169,089 research outputs found
Forbidden ordinal patterns in higher dimensional dynamics
Forbidden ordinal patterns are ordinal patterns (or `rank blocks') that
cannot appear in the orbits generated by a map taking values on a linearly
ordered space, in which case we say that the map has forbidden patterns. Once a
map has a forbidden pattern of a given length , it has forbidden
patterns of any length and their number grows superexponentially
with . Using recent results on topological permutation entropy, we study in
this paper the existence and some basic properties of forbidden ordinal
patterns for self maps on n-dimensional intervals. Our most applicable
conclusion is that expansive interval maps with finite topological entropy have
necessarily forbidden patterns, although we conjecture that this is also the
case under more general conditions. The theoretical results are nicely
illustrated for n=2 both using the naive counting estimator for forbidden
patterns and Chao's estimator for the number of classes in a population. The
robustness of forbidden ordinal patterns against observational white noise is
also illustrated.Comment: 19 pages, 6 figure
Extending Context-Sensitivity in Term Rewriting
We propose a generalized version of context-sensitivity in term rewriting
based on the notion of "forbidden patterns". The basic idea is that a rewrite
step should be forbidden if the redex to be contracted has a certain shape and
appears in a certain context. This shape and context is expressed through
forbidden patterns. In particular we analyze the relationships among this novel
approach and the commonly used notion of context-sensitivity in term rewriting,
as well as the feasibility of rewriting with forbidden patterns from a
computational point of view. The latter feasibility is characterized by
demanding that restricting a rewrite relation yields an improved termination
behaviour while still being powerful enough to compute meaningful results.
Sufficient criteria for both kinds of properties in certain classes of rewrite
systems with forbidden patterns are presented
Forbidden patterns and shift systems
The scope of this paper is two-fold. First, to present to the researchers in
combinatorics an interesting implementation of permutations avoiding
generalized patterns in the framework of discrete-time dynamical systems.
Indeed, the orbits generated by piecewise monotone maps on one-dimensional
intervals have forbidden order patterns, i.e., order patterns that do not occur
in any orbit. The allowed patterns are then those patterns avoiding the
so-called forbidden root patterns and their shifted patterns. The second scope
is to study forbidden patterns in shift systems, which are universal models in
information theory, dynamical systems and stochastic processes. Due to its
simple structure, shift systems are accessible to a more detailed analysis and,
at the same time, exhibit all important properties of low-dimensional chaotic
dynamical systems (e.g., sensitivity to initial conditions, strong mixing and a
dense set of periodic points), allowing to export the results to other
dynamical systems via order-isomorphisms.Comment: 21 pages, expanded Section 5 and corrected Propositions 3 and
On the complexity of computing the capacity of codes that avoid forbidden difference patterns
We consider questions related to the computation of the capacity of codes
that avoid forbidden difference patterns. The maximal number of -bit
sequences whose pairwise differences do not contain some given forbidden
difference patterns increases exponentially with . The exponent is the
capacity of the forbidden patterns, which is given by the logarithm of the
joint spectral radius of a set of matrices constructed from the forbidden
difference patterns. We provide a new family of bounds that allows for the
approximation, in exponential time, of the capacity with arbitrary high degree
of accuracy. We also provide a polynomial time algorithm for the problem of
determining if the capacity of a set is positive, but we prove that the same
problem becomes NP-hard when the sets of forbidden patterns are defined over an
extended set of symbols. Finally, we prove the existence of extremal norms for
the sets of matrices arising in the capacity computation. This result makes it
possible to apply a specific (even though non polynomial) approximation
algorithm. We illustrate this fact by computing exactly the capacity of codes
that were only known approximately.Comment: 7 pages. Submitted to IEEE Trans. on Information Theor
Graph classes and forbidden patterns on three vertices
This paper deals with graph classes characterization and recognition. A
popular way to characterize a graph class is to list a minimal set of forbidden
induced subgraphs. Unfortunately this strategy usually does not lead to an
efficient recognition algorithm. On the other hand, many graph classes can be
efficiently recognized by techniques based on some interesting orderings of the
nodes, such as the ones given by traversals.
We study specifically graph classes that have an ordering avoiding some
ordered structures. More precisely, we consider what we call patterns on three
nodes, and the recognition complexity of the associated classes. In this
domain, there are two key previous works. Damashke started the study of the
classes defined by forbidden patterns, a set that contains interval, chordal
and bipartite graphs among others. On the algorithmic side, Hell, Mohar and
Rafiey proved that any class defined by a set of forbidden patterns can be
recognized in polynomial time. We improve on these two works, by characterizing
systematically all the classes defined sets of forbidden patterns (on three
nodes), and proving that among the 23 different classes (up to complementation)
that we find, 21 can actually be recognized in linear time.
Beyond this result, we consider that this type of characterization is very
useful, leads to a rich structure of classes, and generates a lot of open
questions worth investigating.Comment: Third version version. 38 page
Inflations of Geometric Grid Classes: Three Case Studies
We enumerate three specific permutation classes defined by two forbidden
patterns of length four. The techniques involve inflations of geometric grid
classes
- …