comparison of synthesis-time 

(experiment 4). In a final experiment, we compared the best performing DNN and GMM 

through a perceptual listening test.  

6.3.3 Experiment 1: Comparison of DNN vs. GMM  

In the first experiment, we compared the accuracy of the DNN forward mapping 

against the two reference GMM methods. The DNN had a tapped-delay line with 2 delay 

units (a context window size of 20 ms) and two hidden layers of 512 units each. This 

simple architecture was selected to keep the number of model parameters comparable to 

that of the GMMs.  

Figure 26a summarizes the average MCDs of the three methods.  The dGMM 

and DNN models achieve lower Mel-Cepstral distortion than the sGMM mapping.  This 

is consistent with findings from previous studies (Toda et al., 2004; Nakamura et al., 

2006), and shows that exploiting temporal information (as done by the dGMM and 

DNN) provides higher accuracy than a frame-by-frame mapping (sGMM),. More 

importantly, the DNN reduces Mel-Cepstral distortion by 6% compared to the dGMM 

(       , pairwise t-test), indicating that comparable (if not better) accuracy can be 

achieved at a fraction of the synthesis time required by the dGMM.  
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(a) (b) (c) 

Figure 26: (a) Experiment 1: Mel cepstral distortion (MCD) for the DNN, sGMM and 

dGMM mappings. (b) Experiment 2: MCD for the DNN and GMM as a function of the 

input articulatory context window. (c) Experiment 3: MCD for the DNN as a function 

of the number of hidden layers; error bars denote standard errors of means.  

6.3.4 Experiment 2: Context length  

In the second experiment, we trained DNNs with tapped-delay line lengths of 0, 

2, 4, 6 and 8 units, corresponding to temporal window sizes of 0, 20, 40, 60 and 80 ms, 

respectively. In each of these DNNs, we kept the same number of hidden layers and 

hidden units used in the first experiment. Figure 26b summarizes results in terms of the 

Mel-Cepstral distortion, including that of the dGMM as a reference. Regardless of 

context length, the DNNs result in lower Mel-Cepstral distortion than the dGMM, the 

difference being statistically significant except for a context window size of 0 ms (i.e., a 

frame-by-frame mapping). More importantly, the Mel-Cepstral distortion decreases as 

the context window size increases, reaching a minimum with a 60 ms context window –a 

9.8% reduction compared to the dGMM. 
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As part of this experiment we also sought to answer whether the same 

improvements in performance could be achieved by a GMM with a tapped-delay line. 

For this purpose we trained four GMMs with tapped-delay lines of 0, 20, 40 and 60 ms, 

respectively. Results are shown in Figure 26b; GMM mappings had higher Mel-Cepstral 

distortion than the corresponding DNN regardless of context window size. More 

importantly, whereas the DNN is able to take advantage of the added information in the 

tapped-delay line (up to 60 ms), the GMM accuracy decreases markedly for context 

window sizes larger than 20ms. This result may be explained by the fact that the tapped-

delay features tend to be highly correlated, which may lead to near-singular covariance 

matrices in the GMM. 

6.3.5 Experiment 3: Network depth  

In the third experiment, we sought to determine whether the complexity of the 

forward mapping justifies the use of a DNN; a DNN can model complex nonlinear 

functions with fewer parameters than a single-hidden MLP, but requires considerably 

longer training times. To answer this question, we trained four models: a single-layer 

MLP with 1024 hidden nodes, and three DNNs with 2, 4 and 8 hidden layers; the 

numbers of hidden units per layer in the DNN were adjusted so that the total number of 

hidden units remained constant across models (i.e. 1024). The tapped-delay line was 

fixed to 60 ms, the optimal context length found in the previous experiment. The MLP 

was trained using standard back-propagation (Rumelhart et al., 1986).  
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Figure 26c summarizes the average Mel-Cepstral distortion for the four 

architectures; the three DNNs outperformed the MLP (pairwise t-test       ), which 

suggests that a single-layer network is insufficient to model the articulatory-to-acoustic 

mapping. The minimum Mel-Cepstral distortion —a 7% reduction compared to a single-

layer MLP, was obtained for a DNN with 2 hidden layers.   

6.3.6 Experiment 4: Synthesis time  

In the fourth experiment, we compared the synthesis time of the DNN and 

dGMM mappings. Both models were run on a Windows 7 Enterprise machine with an 

Intel Core i7-2600 @3.4 GHz processor; models were implemented and run under 

Matlab v.7.14.  

 On average, the dGMM method required 39 seconds of synthesis time for each 

second of speech, rendering it unsuited for real-time synthesis (results not shown). In the 

case of the DNN, synthesis time depended on the network size, but increased linearly 

with the number of connections in the network. Figure 27a shows the relationship 

between Mel-Cepstral distortion and synthesis time for five DNN structures, three from 

the third experiment (2×512, 4×256 and 8×128 hidden units, 60 ms context) and two 

relatively larger networks (3×512 and 4×512 hidden units) trained specifically for this 

experiment. The largest among them, a DNN with 4 layers of 512 hidden units, required 

838 ms for each second of speech, suitable for real-time synthesis. Smaller networks are 

even more efficient: a DNN with 2 layers of 512 hidden units required only 267 ms for 

each second of speech, and achieved the lowest Mel-Cepstral distortion. 
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(a) (b) 

Figure 27: (a) Experiment 4: Synthesis time of a DNN mapping increases with the size 

of the network. (b) Experiment 5: Pairwise comparison between DNN and dGMM 

synthesis; error bars denote standard errors of means.  

6.3.7 Experiment 5: Subjective assessment  

In the final experiment, we evaluated the best-performing DNN (2×512 hidden 

units and 60 ms context window) against the conventional dGMM of Toda et al. (Toda 

et al., 2004) through a listening test. Our goal was to determine whether the 

improvement in Mel-Cepstral distortion achieved by the DNN (a reduction of 9.8%) was 

perceptually significant.  

For the subjective listening test, we recruited participants through Mechanical 

Turk, Amazon’s online crowdsourcing tool. Participants listened to pairs of synthesis of 

the same sentence (one from the DNN, another from the dGMM) and were asked to 

select the utterance with the best quality in terms of naturalness, distortion, and 

intelligibility. 30 listeners participated in this test, each participant rating 30 pairs of 

utterances. Order of presentation within a pair (DNN vs. dGMM) was randomized to 
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avoid order bias. Shown in Figure 27b, DNN syntheses were rated as more natural than 

dGMM syntheses in 73% of the cases, which is significantly higher than 50% chance 

level (pairwise t-test,        ). This result corroborates the objective comparisons, 

and indicates that the DNN mapping can synthesize utterances of higher perceptual 

quality than the conventional dGMM. 

6.3.8 Discussions on the performance of DNN-based forward mapping 

We have presented a real-time articulatory synthesis method that exploits 

dynamic information in the articulatory trajectories to increase the accuracy of the 

forward mapping. Namely, our approach uses a tapped-delay line to concatenate 

articulatory feature vectors (EMA positions) from nearby frames, and a DNN to map the 

concatenated articulatory input vector into the corresponding acoustic observations 

(MFCCs). We compared the DNN against two GMM-based articulatory synthesizers, 

one that performs a frame-by-frame mapping (sGMM) and one that also incorporates 

speech dynamics (dGMM) as proposed by Toda et al. (2004). As our results show, the 

DNN is able to take advantage of the additional information in the articulatory tapped-

delay line while keeping synthesis time below frame rate, surpassing the accuracy of 

both GMM-based methods through objective evaluations (Mel Cepstral distortion) and 

the subjective quality of the dGMM through listening tests.  

Though GMMs are easier to train than DNNs, our results show they are unable to 

exploit the added temporal information via a tapped-delay line. This is partly due to the 

fact that the number of model parameters in a GMM increases quadratically with the 
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number of input features, which can lead to over-fitting given the limited amount of 

training data. More importantly, tapped-delay features are likely to be correlated since 

they are time-delayed versions of the same signal, which may lead to near-singular 

covariance matrices in the GMMs. Though linear dimensionality reduction techniques 

(e.g., principal components analysis) may be used to decorrelate the input features, 

research in speech recognition (Bao et al., 2012) indicates that such techniques cannot 

compete with the capabilities of DNNs.  

The dGMM and DNN articulatory synthesizers represent two distinct alternatives 

to incorporate speech dynamics. dGMMs can be trained relatively fast, but have long 

synthesis times due to the trajectory optimization post-processing stage; in our 

experiments, each second of speech required an average of 39 seconds of synthesis time 

on a contemporary desktop computer. By contrast, training a DNN is time consuming, 

but this is usually a one-time process that can be done offline. Once trained, the DNN 

has a short synthesis time
18

 (e.g., 267 ms for our best-performing DNN). This makes the 

DNN ideally suited for other real-time applications of articulatory synthesis such as 

silent speech interfaces (Denby et al., 2010).  

After establishing the performance of DNN in forward mapping (within speaker), 

next, we examine whether the DNN articulatory synthesizer can also outperform the 

GMM articulatory synthesizer across speakers, as needed for accent conversion. 

  

                                                 

18
 Although the DNN uses a tapped-delay line that extends 30 ms into the future, this latency time (     

ms) is considered acceptable for real-time communication (ITU-T, 2003). 
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6.4 Evaluation of foreign accent conversion with DNN 

We evaluated the DNN and GMM accent conversion models on an experimental corpus 

of parallel recordings of articulatory and audio signal from a native and a non-native 

speaker of American English (Felps et al., 2012) collected via Electromagnetic 

articulography (EMA). Both speakers recorded the same set of 344 sentences, out of 

which 294 sentences were used for training the model and the remaining 50 sentences 

were used only for testing. See section 5.2 for more detail on the corpus, processing and 

feature extraction. 

The baseline GMMs were trained with 128 mixture components (full 

covariance), whereas the DNNs contained 2 layers of 512 hidden nodes, and a 60ms 

tapped-delay input (seven 10-ms frames: 3 previous, 1 current, 3 future). We have found 

these GMM and DNN structures to perform reliably in forward mapping tasks (sections 

5.3 and 0 ). 

In order to evaluate the DNN-based accent conversion method, we synthesized 

test sentences in five experimental conditions –see Table 6: (i) the proposed accent 

conversion method (     ), (ii) articulatory resynthesis by driving the DNN with L2 

articulators (     ), (iii) accent conversion using the GMM-based method, as described 

in section 5.1        , (iv) MFCC compression of L2 speech (      ), and (v) L1 

utterances modified to match the vocal tract length (Sundermann et al., 2003) and pitch 

range of L2 (       ). We evaluated these conditions through a series of subjective 

listening tests on Mturk, Amazon’s crowd sourcing tool. To qualify for the study, 

participants were required to reside in the United States and pass a screening test that 
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consisted of identifying various American English accents, including Northeast, 

Southern, and General American.  

Table 6: Experimental conditions for the listening tests. 

Experimental 

conditions 

Aperiodicity 

and energy 

Pitch Articulators Spectrum Forward-

mapping 

model 

      L1 L1 scaled 

to L2 

L1 mapped to 

L2 

L2 forward 

mapping 

DNN 

      L2 L2 L2 L2 forward 

mapping 
DNN 

      L1 L1 scaled 

to L2 

L1 mapped to 

L2 

L2 forward 

mapping 

GMM 

       L2 L2 N/A L2 MFCC N/A 

        L1 L1 scaled 

to L2 

N/A L1 warped to 

L2 

N/A 

    

6.5 Results 

6.5.1 Intelligibility assessment 

In a first listening test we assessed the intelligibility of the proposed 

method        . We asked a group of participants (N=15) to transcribe 46 test 

utterances from      , and also rate the (subjective) intelligibility          of those 

utterances using a seven-point Likert scale (1: not intelligible at all, 3: somewhat 

intelligible, 5: quite a bit intelligible, and 7: extremely intelligible). From the 

transcription, we calculated word accuracy        as the ratio of the number of 

correctly-identified words to the total number of words in the utterance. To compare the 
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intelligibility of the proposed method against the baseline method, we used the same set 

of test sentences in section 5.3.2. 

Figure 28 shows the word accuracy and the subjective intelligibility ratings for 

the two accent-conversion models (      and      ). The DNN model had higher 

scores                         than the baseline GMM model           

            , and the differences were statistically significant                    

                                 . 

  
                  (a)              (b) 

Figure 28: (a) Word accuracy and (b) subjective intelligibility ratings for       and 

     . 

6.5.2 Assessment of non-native accentedness 

In a second set of listening tests, we examined the ability of the DNN to reduce 

the perceived non-native accent of L2 utterances. Participants were asked to listen to 

pairs of utterances –one from the accent conversion         method, the other an 
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articulatory resynthesis of the L2 utterance         for the same sentence, and select 

the most native-like. The articulatory resynthesis         was used instead of the 

original L2 recording to account for losses in acoustic quality due to the articulatory-

synthesis step in the accent conversion process, which are known to affect accent 

perception (Felps et al., 2009). As before, we tested on the same subset of 15 test 

sentences from section 5.3.3 so that the results could be compared. 

 
 

 

(a) (b) 

Figure 29: Subjective evaluation of accentedness. Participants selected the most native-

like utterances (a) between       vs. L2 articulatory resynthesis, and (b) between 

      vs.      . 

Participants listened to 30 pairs of utterances (15             pairs and 15 

            pairs) presented in random order to account for ordering effects. As 

shown in Figure 29a, participants rated       more native-like than L2 articulatory 

resynthesis in              of the sentences, which is significantly higher        

             than the 50% chance level. This result shows that the proposed DNN-

based method is effective in reducing perceived non-native accents.  
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Next, we compared the DNN accent conversion method against the baseline 

GMM method. For this purpose, a different group of participants listened to the 30 pairs 

of utterances (15             pairs and 15              pairs) presented in 

random order. Shown in Figure 29b,       utterances were rated as more native-like 

than       utterances in                of the sentences, which is also significantly 

higher than the 50% chance level                      .  

6.5.3 Voice identity assessment 

In a third and final listening experiment we evaluated if the DNN accent-

conversion method was able to preserve the voice identity of the L2 speaker. For this 

purpose, participants were asked to compare the voice similarity between pairs of 

utterances, one from      , the other from        (MFCC compression of the original 

L2 recordings). As a sanity check, we also included pairs of utterances from        and 

       , the latter a simple guise of L1 utterances to match the pitch range and vocal 

tract length of the L2 speaker. The utterances in each pair were linguistically different, 

and presentation order was randomized for conditions within each pair and for pairs of 

conditions. Participants (    ) rated 40 pairs, 20 from each group (             , 

               ) randomly interleaved, and were asked to (1) determine if the 

utterances were from the same or a different speaker and (2) rate how confident they 

were in their assessment using a seven-point Likert scale (1: not confident at all, 3: 

somewhat confident, 5: quite a bit confident, and 7: extremely confident). The responses 

and their confidence ratings were then combined to form a voice similarity score       
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ranging from    (extremely confident they are different speaker) to    (extremely 

confident they are from the same speaker).  

 

Figure 30: Average pairwise voice similarity scores.                  from section 

5.3.4. 

Figure 30 shows the boxplot of average     between the pairs of experimental 

conditions. Participants were ‘quite’ confident (                  that the        

and       were from the same speaker, suggesting that the method successfully 

preserved the voice-identity of L2 speaker. The     was also comparable        

              to the     between       and                           

reported for the baseline GMM method in previous section. The participants were also 

‘quite’ confident that (                   the        and         were from 

different speakers, corroborating our prior finding (section 5.3.4) that a simple guise of 

L1 utterances is not sufficient to match the voice of the L2 speaker. These findings 

suggest that the run-time capabilities of the DNN did not compromise its ability to 

preserve the voice identity. 
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6.6 Conclusion 

We have presented an articulatory method for real-time modification of non-

native accents. The approach uses a DNN with a 60ms tapped-delay input to map L2 

articulatory trajectories into L2 acoustic observations (MFCCs).  Driving the DNN with 

articulatory trajectories from an L1 speaker—normalized to the L2 articulatory space— 

results in speech that captures the linguistic gestures of the L1 speaker and the voice 

quality of the L2 speaker.  

We evaluated the DNN accent-conversion method against the baseline GMM 

method. Accent conversions with the DNN were more intelligible and were perceived as 

more native-like than those using the GMM. A possible explanation for the difference in 

perceived accentedness between both methods is that acoustic quality affects the 

perception of non-native accents (i.e., the lower the quality, the higher the non-native 

rating) (Felps et al., 2009); although both methods use articulatory synthesis, the 

comparison in section 6.3.7 above shows that the DNN tends to synthesize speech of 

higher acoustic quality than the GMM.  
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7. ACOUSTIC VS. ARTICULATORY-BASED STRATEGIES

In the previous section, we showed how a statistical parametric articulatory 

synthesizer can be driven by the native articulators to generate speech with native like 

accent but the voice of the non-native speaker. Our focus on articulatory-strategies for 

foreign accent conversion in this dissertation work had two main motivations. First, the 

voice-independent representation of linguistic gestures via articulatory data facilitates 

transferring accents from one speaker to another without affecting the voice-quality. 

Secondly, the articulatory-based approach has a theoretical basis on the modulation 

theory of speech (Traunmüller, 1994), in which the articulatory synthesizer for the non-

native speaker acts as the voice quality carrier, and the articulatory data from a native 

speaker modulates the synthesizer generating speech with native linguistic gestures. 

However, the current technologies to collect articulatory data such as EMA, X-ray 

Microbeam, MRI are not only expensive and invasive but also limited to the laboratory 

setting. In contrast, our acoustic-based strategy is cost effective and more practical since 

it uses audio recordings only. In addition, the acoustic-based method using cross-speaker 

statistical mapping was also found effective in reducing the perceived non-native accents 

while preserving the voice-quality of the non-native speaker. Given the accessibility of 

the acoustic-based strategy, here, we set out to compare its performance in reducing the 

perceived non-native accents against the theoretically-sound articulatory-based strategy. 
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7.1 Comparison between the articulatory and acoustic-based strategies  

To determine whether the accent conversion is more effective in the acoustic 

space or in the articulatory space, we compare the two statistical methods presented in 

this work: for acoustic-based strategy, we choose the GMM-based spectral mapping 

method as described in section 4.1, and for the articulatory-based strategy, we choose the 

method described in section 5.1. Both methods use GMMs to model the joint distribution 

of the input and output features, and estimate the maximum likelihood of trajectories of 

acoustic parameters considering their dynamics and the global variance. Despite the 

similarity in the models, direct comparison of accent conversions from these two 

methods is not possible because of the difference in their synthesis quality. As discussed 

earlier, differences in acoustic quality are known to interact with the perception of non-

native accents (Felps et al., 2009).  

The main reason behind the differences in the acoustic quality between the two 

methods is inherent to the synthesizers used in these methods. In the articulatory-based 

method, the synthesis is driven using articulatory data (six fleshpoint trajectories 

captured via EMA) from the reference native utterance; whereas the synthesizer in 

acoustic-based method is driven by the acoustic features (MFCCs in our case). EMA 

being less informative of the phonetic information that the acoustic features, the quality 

of EMA driven synthesizer in articulatory-based method is lower than the acoustic 

driven synthesizer of acoustic-based method. In order to account for differences in 

acoustic quality between the two methods, in this study, we build an equivalent 

articulatory synthesizer for the acoustic-based accent conversion method. 
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7.2 Equivalent articulatory synthesizer for the acoustic-based strategy 

As described in section 4.1, given the sequence of acoustic feature vectors       

from an utterance of the reference native speaker (L1), the acoustic-based conversion 

method estimates the trajectories of acoustic feature vectors       for the non-native 

speaker (L2) using a GMM-based cross-speaker spectral mapping            . The 

objective of the equivalent articulatory synthesizer is to have the same effect of 

segmental modification caused by the cross-speaker spectral mapping             

but using the L1 articulatory features as the input features from the same utterance 

instead of the acoustic features. In other words, we seek to build a cross-speaker forward 

mapping (          ) such that for a given L1 utterance (with the sequence of 

articulatory features,     and the sequence of acoustic features,    ), the estimated 

sequence of L2 acoustic feature vectors,         is the equivalent to the one given by the 

cross-speaker spectral mapping        —see Figure 31. In the following, we describe a 

method to build such cross-speaker forward mapping. 
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(a) (b) 

Figure 31: (a) cross-speaker spectral mapping for acoustic-based accent conversion, 

and (b) a cross-speaker forward mapping for the equivalent articulatory synthesis of 

acoustic-based accent conversion. 

7.2.1 Training the cross-speaker forward mapping 

A two-step process for training the cross-speaker forward mapping     is shown 

in Figure 32. In the first step, we estimate the L2 acoustic features for each L1 utterance 

in the training set using the cross-speaker spectral mapping function             of 

the acoustic-based method. Note that, the resulting sequence of estimated acoustic 

feature vectors        for each training sentence has the linguistic gestures of the 

reference L1 utterance but the voice-quality of the L2 speaker. In the second step, we 

build the GMM-based cross-speaker forward mapping by training it on the joint 

distribution of the L1 articulatory features     and the estimated L2 acoustic 

features        for the same. 

 

 

Cross-speaker 
spectral mapping

L1 MFCC

L2 MFCC

Cross-speaker 
forward mapping
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Figure 32: Two-step process for building a cross-speaker forward mapping,  

           . 

Once the cross-speaker forward mapping is available, for a given test utterance 

from the native speaker, we can estimate a sequence of equivalent L2 acoustic feature 

vectors. We then convert the estimated acoustic feature vectors into the waveform using 

the STRAIGHT synthesis engine.   

7.3 Experimental validation 

We performed a series of subjective listening tests to compare the accent 

conversions using the equivalent articulatory synthesis of the acoustic-based method 

against the articulatory-based accent conversion. For this comparative study, we used the 

corpus described in section 5.2, which contains audio and articulatory recordings from a 

native speaker and a non-native speaker. As described in that same section, a set of 294 

sentences were used for training and the remaining 50 sentences for testing purpose. 

Similarly, STRAIGHT was used to extract acoustic features. After feature extraction, the 

acoustic feature vectors consisted of         ; and the articulatory feature vectors 

consisted of six EMA positions,      , nasality and        . 

Step 1: estimate

Step 2: train
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To match the number of mixture components of the GMMs with that of the 

articulatory-based method, we also trained the cross speaker forward mappings with 128 

mixture components.  

7.3.1 Experimental conditions  

We considered four experimental conditions for the listening tests: (i) the 

proposed equivalent articulatory synthesis of acoustic-based accent conversion        , 

(ii) the articulatory-based accent conversion using the method described in section 5.1 

       , (iii) MFCC compression of L2 speech (      ), and (iv) guise of L1 

utterances to match the vocal tract length and the pitch range of L2 (       ). See 

section 5.2.1 for more details on the last three conditions       ,        

and          .  

7.4 Results 

We performed three listening experiments to compare       and       in 

terms of the perceived reduction in non-native accents, intelligibility, and the voice-

similarity with the L2 speaker. In the first experiment, we performed a forced pairwise 

comparison test to identify the most native-like accent conversion. In the second 

experiment, we evaluated the intelligibility of      , and compared against the 

intelligibility of      . In the third and final experiment, we compared if the       

preserves the voice-similarity of the L2 speaker.  
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As before, the participants for all the listening tests were recruited through 

Mechanical Turk, Amazon’s online crowdsourcing tool; —see section 5.2.2 for more 

detail. 

7.4.1 Non-native accent evaluation 

In a first listening experiment we sought to compare the perceived reduction of 

non-native accents between the two foreign accent conversion strategies. For this 

purpose, participants were asked to listen to a pair of utterances of the same sentence 

from       and      , and select the most native-like among them. We tested on the 

same subset of 15 test sentences in section 5.3.3 so that the results could be compared. 

 
Figure 33: Subjective evaluation of accentedness. Participants selected the most native-

like utterances between       vs.      . 

Participants listened to 30 pairs of utterances (15             pairs and 15 

            pairs) presented in random order to account for ordering effects. As 
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Figure 33 shows, the participants rated       more native-like than       in 

             of the sentences, which is significantly higher               

       than the 50% chance level. This result shows that the acoustic-based strategy is 

more effective than articulatory-based strategy in reducing non-native accents.  

7.4.2 Intelligibility assessment  

In a second experiment, we assessed the intelligibility of       to compare 

against the similar assessment of       in section 5.3.2. Following the same approach 

described in section 5.3.2, a group of native speakers of American English (N=15 each) 

were asked to transcribe the 46 test utterances
19

 from the experimental condition      . 

From the transcription, we calculated word accuracy        as the ratio of the number of 

correctly identified words to the total number of words in the utterance. Participants also 

rated the (subjective) intelligibility of the utterances (      ) using a 7-point Likert scale 

(1: not intelligible at all, 3: somewhat intelligible, 5: quite a bit intelligible, and 7: 

extremely intelligible).  

 

 

                                                 

19
 Four of 50 test sentences for the L2 speaker had missing EMA data and were removed from the 

analysis.  
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(a) (b) 

Figure 34: (a) Word accuracy and (b) subjective intelligibility ratings for       and 

     . 

Figure 34 shows the word accuracy and intelligibility ratings for       against 

that of the articulatory-based accent conversion         from section 5.3.2. The results 

show that the accent conversions in the acoustic domain (                         

     ) were rated significantly more intelligible                  than the 

conversion in the articulatory domain                                 . Since 

accent conversions in both the groups are driven by the same articulatory input features, 

the higher intelligibility ratings for       than       may be due to higher reduction in 

the perceived non-native accentedness in      .  

7.4.3 Voice identity assessment  

In a third and final listening experiment, we evaluated if the articulatory 

equivalent synthesis of acoustic-based foreign accent conversion was able to preserve 
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the voice identity of the L2 speaker. For this purpose, participants were asked to 

compare the voice similarity between pairs of utterances, one from       , the other 

from       . As a sanity check we also included the pairs of utterances from        

and        , the latter being a simple guise of L1 utterances that matches the pitch range 

and vocal tract length of the L2 speaker. As in the prior voice-similarity tests, the two 

sentences on each pair were linguistically different, and the presentation order was 

randomized for conditions within each pair and for pairs of conditions. Participants 

(    ) rated 40 pairs, 20 from each group (             ,                ) 

randomly interleaved, and were asked to (i) determine if the utterances were from the 

same or a different speaker and (ii) rate how confident they were in their assessment 

using a seven-point Likert scale (1: not confident at all, 3: somewhat confident, 5: quite a 

bit confident, and 7: extremely confident). The responses and their confidence ratings 

were then combined to form a voice similarity score       ranging from    (extremely 

confident they are different speaker) to    (extremely confident they are from the same 

speaker). 
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Figure 35: Average pairwise voice similarity scores.              
  from section 

6.5.3. 

Figure 35 shows the boxplot of average     between pairs of experimental 

conditions. Participants were ‘quite’ confident (                  that the       

and      were from the same speaker, suggesting that the equivalent articulatory 

synthesis for the acoustic-based strategy method successfully preserved the voice-

identity of L2 speaker. The     was also found comparable               

               to the     between      and                         

reported for the articulatory-based method in section 5.3.4. Moreover, the participants 

were also ‘quite’ confident that (                   the       and 

        were from different speakers, corroborating our prior finding (section 5.3.4) that 

a simple guise of L1 utterances is not sufficient to match the voice of the L2 speaker. 

7.5 Discussions 

In this section we compared two foreign accent conversion strategies based on 

acoustic-based and articulatory-based modifications. Since the articulatory-based 
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method is driven by articulatory features, which is a partial representation of the vocal 

tract and the less informative of the phonetic variability than the acoustic features, the 

direct comparison between the two methods in terms of perceived non-native accents 

can be biased. To avoid such issue, we built an equivalent articulatory synthesizer for the 

acoustic-based method, so that both methods use articulatory features from a reference 

native speaker as the carrier of the native linguistic gestures. Perceptual listening tests 

indicate that the acoustic-based strategy (the equivalent articulatory synthesis) is more 

effective in reducing perceived non-native accents than the articulatory-based strategy. 

The acoustic-based accent conversion was also found more intelligible than the 

articulatory-based conversion. These findings make the acoustic-based methods even 

more appealing for computer aided pronunciation tool than the expensive articulatory-

based methods. 

After accounting for the differences in the representation of the input linguistic 

gestures, the two strategies differed only in the way accent-related differences between 

L1 and L2 are addressed. In the articulatory-based strategy, accent modification is 

performed in articulatory domain only using Procrustes transforms of EMA pellet 

positions to account for differences in the vocal tract geometry of the two speakers. On 

the other hand, in the acoustic-based strategy a GMM-based mapping of the acoustic 

feature spaces is used. Our finding suggests that the accent modification is more 

effective in acoustic space, but further study is required to verify if the comparatively 

lower reduction in perceived non-native accents is due to the partial representation of 

vocal tract. Even after the inclusion of voicing and nasality features, the EMA data does 
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not have the same level of phonetic information as the acoustic features. Having 

articulatory representations such as rt-MRI (Narayanan et al., 2011), which contains the 

3D image of the complete vocal tract, may improve the performance of articulatory-

based strategies. 
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8. CONCLUSIONS 

8.1 Summary 

We developed statistical parametric techniques to generate speech with native 

accent but the voice of a non-native speaker. The techniques were developed for both the 

acoustic and articulatory domains. In the proposed acoustic-based method, we estimate 

the equivalent L2 acoustic features from the acoustic features of a reference native 

utterance using a cross-speaker spectral mapping. The GMM-based mappings were 

trained on the joint distribution of L1 and L2 acoustic feature vectors paired with each 

other based on acoustic similarity, unlike the force-aligned pairs used in conventional 

voice conversion. The results show a perceivable reduction in non-native accents. Most 

importantly, the method was also able to preserve the voice-identity of the non-native 

speaker unlike existing vocoding approaches (Felps et al., 2009; Aryal and Gutierrez-

Osuna, 2013). In the articulatory-based methods, we used articulatory data from a native 

reference utterance to drive the statistical parametric articulatory synthesizer build for a 

non-native speaker. Unlike unit-selection used in the only existing articulatory-based 

approach (Felps et al., 2012), the statistical parametric synthesizer has lower data 

requirement and enough flexibility to generate novel sounds. We evaluated two 

statistical parametric synthesis models for articulatory-based accent conversion. First, we 

used GMM-based articulatory synthesizer because of their proven flexibility to 

interpolate novel sounds, and found it effective in reducing the non-native accents. 

However, the GMM-based method uses an expensive trajectory optimization stage, 
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which considers the dynamics of acoustic features to reduce spectral discontinuities. 

Therefore, we proposed a new articulatory synthesis model based on deep neural 

networks (DNN). The DNN-based synthesizer exploits the temporal nature of speech 

using the contextualized articulatory features as the input and obviates the need for the 

expensive trajectory optimization of the estimated acoustic features. The run-time of a 

Matlab implementation of the DNN-based synthesizer in a typical modern-day personal 

computer was found to be lower than the frame-rate making the method suitable for real-

time conversion. From listening tests, we also found that the DNN-based method had 

higher reduction of perceived non-native accents and superior acoustic than the GMM-

based method.  

Given the high expense and the difficulty of collecting articulatory data, we 

compared the articulatory-based strategy against a more practical acoustic-based 

strategy. Because of their differences in acoustic quality known to affect the perceptual 

evaluation of non-native accentedness, we built an equivalent articulatory synthesizer for 

the acoustic-based accent conversion method. In a listening test comparing the GMM-

based articulatory accent conversion against the output of the equivalent articulatory 

synthesizer of the acoustic-based strategy, we found the acoustic-based strategy more 

effective in reducing the perceived non-native accent. Given the lower cost of the 

acoustic-based accent conversion method, these finding make them even more appealing 

for the computer aided pronunciation training tools. However, further study is required 

to investigate if the non-native accent-reduction in the articulatory-based strategy can 

surpass the performance of the acoustic-based method, if a complete representation of 
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the vocal-tract anatomy such as rt-MRI (Narayanan et al., 2011) were used, instead of 

the partial representation used in this study. 

8.2 Main contributions 

The main contributions of this dissertation work are as follows:  

 Development of an acoustic-based foreign accent conversion method immune to 

the ‘third-speaker’ problem and the difficulties in aligning native and non-native 

speech —the main limitations of the existing vocoding-based acoustic methods. 

 Creation of an articulatory technique to transpose accents from a reference L1 

speaker to an L2 speaker by driving a statistical parametric articulatory 

synthesizer for the L2 speaker with the articulatory gestures from the L1 speaker.  

 Development of a DNN-based articulatory parametric synthesizer suitable for 

real-time accent conversion.  

 Demonstration that the exploitation of temporal nature of speech in 

contextualized articulatory input via deep neural networks is more 

computationally efficient than using trajectory optimization of estimated acoustic 

features in GMM-based synthesis. We also demonstrated that the efficiency 

comes without compromising the model’s ability to reduce perceived non-native 

accents. 

 Designed a method to compare the acoustic-based strategy against the less 

practical but theoretically sound articulatory-based strategy in terms of their 

ability to reduce perceived non-native accents, accounting for their differences in 

acoustic quality known to impact the accent perception.  
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 Demonstrated that the acoustic-based strategy is more effective in reducing non-

native accents than the articulatory-based strategy. 

8.3 Future Work 

8.3.1 Large scale validation 

Due to the rarity of parallel articulatory recordings from L1 and L2 speakers, we 

validated our methods in a single L2 speaker. As the articulatory recordings from L2 

speakers becomes more accessible, these methods need to be validated for multiple L2 

speakers with different native languages, speaking styles and levels of proficiency. An 

interesting new resource in this regard is the Marquette University Electromagnetic 

Articulography Mandarin Accented English (EMA-MAE), which contains a large EMA 

corpus from multiple Mandarin second-language speakers of American English (Ji et al., 

2014). This new resource makes it possible to validate our articulatory synthesis and 

accent conversion methods across multiple speakers. 

8.3.2 Performance improvement  

There are several ways we can improve the performance of the foreign accent 

conversion methods described in this work. In the case of our articulatory-based 

methods, the synthesis quality was affected due to the partial representation of vocal 

tract via EMA position data. Future work may extend this study using the more 

informative articulatory representation provided by real-time magnetic resonance 

imaging (rt-MRI) (Narayanan et al., 2011). In comparison to EMA, which only captures 
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a few fleshpoints in the frontal oral cavity, rt-MRI provides information about the entire 

vocal tract, from lips to glottis, which may result in more intelligible and native-like 

accent conversions. Similarly, collecting supplementary data on tongue palate closure 

via electropalatography may also improve intelligibility, especially in the case of stops. 

Another possible approach is to transform the articulatory measurements into 

constriction-based representation such as TVs because they are known to have less 

variability than EMA pellet positions(McGowan, 1994; Mitra et al., 2011). 

Phonetic information can be used to further improve the performance of foreign 

accent conversion. The phonetic information adds prior to the cross-speaker articulatory 

mappings and the articulatory-to-acoustic mappings, the main building blocks of the 

articulatory-based methods. For example, cross-speaker articulatory mappings may 

cause a lingua-alveolar stop to become fricative due to a small error in the tongue-tip 

height. Such errors can be minimized if the mappings are aware of the characteristics of 

the target phone. In the case of forward mappings, Felps et al. (2010) have shown that 

the accuracy of articulatory-to-acoustic mappings can be increased by using phone-

specific weights for the EMA pellet positions of critical articulators. Furthermore, 

language specific knowledge can help optimize both the mappings to reduce errors that 

have high functional load; e.g., contrast between initial /p/ and /b/ has relatively higher 

functional load compared to contrast between final /t/ and /d/ (Jesse, 2012). 

The naturalness of the accent conversions in this work is also affected by the 

smoothing effects inherent to statistical mappings. The estimation model incorporates 

global variances to reduce the smoothing effect but future work may explore the use of 
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modulation spectrum-based post filtering which is known to improve naturalness in 

voice conversion (Takamichi et al., 2014). Similarly, the exemplar-based voice 

conversion technique (Takashima et al., 2012) known for their close to human-like 

acoustic quality can be adapted for accent conversion. 

At present, our approach uses L1 aperiodicity spectra and therefore does not 

consider speaker individuality cues that may be contained in the L2 aperiodicity 

(Kawahara, 1997). Thus, further improvements in voice similarity may be obtained by 

replacing the L1 aperiodicity with its L2 equivalent. One possibility is to estimate L2 

aperiodicity from the estimated L2 spectra by exploiting the relation between both 

signals (Silén et al., 2011).  

8.3.3 Application of foreign accent conversion methods in computer aided 

pronunciation training 

The main motivation behind the development of foreign accent conversion 

methods is their application in computer-aided pronunciation training for non-native 

learners. Studies have shown that the pronunciation training is more effective when the 

teacher’s voice matches the learner’s (Nagano and Ozawa, 1990; Probst et al., 2002; 

Bissiri et al., 2006). Due to the ease of modifying prosody, the effect of using the 

learner’s own voice (instead of finding a teacher with similar voice) in training prosody 

has been well studied (Nagano and Ozawa, 1990), leading towards the development of 

automatic prosody modification techniques for the computer assisted pronunciation 

training tools (Sundström, 1998). However, the effect of using the learner’s own voice in 
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training segmental aspects (e.g. vowel quality) of accents has not been studied. With the 

foreign accent conversion methods developed in this work, it is possible to evaluate the 

effect of using the learner own utterances following the reduction of non-native accents 

in training the segmental aspects of accent. 

8.3.4 Extension to other articulatory speech modification problems 

Using articulatory speech synthesis has been suggested as one of the promising 

techniques for expressive synthesis (Lee et al., 2005; Schröder, 2009). Schröder (2009) 

suggests using the physical synthesis model of Birkholz (2007) that is capable of 

generating intelligible speech from a ‘score’ representation of articulatory movement. As 

an alternative, we propose adapting the articulatory techniques developed in this work to 

modify emotions. Our data-driven approach is more practical than the physical model if 

the expressive synthesizer is built for a specific speaker. Similarly, our articulatory 

techniques can also be extended to generate signing voices (Birkholz, 2007). 
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APPENDIX A: FORWARD MAPPING WITH DEEP NETWORKS 

As illustrated in Figure 36a, the DNN consists of an input layer, an output layer, 

and multiple layers of hidden units between them. In this particular topology, units in a 

layer are fully connected to units in the immediate layer above it, but there is no 

connection among units within a layer. The network contains a tapped-delay line at the 

input that allows the model to consider not only the current articulatory configuration    

but also that of nearby frames, resulting in the input vector 

   {     ⁄            ⁄  }, where   is the number of delay units in the tapped-delay 

line. When    , the input vector    becomes the articulatory feature vector   , and the 

DNN performs a frame-by-frame mapping. Increasing the value of   allows the DNN to 

include additional temporal context to aid in predicting the acoustic observation   .  

We train the DNN using the conventional two-stage hybrid recipe (Hinton, 

2012). During the first stage, model parameters (for all but the last layer) are learned in 

an unsupervised fashion; this pre-training stage makes it more likely to find a good local 

optimum than using randomly initialized parameters (Erhan et al., 2010). During the 

second stage, the pre-trained model (including the last layer) is fine-tuned in a 

supervised fashion via back-propagation (Rumelhart et al., 1986).  
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(a) (b) 

Figure 36: (a) Forward mapping via a deep neural network (DNN) with a tapped-delay 

line input. (b) The Gaussian-Bernoulli deep Boltzmann machine as an undirected 

graphical model with real valued visible units   and binary hidden units  . 

Pre-training the network as a generative model  

During pre-training the network is operated as a Gaussian-Bernoulli deep 

Boltzmann machine (GDBM), an energy-based generative model that allows each unit to 

receive both top-down and bottom-up signals (Cho et al., 2013). Unlike a generic deep 

Boltzmann machine (Salakhutdinov and Hinton, 2009), which has binary units in all of 

its layers, the GDBM has Gaussian units in the visible layer, making it better suited to 

handle real-valued inputs.  

Consider the simplified GDBM with multiple hidden layers shown in Figure 36b, 

where   represents a visible layer of real valued input variables, and 

{                   } represent the   hidden layers of binary variables. Following 

(Cho et al., 2013), the energy of the GDBM at state                     is defined by:  
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where                     is the set of model parameters consisting of biases   and 

standard deviations   for visible units; biases      for hidden layer  ; weights   for the 

connections between the visible and the first hidden layer, and weights      for the 

connections between the units in the  -th and  +1-th hidden layer.     and      are the 

number of units in the visible layer and the  -th hidden layer, respectively. Given this 

energy function, the corresponding probability for state                          can 

be computed as: 

 (                       | )

 
 

    
   (                             ) 

(32) 

where      is the normalizing factor over all possible values of 

{                       . This relation between the probability and the energy of a 

state is designed such that the model rarely reaches high energy states. The conditional 

probability of the input variable,    (a Gaussian unit), given the hidden units      is 

defined by the normal distribution:  
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whereas the conditional probabilities of hidden units are defined by 
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(35) 

where        represents the logistic sigmoid function                 .  

Thus, a GDBM can be thought of as a generative graphical model whose 

conditional probabilities, defined by equations (33)-(35), depend on a set of model 

parameters  . These model parameters are then trained such that the graphical model 

represents the distribution of input vectors in the training set. Namely, being an energy-

based model, the GDBM is trained to reduce the energy of configurations in the training 

data and increase the energy of any other configurations that could be generated by the 

model. The energy of a configuration is related to its probability, as given in equation 

(32). Thus, the training process is equivalent to performing stochastic gradient ascent on 

the log-likelihood of the training data, which can be shown (Hinton and Sejnowski, 

1983) to lead to the parameter update equations:  
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where        is the data-dependent expectation, calculated over the conditional 

distribution             , and       is a sample in the training set. In contrast,         

is the model’s expectation, calculated over the distribution         . Exact calculation 

of these expectations is intractable because the time required grows exponentially with 

the number of hidden units –see equations (33)-(35). Fortunately, practical 

approximations of these expectations are possible. In particular, we use the mean-field 

approximation to calculate data-dependent expectation (Salakhutdinov and Hinton, 

2009) and a variation of Markov-chain Monte-Carlo sampling to calculate model’s 

expectation (Cho et al., 2013).  

In the mean-field approximation of the expectation over the data distribution, 

visible units are first clamped to a training sample. Then, the hidden units are described 

as having the probability   of being active, which is iteratively updated until 

convergence with the fixed-point iteration:  
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with boundary conditions given by   
         

  and          . For each sample 

      in the training set, we calculate the corresponding set of  . The data-dependent 

expectations in equations (36)-(39) are then approximated by replacing   by the 

corresponding   and then averaging over all the training samples.  

The model’s expectancy is calculated using a Markov-chain Monte-Carlo method 

(MCMC). Given the conditional probability distributions, we sample both visible and 

hidden variables using MCMC and use these samples to calculate the model 

expectations in equations (36)-(39). Specifically, we use the parallel tempering approach 

of Cho et al. (Cho et al., 2013) to maintain multiple persistent Gibbs sampling chains. 

The persistent chains (Tieleman, 2008) help reduce the computational cost by updating 

only a few samples from each chain at each model parameter update instead of starting a 

new chain. Usually, modifying only a few samples in the chains is sufficient to represent 

the updated model because the updates in parameters are too small to make a significant 

change in the probability distribution. However, in cases where the model distribution 

changes significantly, persistent chains may not be able to evolve to represent the 

updated probability distribution. The parallel tempering approach helps alleviate this 

problem by maintaining multiple chains at different temperatures. In high temperature 

chains samples are more likely to explore the state space, whereas in low temperature 

chains samples follow the target model distribution.  

Training a GDBM as described above is a slow learning process, particularly for 

hidden layers remote from the visible units. We speed up the process by following the 
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greedy layer-wise method commonly used for deep Boltzmann machines (Salakhutdinov 

and Hinton, 2009). 

Building a DNN from a trained GDBM 

Once the underlying GDBM is trained, we build a DNN as follows. First, a layer 

of output units is added to the topmost hidden layer of the GDBM, one output unit for 

each corresponding acoustic feature. Connection weights between the units at the 

topmost hidden layer and the newly added output layer are initialized randomly. The 

resulting multilayer neural network is then discriminatively fine-tuned using standard 

back-propagation (Rumelhart et al., 1986).  
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APPENDIX B: MECHANICAL TURK TESTS SAMPLES 

In this appendix, we have listed samples of the web-based forms used in 

subjective evaluation of foreign accent conversions. We collected the listeners’ 

responses using these forms via an online crowdsourcing platform hosted by Amazon 

services, Mechanical Turk. These samples are (i) the qualification task asking 

participants to classify the American Accents, (ii) a typical intelligibility evaluation task, 

(iii) a forced pairwise comparison of perceived non-native accentedness, (iv) a typical 

voice-similarity evaluation task, and (v) a task for the subjective evaluation of acoustic 

quality. 
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Figure 37: The pre-qualification test to identify the American accents. This 

qualification test was used to select the native speakers of American English for the 

perceptual listening tests. 

 

  



 

163 

 

 

 

Figure 38: The intelligibility assessment test. The participants were asked to transcribe 

the audio clips and rate their intelligibility. 

 

  



 

164 

 

 

 

Figure 39: Forced pairwise comparison of non-native accentedness. The participants 

listened to the two clips of the same sentence and selected the one that sounded the 

most native-like. Participants were also asked to transcribe the sentence to ensure that 

they listen to the sentence. 
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Figure 40: The voice-similarity test asks the participants to listen to a pair of 

linguistically different utterances separated by a beep and answer (i) if the utterances 

were from the same speaker or not, and (ii) how confident they are on their decision.  
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Figure 41: Subjective evaluation of the acoustic quality. The participants were asked to 

rate the utterances in the MOS scale (Bad:1, Poor:2, Fair:3 Good:4, Excellent:5). Rated 

samples were provided for the reference.  
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APPENDIX D: PSI STATFAC TOOLBOX 

The PSI StatFAC toolbox is a Matlab library developed at the Texas A&M 

University PSI lab. The library provides the Matlab functions and scripts required to 

perform foreign accent conversion (FAC) based on statistical parametric approaches 

developed in this dissertation work. The library was developed in Matlab (2012b) and it 

requires an in-house toolbox ConFAC (Felps et al., 2012), and third party toolboxes, 

namely, DEEPMAT (Cho, 2013), STRAIGTH (Kawahara, 1997), and NETLAB 

(Nabney, 2002). 

INSTALLATION AND OVERVIEW 

Installation involves copying the library folder and adding all its directories and 

subdirectories to the Matlab path.  The toolbox contains the four main subdirectories: (i) 

exampleScripts, which contains the sample scripts to load and preprocess training data, 

(ii) acsout_based, which contains the functions required for acoustic-based accent 

conversion, (iii) art_based, which contains the functions required for articulatory-based 

foreign accent conversion, and (iv) thirdpartytoolboxes, which contains the required 

third-party toolboxes. All the required third-party toolboxes are already included in the 

StatFAC distribution. To install ConFAC, please refer to the ConFAC user manual for 

instructions.  

For acoustic-based accent conversion, the toolbox provides all the functionalities 

needed to perform FAC given a speech corpus from a native (L1) and a non-native (L2) 
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speaker. The corpus should contain the audio (‘.wav’) and the transcription files (‘.lab’) 

for all the utterances organized in two folders, one each for L1 and L2. A sample dataset 

is provided in the subdirectory testData. 

In case of the articulatory-based accent conversion, the toolbox relies on 

ConFAC to access the corpus, to extract features, and to generate waveform. ConFAC 

also comes with the parallel speech corpus from two speakers, a native speaker of 

American English (MAB) and a native speaker of Spanish (RGO). The corpus is used in 

the examples provided with this manual to illustrate the StatFAC functionalities 

available for articulatory-based accent conversion. The corpus contains the audio 

recordings, articulatory recordings collected via electromagnetic articulography (EMA), 

and the phonetic transcriptions
20

 –see (Felps, 2011) for more details on the corpus. In 

order to use a corpus from a new speaker, please refer to ConFAC user manual for 

instructions on adding a new speaker. 

EXAMPLES 

In this document, we describe the accent conversion functionalities (e.g., training 

the models, estimating acoustic features) and the auxiliary functionalities (e.g., loading 

corpus, extracting features, and generating waveforms) available in StatFAC using 

examples. These examples illustrate the processes involved in two different foreign 

accent conversion methods supported by StatFAC. First, we describe the acoustic-based 

conversion using the audio recordings from a given pair of native and non-native 

                                                 

20
 Phonetic transcriptions provide the nasality feature in articulatory-based methods. 
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speaker. Secondly, we describe the articulatory-based methods using the corpus 

provided with the ConFAC distribution as an example. 

Acoustic-based foreign accent conversion 

We now explain the steps required to perform the acoustic-based accent 

conversion using the cross-speaker statistical mapping. The overall process consists of 

six steps. In the first step, we load the speech corpus from the L1 and L2 speakers, and 

prepare the training dataset. In the second step, we extract global variances (GVs) from 

the training utterances for each speaker. In the third step, we extract the mean and 

variance of         for both the speakers so that it can be used in modifying L1 pitch 

trajectories to match the range of the L2 speaker. In the fourth step, we pair the acoustic 

feature vectors from the L1 speaker with that of the L2 speaker; these pairings are used 

to train cross-speaker statistical mapping. For accent conversion, we pair the frames 

based on their acoustic similarity. StatFAC also provides a function to force-align the 

parallel utterances. The force-aligned frames are used to train the mappings for 

conventional voice conversion. In the fourth step, we train a GMM-based cross-speaker 

mapping model. Finally, we use the model to generate speech from a test L1 utterance. 

We now describe these five steps with examples. 

Step 1: Prepare the training dataset 

The data preparation step takes the audio recordings from the native and non-

native speaker, extracts acoustic features (MFCCs), and creates training datasets as 

required for the subsequent steps. A sample script for data preparation 
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(exampleScripts/dataPreparationAcoustMethod.m) is provided with the toolbox. 

StatFAC requires the audio (‘.wav’) and the transcription files (‘.lab’) for all the 

utterances from the native (L1) and non-native (L2) speaker to be organized in two 

folders, one for each speaker. The audio and the transcription file for the same utterance 

should share the same name with ‘.wav’ and ‘.lab’ extensions, respectively. 

Furthermore, the label file should be in HTK format with the phoneme labels based on 

CMU pronunciation dictionary. The script extracts STRAIGHT parameters for each 

audio file. From the STRAIGHT spectrogram, the script, then, extracts the acoustic 

feature vector for each frame sampled at 200Hz. The extracted parameters for an 

utterance are saves as Matlab data file with the same filename but with the extension 

‘.mat’ in the same folder. 

For the training purpose, the script requires a list of training utterances from the 

two speakers. The list is a text file containing the filenames of the parallel utterances 

(without ‘.wav’ extension) in two columns. The first column contains the filenames of 

the training utterances from L1 and the second column contains the filenames of the 

same sentence for L2. A typical list of training utterances is available in the subdirectory 

testData. Given such a list, for each speaker, the script assembles the non-silent frames 

(in sequential order) from the training utterances and stores in variables tr_MFCC, 

tr_logf0 tr_uniqPhLblsID, and tr_utt_id; each row of these variables respectively 

corresponds to the          (excluding the frame energy      ) and their 

derivatives, log of fundamental frequency        , phone label of the frame, and the 

index to the utterance to which the frame belongs. The index to the utterance is required 
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to identify the pair of parallel utterances from the two speakers while performing forced-

alignment. These variables are saved for subsequent use. In the given example script, the 

variables corresponding to the training utterances for L2 are saved in 

trDataset_L2.mat, whereas, the variables for L1 are saved in trDataset_L1.mat. 

Step 2: Extract Global Variance (GV) 

We extract the GVs for the L2 speaker using only the training utterances. The 

example below shows the commands to load the training data and calculate the GVs for 

each utterance in the training set. We save the extracted GVs for future use. 

 

% Load the training data for the L2 speakers  

L2TrData = load('trDataset_L2'); 

[trUttGVs] = calculateGVs(L2TrData); 

save trUttGVsL2.mat trUttGVs; 

 

Step 3: Calculate parameters for pitch-modification 

We now calculate the pitch-modification parameters (pitchXForm) that is 

required to convert pitch trajectory from the L1 utterances to match the range of the L2 

speaker. 

 

L2TrData = load('trDataset_L2'); 

L1TrData = load('trDataset_L1'); 

 

% pitch transformation from L1 to L2 pitch range 

isInputPitch= 1; % input is pitch not the articulatory feature 

vectors 

[pitchXForm] = calculatePitchTransform(L1TrData.tr_logf0, 

L2TrData.tr_logf0, isInputPitch); 

save pitchXForm_L1toL2 pitchXForm; 
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Step 4: Pair frames from L1 and L2 

In this step, the frames from L1 and L2 training utterances are paired with each 

other to create a pairs of acoustic feature vectors. These pairings are used model the joint 

probability distribution of the acoustic feature vectors from both the speakers using 

Gaussian mixtures. StatFAC offers two types of pairing techniques: (i) force aligned 

pairing of the parallel utterances using dynamic time warping (DTW), and (ii) pairing 

based on the acoustic similarity between the L1 and L2 frames, following vocal tract 

length normalization (VTLN). While the former pairing technique leads to the 

conventional voice conversion, the latter leads to accent conversion. The example script 

below generates pairs of frames from L2 and L1 training utterances. Sample commands 

for both the pairing techniques are given.  

 

% Load the preprocessed training data for the two speakers,  

L1TrData = load('trDataset_L1'); 

L2TrData = load('trDataset_L2'); 

% forced time-aligned pairing of parallel utterances using DTW 

[L1MFCC_FA, L2MFCC_FA] = framePairing_dtw(L1TrData, L2TrData); 

% acsoutic similarity based frame pairing between two speakers 

[L1MFCC_AcSim,L2MFCC_AcSim]=framePairing_acSim(L1TrData,L2TrData); 

 

Step 5: Train the cross-speaker statistical mapping 

We train the cross-speaker statistical mappings from the L1 speaker to the L2 

using a Gaussian mixture model (GMM). Given the set of frame-pairs from both the 

speakers, we train a GMM on the joint distribution of acoustic feature vectors using the 

function, trainGMM. In the example below, we train two models, one for traditional 

voice conversion, and another for the accent conversion. The models are saved as Matlab 

data files so that they can be used during the conversion process. 
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% Traditional VC –pairings based on DTW aligned utterances 

[mix,options, errlog]= trainGMM(L1MFCC_FA, L2MFCC_FA); 

save gmmModel_crossSpeakerSpectralL1toL2_timealigned.mat mix options 

errlog 

 

% AC -pairings based on acoustic similarity 

[mix,options, errlog]= trainGMM(L1MFCC_AcSim, L2MFCC_AcSim); 

save gmmModel_crossSpeakerSpectralL1toL2_acPair.mat mix options 

errlog 

 

Step 6: Generate accent modified speech 

Given the trained GMM, and a reference test utterance from L1, we generate 

speech signal that has the linguistic gestures of the test utterance (L1), but the voice-

quality of L2. The script below shows how we extract the sequence of L1 acoustic 

feature vectors (test_MFCC) for a test utterance and calculate the sequence of 

equivalent L2 acoustic features.  

 

% load the acoustic features for a given test L1 utterance  

testUtt=load('C:\acsouticMappingMethod\L1\mab_a0_0221_STRAIGHT.mat'); 

test_MFCC = testUtt.MFCC(:,[2:25, 27:50]); 

nonSilentFrames = find(~isnan(testUtt.uniquePhLblID)); 

 

 

% Load the GMM model, pitch modification parameters, and the GVs 

load gmmModel_crossSpeakerSpectralL1toL2_acPair.mat; 

load pitchXForm_L1toL2.mat 

load L2TrainUttGVs.mat % GVs from L2 training utterances 

 

% Generate equivalent L2 acoustic features.  

% Two estimation methods are available.  

% First option estimates acoustic features ignoring their dynamics, 

% also known as minimum mean square error criteria 

[targetMFCCs_MMSE] =spectralMapping_MMSE(test_MFCC,mix) 

wavform = genWavform(testUtt, targetMFCCs_MMSE, pitchXForm); 

 

% The second option estimates the maximum likelihood trajectory 

% considering the dynamics and the GVs of the estimated  

% acoustic features.  

[targetMFCCs_GV_EM] = spectralMapping_MLTrajGV(test_MFCC, mix,              

                              trUttGVs , nonSilentFrames);  

wavform = genWavform(testUtt, targetMFCCs_GV_EM, pitchXForm); 
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Articulatory-based foreign accent conversion 

In articulatory-based accent conversion, we first build an articulatory synthesizer 

for the L2 speaker, then, drive the synthesizer with the articulatory data from a reference 

native speaker. StatFAC supports two types of articulatory synthesizer, a GMM-based 

and a DNN-based. In this example we perform accent conversion using both synthesis 

models using the articulatory-acoustic corpus available in ConFAC. We generate speech 

for RGO (the L2 speaker in the corpus) with linguistic gestures (accents) from the 

reference utterance from MAB (the L1 speaker in the corpus). For the purpose of 

illustrating StatFAC functionalities, we have broken down the process for articulatory-

based accent conversion in six main steps. In the first step, we load the corpus, extract 

the features, and prepare the training dataset. In the second step, we calculate the pitch 

parameters for L1 and L2 speakers. In the third step, we calculate the GVs of the training 

utterances for the L2 speaker. In the fourth step, we train the forward mappings for L2 

articulatory synthesizers. We present training method for both GMM-based and DNN-

based forward mappings. In the fifth step, we train the articulatory mappings from L1 to 

L2. Finally, we generate speech with linguistic gestures (accent and style) of a given L1 

test utterance, but the voice of the L2 speaker.  

Step 1: Prepare the training dataset 

In the following, we describe the data preparation script provided with the 

toolbox. The script (i) loads the corpus provided with ConFAC, (ii) extracts articulatory 

and acoustic features for all the utterances, and (iii) generates a training dataset for the 

subsequent processes. The corpus consists of (i) STRAIGHT parameters, (ii) phonetic 
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transcription with timing, and (iii) the drift-corrected trajectories (x-y coordinates in the 

midsagittal cross-section of the vocal tract) of the EMA pellets for all the utterances. 

Once the corpus is loaded using ConFAC tools, we create a training dataset from the 

given set of training sentences. A sample script 

(exampleScripts/dataPreparationArtMethod.m) is provided with the toolbox to create the 

training dataset for RGO and MAB. 

The script extracts acoustic feature vectors (      to        and their deltas) 

and the articulatory feature vectors (EMA pellet coordinates,        , frame energy, and 

nasality) for all the non-silent frames in the training utterances. For each speaker, the 

script saves all the features extracted from the training utterances in a Matlab data file. 

Specifically, the sample script saves the training data for RGO and MAB in the Matlab 

datafiles named trDataset_RGO_MFCC_EMA.mat and trDataset_MAB_MFCC_EMA.mat, 

respectively.  

After extracting the features for the training utterances from both the speaker, the 

script also calculates the phonetic centroids of the EMA pellet positions for both the 

speakers in the corpus. These phonetic landmarks (phMeanMAB and phMeanRGO) are 

required to train the cross-speaker articulatory mappings. In the case of DNN-based 

synthesizer, we need the contextualized articulatory input features generated by passing 

the sequence of articulatory feature vector through a tapped delay line. For this purpose, 

the script generates two Matlab variables train_x_multFrames and 

train_y_multFrames consisting of contextualized articulatory feature vectors and the 

corresponding acoustic feature vectors, respectively.  



 

178 

 

Step 2: Calculate parameters for pitch-modification 

For each speaker, we calculate the mean and standard deviations of       (log of 

fundamental frequency) using all the voiced frames in the training dataset. These 

parameters (stored in a Matlab variable pitchXForm) are required to convert pitch 

trajectory in a reference native utterance to match the range of the non-native speaker. 

 

rgoTrData = load('trDataset_RGO_MFCC_EMA'); 

mabTrData = load('trDataset_MAB_MFCC_EMA'); 

 

% pitch transformation from MAB to RGO pitch range 

isInputPitch=0; % input is not pitch  

[pitchXForm] = calculatePitchTransform(mabTrData, rgoTrData, 

isInputPitch) 

save pitchXFormMAB2RGO pitchXForm; 

 

Step 3: Extract Global Variance (GV) 

We now extract the GVs for the L2 speaker (RGO) using only the training 

utterances. We save the extracted GVs for the conversion step. The example script is 

given below. 

 

% Load the training data for RGO  

rgoTrData = load('trDataset_RGO_MFCC_EMA'); 

[trUttGVs] = calculateGVs(rgoTrData); 

save trUttGVsRGO.mat trUttGVs 

 

Step 4: Train the forward mappings for L2 synthesizer 

GMM-based forward mappings 

To train the GMM-based forward mapping for the L2 speaker (RGO in our case), 

first, we load the training set consisting of the articulatory and acoustic feature vectors. 

Then, we use the function named trainGMM to model the joint distribution of articulatory 

and acoustic feature vectors using GMMs.  
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rgoTRData = load('trDataset_RGO_MFCC_EMA'); 

[mix, options, errlog] = trainGMM(rgoTRData.tr_Art, 

rgoTRData.tr_MFCC);  

save gmmFWDMapRGO.mat mix options errlog 

 

 

DNN-based forward mappings 

A sample script to train DNN-based forward mappings for the L2 speaker is 

given below. Given the articulatory feature vectors(train_x_multFrames) and the 

corresponding acoustic feature vectors (train_y_multFrames) contextualized using a 

tapped-delay line, function trainDNN trains the DNN model and returns the model 

parameters (M and D). Model parameters along with the size of the tapped-delay line 

used to generate training set are saved for future use.  

 

Load dnnTrainingData.mat % load the input and output feature vectors 

[M,D, zScoreNormParams] = trainDNN(train_x_multFrames, 

train_y_multFrames);  

save dnnFwdMapRGO.mat M D zScoreNormParams nOfFrames ; 

 

Step 5: Train the cross-speaker articulatory mappings 

The phonetic centroids of the EMA pellet positions for RGO and MAB are used 

to train the articulatory mapping function. With these phonetic centroids as the 

landmarks, we train six Procrustes transforms, one for each EMA pellet. The transforms 

are later used to register the trajectories of EMA pellet positions in the reference MAB 

utterances into RGO’s articulatory space. The sample script shows the Matlab 

commands involved in the process.  

 

xSpkArtTransforms = trainArtMapping(phMeanMAB, phMeanRGO );  

% train L1 EMA ->L2 EMA transforms 

save xSpkArtTransforms_mab2rgo.mat xSpkArtTransforms 
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Step 6: Generate accent modified speech 

During the conversion stage, we load a reference test utterance from MAB, the 

trained articulatory mapping transforms, and the pitch modification parameters. 

 

% load ConFAC utterance for a test sentence from L1 speaker (say 

utt5) 

load mabdbUtt.mat  

test_utt_id = 5; % the test utterance not used in training  

test_mab_u = copyobj(utt_24_all(test_utt_id)); 

test_mab_u.spk.who = 'mab'; 

test_mab_u.spk.mainDir='C:\databases\mab_ema\mat\'; % the directory 

where the STRAIGHT extracted features for the speaker ‘mab’ in ConFAC 

are stored. 

 

load xSpkArtTransforms_mab2rgo.mat; % loads xSpkArtTransforms 

load pitchXFormMAB2RGO.mat; % loads pitchXForm 

 

Since the conversion process for the GMM and DNN-based approach are 

different, we describe them separately. 

GMM-based approach 

In the GMM-based approach, we use acGMM function to generate the accent 

conversion. Given a test utterance from MAB (test_mab_u), the function generates 

corresponding speech signal in RGO’s voice. The function uses trajOption parameter 

to select one of the three estimation technique supported in StatFAC —the three possible 

options are explained in the example below.  

 

% Trajectory optimization Options  

trajOption = 3; % 1: minimum mean square error estimation,  

             %      i.e., frame-by-frame mapping  

                % 2: maximum likelihood considering dynamics, 

                % 3: maximum likelihood trajectory considering the 

                % dynamics and GVs of estimated acoustic features 

 

load gmmFWDMapRGO.mat % load the forward-mapping model 

[wavform, MFCCs] = acGMM(test_mab_u,xSpkArtTransforms, mix,   

                            pitchXForm,trajOption, trUttGVs ); 
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DNN-based approach  

In the DNN-based approach, we use acDNN function to perform accent 

conversion. As shown in the example given below, the function is used to generate 

speech signal in the voice of RGO but the linguistic gestures of the given reference test 

utterance from MAB, test_mab_u.  

 

load dnnFwdMapRGO.mat;  % M, D, zScoreNormParams and nOfFrames 

mu_gv = mean(trUttGVs); % mean GV from training utterances 

[wavform, MFCCs] = acDNN(test_mab_u,xSpkArtTransforms, nOfFrames,   

                        M,D,zScoreNormParams, pitchXForm, mu_gv); 

 

 


