5,748 research outputs found

    Ascent Sequences Avoiding Pairs of Patterns

    Get PDF
    Ascent sequences were introduced by Bousquet-Melou et al. in connection with (2+2)-avoiding posets and their pattern avoidance properties were first considered by Duncan and Steingrímsson. In this paper, we consider ascent sequences of length n role= presentation style= display: inline; font-size: 11.2px; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; font-family: Verdana, Arial, Helvetica, sans-serif; position: relative; \u3enn avoiding two patterns of length 3, and we determine an exact enumeration for 16 different pairs of patterns. Methods include simple recurrences, bijections to other combinatorial objects (including Dyck paths and pattern-avoiding permutations), and generating trees. We also provide an analogue of the Erdős-Szekeres Theorem to prove that any sufficiently long ascent sequence contains either many copies of the same number or a long increasing subsequence, with a precise bound

    Combinatorics of patience sorting piles

    Full text link
    Despite having been introduced in 1962 by C.L. Mallows, the combinatorial algorithm Patience Sorting is only now beginning to receive significant attention due to such recent deep results as the Baik-Deift-Johansson Theorem that connect it to fields including Probabilistic Combinatorics and Random Matrix Theory. The aim of this work is to develop some of the more basic combinatorics of the Patience Sorting Algorithm. In particular, we exploit the similarities between Patience Sorting and the Schensted Insertion Algorithm in order to do things that include defining an analog of the Knuth relations and extending Patience Sorting to a bijection between permutations and certain pairs of set partitions. As an application of these constructions we characterize and enumerate the set S_n(3-\bar{1}-42) of permutations that avoid the generalized permutation pattern 2-31 unless it is part of the generalized pattern 3-1-42.Comment: 19 pages, LaTeX; uses pstricks; view PS, not DVI; use dvips + ps2pdf, not dvi2pdf; part of FPSAC'05 proceedings; v3: final journal version, revised Section 3.

    The enumeration of three pattern classes using monotone grid classes

    Get PDF
    The structure of the three pattern classes defined by the sets of forbidden permutations \{2143,4321\}, \{2143,4312\} and \{1324,4312\} is determined using the machinery of monotone grid classes. This allows the permutations in these classes to be described in terms of simple diagrams and regular languages and, using this, the rational generating functions which enumerate these classes are determined

    Supersaturation and stability for forbidden subposet problems

    Get PDF
    We address a supersaturation problem in the context of forbidden subposets. A family F\mathcal{F} of sets is said to contain the poset PP if there is an injection i:PFi:P \rightarrow \mathcal{F} such that pPqp \le_P q implies i(p)i(q)i(p) \subset i (q). The poset on four elements a,b,c,da,b,c,d with a,bc,da,b \le c,d is called butterfly. The maximum size of a family F2[n]\mathcal{F} \subseteq 2^{[n]} that does not contain a butterfly is Σ(n,2)=(nn/2)+(nn/2+1)\Sigma(n,2)=\binom{n}{\lfloor n/2 \rfloor}+\binom{n}{\lfloor n/2 \rfloor+1} as proved by De Bonis, Katona, and Swanepoel. We prove that if F2[n]\mathcal{F} \subseteq 2^{[n]} contains Σ(n,2)+E\Sigma(n,2)+E sets, then it has to contain at least (1o(1))E(n/2+1)(n/22)(1-o(1))E(\lceil n/2 \rceil +1)\binom{\lceil n/2\rceil}{2} copies of the butterfly provided E2n1εE\le 2^{n^{1-\varepsilon}} for some positive ε\varepsilon. We show by a construction that this is asymptotically tight and for small values of EE we show that the minimum number of butterflies contained in F\mathcal{F} is exactly E(n/2+1)(n/22)E(\lceil n/2 \rceil +1)\binom{\lceil n/2\rceil}{2}

    On the limiting distribution of the metric dimension for random forests

    Get PDF
    The metric dimension of a graph G is the minimum size of a subset S of vertices of G such that all other vertices are uniquely determined by their distances to the vertices in S. In this paper we investigate the metric dimension for two different models of random forests, in each case obtaining normal limit distributions for this parameter.Comment: 22 pages, 5 figure
    corecore