29,739 research outputs found

    Forecasting Human Dynamics from Static Images

    Full text link
    This paper presents the first study on forecasting human dynamics from static images. The problem is to input a single RGB image and generate a sequence of upcoming human body poses in 3D. To address the problem, we propose the 3D Pose Forecasting Network (3D-PFNet). Our 3D-PFNet integrates recent advances on single-image human pose estimation and sequence prediction, and converts the 2D predictions into 3D space. We train our 3D-PFNet using a three-step training strategy to leverage a diverse source of training data, including image and video based human pose datasets and 3D motion capture (MoCap) data. We demonstrate competitive performance of our 3D-PFNet on 2D pose forecasting and 3D pose recovery through quantitative and qualitative results.Comment: Accepted in CVPR 201

    Stochastic Prediction of Multi-Agent Interactions from Partial Observations

    Full text link
    We present a method that learns to integrate temporal information, from a learned dynamics model, with ambiguous visual information, from a learned vision model, in the context of interacting agents. Our method is based on a graph-structured variational recurrent neural network (Graph-VRNN), which is trained end-to-end to infer the current state of the (partially observed) world, as well as to forecast future states. We show that our method outperforms various baselines on two sports datasets, one based on real basketball trajectories, and one generated by a soccer game engine.Comment: ICLR 2019 camera read

    Anticipating Visual Representations from Unlabeled Video

    Full text link
    Anticipating actions and objects before they start or appear is a difficult problem in computer vision with several real-world applications. This task is challenging partly because it requires leveraging extensive knowledge of the world that is difficult to write down. We believe that a promising resource for efficiently learning this knowledge is through readily available unlabeled video. We present a framework that capitalizes on temporal structure in unlabeled video to learn to anticipate human actions and objects. The key idea behind our approach is that we can train deep networks to predict the visual representation of images in the future. Visual representations are a promising prediction target because they encode images at a higher semantic level than pixels yet are automatic to compute. We then apply recognition algorithms on our predicted representation to anticipate objects and actions. We experimentally validate this idea on two datasets, anticipating actions one second in the future and objects five seconds in the future.Comment: CVPR 201

    Forecasting People Trajectories and Head Poses by Jointly Reasoning on Tracklets and Vislets

    Full text link
    In this work, we explore the correlation between people trajectories and their head orientations. We argue that people trajectory and head pose forecasting can be modelled as a joint problem. Recent approaches on trajectory forecasting leverage short-term trajectories (aka tracklets) of pedestrians to predict their future paths. In addition, sociological cues, such as expected destination or pedestrian interaction, are often combined with tracklets. In this paper, we propose MiXing-LSTM (MX-LSTM) to capture the interplay between positions and head orientations (vislets) thanks to a joint unconstrained optimization of full covariance matrices during the LSTM backpropagation. We additionally exploit the head orientations as a proxy for the visual attention, when modeling social interactions. MX-LSTM predicts future pedestrians location and head pose, increasing the standard capabilities of the current approaches on long-term trajectory forecasting. Compared to the state-of-the-art, our approach shows better performances on an extensive set of public benchmarks. MX-LSTM is particularly effective when people move slowly, i.e. the most challenging scenario for all other models. The proposed approach also allows for accurate predictions on a longer time horizon.Comment: Accepted at IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2019. arXiv admin note: text overlap with arXiv:1805.0065

    Context-Aware Trajectory Prediction

    Full text link
    Human motion and behaviour in crowded spaces is influenced by several factors, such as the dynamics of other moving agents in the scene, as well as the static elements that might be perceived as points of attraction or obstacles. In this work, we present a new model for human trajectory prediction which is able to take advantage of both human-human and human-space interactions. The future trajectory of humans, are generated by observing their past positions and interactions with the surroundings. To this end, we propose a "context-aware" recurrent neural network LSTM model, which can learn and predict human motion in crowded spaces such as a sidewalk, a museum or a shopping mall. We evaluate our model on a public pedestrian datasets, and we contribute a new challenging dataset that collects videos of humans that navigate in a (real) crowded space such as a big museum. Results show that our approach can predict human trajectories better when compared to previous state-of-the-art forecasting models.Comment: Submitted to BMVC 201
    • …
    corecore