3,540 research outputs found

    A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series

    Get PDF
    Author name used in this publication: Chun-Tian Cheng2009-2010 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    River stage prediction based on a distributed support vector regression

    Get PDF
    Author name used in this publication: K. W. Chau2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Flood Forecasting Using Machine Learning Methods

    Get PDF
    This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Wate

    Predicting complex system behavior using hybrid modeling and computational intelligence

    Get PDF
    “Modeling and prediction of complex systems is a challenging problem due to the sub-system interactions and dependencies. This research examines combining various computational intelligence algorithms and modeling techniques to provide insights into these complex processes and allow for better decision making. This hybrid methodology provided additional capabilities to analyze and predict the overall system behavior where a single model cannot be used to understand the complex problem. The systems analyzed here are flooding events and fetal health care. The impact of floods on road infrastructure is investigated using graph theory, agent-based traffic simulation, and Long Short-Term Memory deep learning to predict water level rise from river gauge height. Combined with existing infrastructure models, these techniques provide a 15-minute interval for making closure decisions rather than the current 6-hour interval. The second system explored is fetal monitoring, which is essential to diagnose severe fetal conditions such as acidosis. Support Vector Machine and Random Forest were compared to identify the best model for classification of fetal state. This model provided a more accurate classification than existing research on the CTG. A deep learning forecasting model was developed to predict the future values for fetal heart rate and uterine contractions. The forecasting and classification algorithms are then integrated to evaluate the future condition of the fetus. The final model can predict the fetal state 4 minutes ahead to help the obstetricians to plan necessary interventions for preventing acidosis and asphyxiation. In both cases, time series predictions using hybrid modeling provided superior results to existing methods to predict complex behaviors”--Abstract, page iv

    Potential of support-vector regression for forecasting stream flow

    Get PDF
    Vodotok je važan za hidrološko proučavanje zato što određuje varijabilnost vode i magnitudu rijeke. Inženjerstvo vodnih resursa uvijek se bavi povijesnim podacima i pokušava procijeniti prognostičke podatke kako bi se osiguralo bolje predviđanje za primjenu kod bilo kojeg vodnog resursa, na pr. projektiranja vodnog potencijala brane hidroelektrana, procjene niskog protoka, i održavanja zalihe vode. U radu se predstavljaju tri računalna programa za primjenu kod rješavanja ovakvih sadržaja, tj. umjetne neuronske mreže - artificial neural networks (ANNs), prilagodljivi sustavi neuro-neizrazitog zaključivanja - adaptive-neuro-fuzzy inference systems (ANFISs), i support vector machines (SVMs). Za stvaranje procjene korištena je Rijeka Telom, smještena u Cameron Highlands distriktu Pahanga, Malaysia. Podaci o dnevnom prosječnom protoku rijeke Telom, kao što su količina padavina i podaci o vodostaju, koristili su se za period od ožujka 1984. do siječnja 2013. za podučavanje, ispitivanje i ocjenjivanje izabranih modela. SVM pristup je dao bolje rezultate nego ANFIS i ANNs kod procjenjivanja dnevne prosječne fluktuacije vodotoka.Stream flow is an important input for hydrology studies because it determines the water variability and magnitude of a river. Water resources engineering always deals with historical data and tries to estimate the forecasting records in order to give a better prediction for any water resources applications, such as designing the water potential of hydroelectric dams, estimating low flow, and maintaining the water supply. This paper presents three soft-computing approaches for dealing with these issues, i.e. artificial neural networks (ANNs), adaptive-neuro-fuzzy inference systems (ANFISs), and support vector machines (SVMs). Telom River, located in the Cameron Highlands district of Pahang, Malaysia, was used in making the estimation. The Telom River’s daily mean discharge records, such as rainfall and river-level data, were used for the period of March 1984 – January 2013 for training, testing, and validating the selected models. The SVM approach provided better results than ANFIS and ANNs in estimating the daily mean fluctuation of the stream’s flow
    corecore