696 research outputs found

    Motion control and vibration suppression of flexible lumped systems via sensorless LQR control

    Get PDF
    This work attempts to achieve motion control along with vibration suppression of flexible systems by developing a sensorless closed loop LQR controller. Vibration suppression is used as a performance index that has to be minimized so that motion control is achieved with zero residual vibration. An estimation algorithm is combined with the regular LQR to develop sensorless motion and vibration controller that is capable of positioning multi degrees of freedom flexible system point of interest to a pre-specified target position with zero residual vibration. The validity of the proposed controller is verified experimentally by controlling a sensorless dynamical system with finite degrees of freedom through measurements taken from its actuator

    Sensorless torque/force control

    Get PDF
    Motion control systems represent a main subsystem for majority of processing systems that can be found in the industrial sector. These systems are concerned with the actuation of all devices in the manufacturing process such as machines, robots, conveyor systems and pick and place mechanisms such that they satisfy certain motion requirements, e.g., the pre specified reference trajectories are followed along with delivering the proper force or torque to the point of interest at which the process occurs. In general, the aim of force/torque control is to impose the desired force on the environment even if the environment has dynamical motion

    Sensorless action-reaction-based residual vibration suppression for multi-degree-of-freedom flexible systems

    Get PDF
    This paper demonstrates the feasibility of controlling motion and vibration of a class of flexible systems with inaccessible or unknown outputs through measurements taken from their actuators which are used as single platforms for measurements, whereas flexible dynamical systems are kept free from any attached sensors. Based on the action reaction law of dynamics, the well-known disturbance observer is used to determine the incident reaction forces from these dynamical systems on the interface planes with their actuators. Reaction forces are considered as feedback-like signals that can be used as alternatives to the inaccessible system outputs. The sensorless action reaction based motion and vibration control technique is implemented on a flexible system with finite modes and all results are verified experimentally

    Optimal motion control and vibration suppression of flexible systems with inaccessible outputs

    Get PDF
    This work addresses the optimal control problem of dynamical systems with inaccessible outputs. A case in which dynamical system outputs cannot be measured or inaccessible. This contradicts with the nature of the optimal controllers which can be considered without any loss of generality as state feedback control laws for systems with linear dynamics. Therefore, this work attempts to estimate dynamical system states through a novel state observer that does not require injecting the dynamical system outputs onto the observer structure during its design. A linear quadratic optimal control law is then realized based on the estimated states which allows controlling motion along with active vibration suppression of this class of dynamical systems with inaccessible outputs. Validity of the proposed control framework is evaluated experimentally

    Estimation based PID controller-sensorless wave based technique

    Get PDF
    This paper presents a sensorless estimation algorithm for estimating °exible system parameters, dynamics and externally applied forces or torques due to system interaction with the environment. The proposed algorithm makes it possible to design a chain of observers that require measuring actuator's current and velocity along with performing two off-line experiments that do not require any additional measurement from the flexible system. The output of these observers are estimates of the system parameters, estimates of the system dynamics in con¯guration, motion and acceleration level. Eventually, the estimated positions are used to control the motion and vibration of the °exible lumped system without taking any measurement from the system. Experimental results show the validity of the proposed sensorless estimation algorithm and the possibility of controlling motion and vibration of flexible systems by focusing all the measurements on the actuator side keeping the system free from any attached sensors

    Estimation based control of flexible systems-sensorless wave based technique

    Get PDF
    This paper presents an algorithm for parameters and positions estimation of lumped flexible systems. As soon as the parameters and the positions are estimated they can be used to design virtual sensors that can be moved along the system to estimate the position of any lumped mass keeping the system free from any attached sensors. The virtual sensors are nothing but a chain of estimators that are connected at the end of each other, starting with two actuator’s measurements and ending up with system parameters and all the system lumped positions. An estimation Based PID controller is presented based on the feedback of the virtual sensor’s estimates instead of the actual measurement

    Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview

    Full text link
    Disturbance Observer has been one of the most widely used robust control tools since it was proposed in 1983. This paper introduces the origins of Disturbance Observer and presents a survey of the major results on Disturbance Observer-based robust control in the last thirty-five years. Furthermore, it explains the analysis and synthesis techniques of Disturbance Observer-based robust control for linear and nonlinear systems by using a unified framework. In the last section, this paper presents concluding remarks on Disturbance Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure

    Action-reaction based parameters identification and states estimation of flexible systems

    Get PDF
    This work attempts to identify and estimate flexible system's parameters and states by a simple utilization of the Action-Reaction law of dynamical systems. Attached actuator to a dynamical system or environmental interaction imposes an action that is instantaneously followed by a dynamical system reaction. The dynamical system's reaction carries full information about the dynamical system including system parameters, dynamics and externally applied forces that arise due to system interaction with the environment. This in turn implies that the dynamical system's reaction can be considered as a natural feedback as it carries full coupled information about the dynamical system. The idea is experimentally implemented on a dynamical system with three flexible modes, then it can be extended to more complicated structures with infinite modes

    Fleksibilni slijedni sustav s koncentriranim parametrima sa suzbijanjem vibracija korištenjem LQR-a bez senzora

    Get PDF
    This work attempts to achieve motion control along with vibration suppression of flexible systems by developing a sensorless closed loop LQR controller. Vibration suppression is used as a performance index that has to be minimized so that motion control is achieved with zero residual vibration. An estimation algorithm is combined with the regular LQR to develop sensorless motion and vibration controller that is capable of positioning multi degrees of freedom flexible system point of interest to a pre-specified target position with zero residual vibration. The validity of the proposed controller is verified experimentally by controlling a sensorless dynamical system with finite degrees of freedom through measurements taken from its actuator.U ovom radu opisan je fleksibilni slijedni sustav sa suzbijanjem vibracija upravljan LQR regulatorom u zatvorenom upravljačkom krugu bez senzora. Vibracije su korištene u težinskoj funkciji koja se minimizira s ciljem eliminiranja rezidualnih vibracija iz slijednog sustava. Kombinirajući algoritam estimacije s klasičnim LQRom, razvijen je regulator za upravljanje gibanjem i vibracijama bez korištenja senzora, koji je sposoban pozicionirati određenu točku fleksibilnog sustava s više stupnjeva slobode u predefiniranu željenu točku bez preostalih vibracija. Validacija predloženog regulatora provedena je eksperimentalno upravljajući dinamičkim sustavom s konačnim brojem stupnjeva slobode uz korištenje mjerenja s aktuatora
    corecore