4,468 research outputs found

    A New Approach to Modeling Early Warning Systems for Currency Crises : can a machine-learning fuzzy expert system predict the currency crises effectively?

    Get PDF
    This paper presents a hybrid model for predicting the occurrence of currency crises by using the neuro fuzzy modeling approach. The model integrates the learning ability of neural network with the inference mechanism of fuzzy logic. The empirical results show that the proposed neuro fuzzy model leads to a better prediction of crisis. Significantly, the model can also construct a reliable causal relationship among the variables through the obtained knowledge base. Compared to the traditionally used techniques such as logit, the proposed model can thus lead to a somewhat more prescriptive modeling approach towards finding ways to prevent currency crises.

    "A New Approach to Modeling Early Warning Systems for Currency Crises : can a machine-learning fuzzy expert system predict the currency crises effectively?"

    Get PDF
    This paper presents a hybrid model for predicting the occurrence of currency crises by using the neuro fuzzy modeling approach. The model integrates the learning ability of neural network with the inference mechanism of fuzzy logic. The empirical results show that the proposed neuro fuzzy model leads to a better prediction of crisis. Significantly, the model can also construct a reliable causal relationship among the variables through the obtained knowledge base. Compared to the traditionally used techniques such as logit, the proposed model can thus lead to a somewhat more prescriptive modeling approach towards finding ways to prevent currency crises.

    Forecasting Long-Term Government Bond Yields: An Application of Statistical and AI Models

    Get PDF
    This paper evaluates several artificial intelligence and classical algorithms on their ability of forecasting the monthly yield of the US 10-year Treasury bonds from a set of four economic indicators. Due to the complexity of the prediction problem, the task represents a challenging test for the algorithms under evaluation. At the same time, the study is of particular significance for the important and paradigmatic role played by the US market in the world economy. Four data-driven artificial intelligence approaches are considered, namely, a manually built fuzzy logic model, a machine learned fuzzy logic model, a self-organising map model and a multi-layer perceptron model. Their performance is compared with the performance of two classical approaches, namely, a statistical ARIMA model and an econometric error correction model. The algorithms are evaluated on a complete series of end-month US 10-year Treasury bonds yields and economic indicators from 1986:1 to 2004:12. In terms of prediction accuracy and reliability of the modelling procedure, the best results are obtained by the three parametric regression algorithms, namely the econometric, the statistical and the multi-layer perceptron model. Due to the sparseness of the learning data samples, the manual and the automatic fuzzy logic approaches fail to follow with adequate precision the range of variations of the US 10-year Treasury bonds. For similar reasons, the self-organising map model gives an unsatisfactory performance. Analysis of the results indicates that the econometric model has a slight edge over the statistical and the multi-layer perceptron models. This suggests that pure data-driven induction may not fully capture the complicated mechanisms ruling the changes in interest rates. Overall, the prediction accuracy of the best models is only marginally better than the prediction accuracy of a basic one-step lag predictor. This result highlights the difficulty of the modelling task and, in general, the difficulty of building reliable predictors for financial markets.interest rates; forecasting; neural networks; fuzzy logic.

    Autoregressive time series prediction by means of fuzzy inference systems using nonparametric residual variance estimation

    Get PDF
    We propose an automatic methodology framework for short- and long-term prediction of time series by means of fuzzy inference systems. In this methodology, fuzzy techniques and statistical techniques for nonparametric residual variance estimation are combined in order to build autoregressive predictive models implemented as fuzzy inference systems. Nonparametric residual variance estimation plays a key role in driving the identification and learning procedures. Concrete criteria and procedures within the proposed methodology framework are applied to a number of time series prediction problems. The learn from examples method introduced by Wang and Mendel (W&M) is used for identification. The Levenberg–Marquardt (L–M) optimization method is then applied for tuning. The W&M method produces compact and potentially accurate inference systems when applied after a proper variable selection stage. The L–M method yields the best compromise between accuracy and interpretability of results, among a set of alternatives. Delta test based residual variance estimations are used in order to select the best subset of inputs to the fuzzy inference systems as well as the number of linguistic labels for the inputs. Experiments on a diverse set of time series prediction benchmarks are compared against least-squares support vector machines (LS-SVM), optimally pruned extreme learning machine (OP-ELM), and k-NN based autoregressors. The advantages of the proposed methodology are shown in terms of linguistic interpretability, generalization capability and computational cost. Furthermore, fuzzy models are shown to be consistently more accurate for prediction in the case of time series coming from real-world applications.Ministerio de Ciencia e Innovación TEC2008-04920Junta de Andalucía P08-TIC-03674, IAC07-I-0205:33080, IAC08-II-3347:5626

    Forecasting Mortality Rate Using a Neural Network with Fuzzy Inference System

    Get PDF
    Various methods have been developed to improve mortality forecasts. The authors proposed a neuro-fuzzy model to forecast the mortality. The forecasting of mortality is curried out by an ANFIS model which uses a first order Sugeno-type FIS. The model predicts the yearly mortality in a one step ahead prediction scheme. The method of trial and error was used in order to decide the type of membership function that describe better the model and provides the minimum error. The output of the models is the next year�s mortality. The results were presented and compared based on three different kinds of errors: RMSE, MAE, and MAPE. The ANFIS model gives good results for the case of two gbell membership functions and 500 epochs. Finally, the ANFIS model gives better results than the AR and ARMA model.ANFIS, Forecasting, Mortality, Modeling.

    Forecasting Unemployment Rate Using a Neural Network with Fuzzy Inference System

    Get PDF
    Greece is a low-productivity economy with an ineffective welfare state, relying almost exclusively on low wages and social transfers. Failure to come to terms with this reality hampers both the appropriateness of EU recommendations and the Greek government's capacity to deal with unemployment. Rather than finding a job in a family business or through relationship contacts, young people stay unemployed. Nor can people move back to their village of origin so easily. The underground economy, and the mass of small companies which characterize the Greek economy are booming, on paper. One in three members of the workforce are "self-employed", compared to one in seven in the EU as a whole. (International Viewpoint) An unemployed person in Greece is 2,15 times more likely to suffer poverty than a person in employment. Yet in Greece there are perhaps even more influential factors in determining increased risk of poverty. Thus while unemployment is a crucial factor in the risk of poverty, it is neither the only nor the most significant factor. The paper presents a new technique in the field of unemployment modeling in order to forecast unemployment index. Techniques from the Artificial Neural Networks and from fuzzy logic have been combined to generate a neuro-fuzzy model. The input is a time series. Classical statistics measures are calculated in order to asses the model performance. Further the results are compared with an ARMA and an AR model.forecasting, neural network, unemployment

    The cross-association relation based on intervals ratio in fuzzy time series

    Get PDF
    The fuzzy time series (FTS) is a forecasting model based on linguistic values. This forecasting method was developed in recent years after the existing ones were insufficiently accurate. Furthermore, this research modified the accuracy of existing methods for determining and the partitioning universe of discourse, fuzzy logic relationship (FLR), and variation historical data using intervals ratio, cross association relationship, and rubber production Indonesia data, respectively. The modifed steps start with the intervals ratio to partition the determined universe discourse. Then the triangular fuzzy sets were built, allowing fuzzification. After this, the FLR are built based on the cross association relationship, leading to defuzzification. The average forecasting error rate (AFER) was used to compare the modified results and the existing methods. Additionally, the simulations were conducted using rubber production Indonesia data from 2000-2020. With an AFER result of 4.77%<10%, the modification accuracy has a smaller error than previous methods, indicating  very good forecasting criteria. In addition, the coefficient values of D1 and D2 were automatically obtained from the intervals ratio algorithm. The future works modified the partitioning of the universe of discourse using frequency density to eliminate unused partition intervals

    Fuzzy Forecast Based on Fuzzy Time Series

    Get PDF
    This chapter mainly uses fuzzy time series for interval prediction and long-term significance level analysis. In this study, the Taiwan Shipping and Transportation Index (Taiwan STI) is used to illustrate the prediction process. Nine steps have been used to establish the interval prediction of the Taiwan Shipping and Transportation Index (Taiwan STI), and ΔS is called a long-term significance level (up/down/stable) is used to illustrate the long-term prediction significance level. By means of interval prediction and long-term prediction significance level, the future trends for this index and more internal messages related to this index can be provided to relevant researchers

    Development of Accuracy for the Weighted Fuzzy Time Series Forecasting Model Using Lagrange Quadratic Programming

    Get PDF
    Limitation within the WFTS model, which relies on midpoints within intervals and linguistic variable relationships for assigning weights. This reliance can result in reduced accuracy, especially when dealing with extreme values during trend to seasonality transformations. This study employs the Weighted Fuzzy Time Series (WFTS) method to adjust predictive values based on actual data. Using Lagrange Quadratic Programming (LQP), estimated weights enhance the WFTS model. MAPE assesses accuracy as the model analyzes monthly IHSG closing prices from January 2017 to January 2023.The MAPE value of 0.61% results from optimizing WFTS with LQP. It utilizes a deterministic approach based on set membership counts in class intervals, continuously adjusting weights during fuzzification, minimizing the deviation between forecasted and actual data values.The Weighted Fuzzy Time Series Forecasting Model with Lagrange Quadratic Programming is effective in forecasting, indicated by a low MAPE value. This method evaluates each data point and adjusts weights, offering reliable investment insights for IHSG strategies.
    corecore