31,967 research outputs found

    Dynamical Cusp Regeneration

    Get PDF
    After being destroyed by a binary supermassive black hole, a stellar density cusp can regrow at the center of a galaxy via energy exchange between stars moving in the gravitational field of the single, coalesced hole. We illustrate this process via high-accuracy N-body simulations. Regeneration requires roughly one relaxation time and the new cusp extends to a distance of roughly one-fifth the black hole's influence radius, with density rho ~ r^{-7/4}; the mass in the cusp is of order 10% the mass of the black hole. Growth of the cusp is preceded by a stage in which the stellar velocity dispersion evolves toward isotropy and away from the tangentially-anisotropic state induced by the binary. We show that density profiles similar to those observed at the center of the Milky Way and M32 can regenerate themselves in several Gyr following infall of a second black hole; the presence of density cusps at the centers of these galaxies can therefore not be used to infer that no merger has occurred. We argue that Bahcall-Wolf cusps are ubiquitous in stellar spheroids fainter than M_V ~ -18.5 that contain supermassive black holes, but the cusps have not been detected outside of the Local Group since their angular sizes are less than 0.1". We show that the presence of a cusp implies a lower limit of \~10^{-4} per year on the rate of stellar tidal disruptions, and discuss the consequences of the cusps for gravitational lensing and the distribution of dark matter on sub-parsec scales.Comment: Accepted for publication in The Astrophysical Journa

    A modular description of X0(n)\mathscr{X}_0(n)

    Full text link
    As we explain, when a positive integer nn is not squarefree, even over C\mathbb{C} the moduli stack that parametrizes generalized elliptic curves equipped with an ample cyclic subgroup of order nn does not agree at the cusps with the Γ0(n)\Gamma_0(n)-level modular stack X0(n)\mathscr{X}_0(n) defined by Deligne and Rapoport via normalization. Following a suggestion of Deligne, we present a refined moduli stack of ample cyclic subgroups of order nn that does recover X0(n)\mathscr{X}_0(n) over Z\mathbb{Z} for all nn. The resulting modular description enables us to extend the regularity theorem of Katz and Mazur: X0(n)\mathscr{X}_0(n) is also regular at the cusps. We also prove such regularity for X1(n)\mathscr{X}_1(n) and several other modular stacks, some of which have been treated by Conrad by a different method. For the proofs we introduce a tower of compactifications Ellm\overline{Ell}_m of the stack EllEll that parametrizes elliptic curves---the ability to vary mm in the tower permits robust reductions of the analysis of Drinfeld level structures on generalized elliptic curves to elliptic curve cases via congruences.Comment: 67 pages; final version, to appear in Algebra and Number Theor

    On quartics with three-divisible sets of cusps

    Full text link
    We study the geometry and codes of quartic surfaces with many cusps. We apply Gr\"obner bases to find examples of various configurations of cusps on quartics.Comment: 15 page

    Cusps and Codes

    Full text link
    We study a construction, which produces surfaces YP3Y \subset P_3 with cusps. For example we obtain surfaces of degree six with 18, 24 or 27 three-divisible cusps. For sextic surfaces in a particular family of up to 30 cusps the codes of these sets of cusps are determined explicitly.Comment: 13 page
    corecore