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Abstract
After being destroyed by a binary supermassive black hole, astellar density cusp can regrow at the center

of a galaxy via energy exchange between stars moving in the gravitational field of the single, coalesced hole.
We illustrate this process via high-accuracyN-body simulations. Regeneration requires roughly one relaxation
time and the new cusp extends to a distance of roughly one-fifth the black hole’s influence radius, with density
ρ ∼ r−7/4; the mass in the cusp is of order 10% the mass of the black hole.Growth of the cusp is preceded
by a stage in which the stellar velocity dispersion evolves toward isotropy and away from the tangentially-
anisotropic state induced by the binary. We show that density profiles similar to those observed at the center of
the Milky Way and M32 can regenerate themselves in several Gyr following infall of a second black hole; the
presence of density cusps at the centers of these galaxies can therefore not be used to infer that no merger has
occurred. We argue thatρ ∼ r−7/4 density cusps are ubiquitous in stellar spheroids fainter thanMV ≈ −18.5
that contain supermassive black holes, but the cusps have not been detected outside of the Local Group since
their angular sizes are less than∼ 0.1′′. We show that the presence of a cusp implies a lower limit of∼ 10−4

yr−1 on the rate of stellar tidal disruptions, and discuss the consequences of the cusps for gravitational lensing
and the distribution of dark matter on sub-parsec scales.
Subject headings:

1. INTRODUCTION

Mass distributions near the centers of early-type galaxies
are well described as power laws,ρ ∼ r−γ, with indicesγ
that change gradually with radius. At their innermost resolved
radii, most galaxies have 0.5∼< γ ∼< 2., with the steeper slopes
characteristic of fainter galaxies (Ferrarese et al. 2005). If a
supermassive black hole is present, the orbits of stars willbe
strongly influenced at distances less than∼ rh = GM•/σ2 ≈
10 pc(M•/108M⊙)(σ/200km s−1)−2, the black hole’s grav-
itational influence radius. Most galaxies are spatially unre-
solved on these small scales; two clear exceptions are the
nucleus of the Milky Way, for which number counts extend
inward to∼ 0.002rh (Genzel et al. 2003), and M32, which is
resolved down to a radius of∼ 0.2rh (Lauer et al. 1998). Both
galaxies exhibit steep density slopes,γ ≈ 1.5, atr ∼< rh. Out-
side of the Local Group, only giant ellipticals have sufficiently
large black holes thatrh can be resolved; the nuclear luminos-
ity profiles in these galaxies are also power laws but very flat,
γ ∼< 1.

Many distributions of stars are possible around a black hole,
but under two circumstances, the stellar distribution atr ∼< rh
is predictable. (1) If the black hole has been present for a
time longer thanTr , the relaxation time in the nucleus, ex-
change of energy between stars will drive the stellar distri-
bution toward a collisional steady state; assuming a single
stellar mass and ignoring physical collisions between stars,
this steady state hasρ ∼ r−7/4 at r ∼< rh (Bahcall & Wolf
1976). (2) If the nucleus formed via the merger of two galax-
ies each with its own supermassive black hole, the two black
holes will displace of order their combined mass in the pro-
cess of forming a tightly-bound pair (Milosavljevic & Meritt
2001), producing a low-density core. The first mechanism
may be responsible for the steep density profiles observed at
the centers of the Milky Way and M32, since both galax-
ies have central relaxation times of order 109 yr and both
are near enough that linear scales of orderrh are well re-

solved. The second mechanism may explain the very flat cen-
tral profiles of luminous E galaxies (Milosavljevic et al. 2002;
Ravindranath, Ho & Filippenko 2002); the central relaxation
times of these galaxies are much longer than 1010 yr and the
stellar distribution would be expected to remain nearly un-
changed after the two black holes had coalesced into one.

In this paper we point out that both outcomes are possi-
ble. A galaxy may form via mergers, but at the same time, its
central relaxation time following the merger may be shorter
than 1010 yr. In this circumstance, the cusp of stars around
the black hole is first destroyed by the massive binary, then is
regenerated via encounters between stars in the gravitational
field of the single, coalesced hole. The result is a steep inner
density profile in a galaxy that had previously experienced
the scouring effects of a massive binary. To the extent thatall
stellar spheroids experienced mergers – if only in the distant
past – this picture is probably generic, applying even to small
dense systems like M32 and to the bulges of spiral galax-
ies like the Milky Way. Understanding the conditions under
which a previously-destroyed density cusp can spontaneously
regenerate is crucial if one wishes to interpret the present-day
luminosity profiles of galaxies as fossil relics of their merger
histories (Volonteri et al. 2003).

We useN-body simulations (§2) to follow first the destruc-
tion (§3) and then the spontaneous regeneration (§4) of den-
sity cusps around black holes. The two most important free
parameters in this problem are the mass ratioq≡ M2/M1 of
the binary black hole, and the slopeγ of the initial density
cusp surrounding the larger hole. We present results for sev-
eral combinations ofq andγ (Table 1). Our conclusion is that
collisional, Bahcall-Wolf density cusps should be ubiquitous
in stellar spheroids fainter thanMV ≈−18.5 that contain mas-
sive black holes, essentially regardless of their merger histo-
ries. However these cusps have gone undetected in galaxies
outside the Local Group because they are unresolved. In §5
we discuss a number of consequences of the presence of the
cusps.
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TABLE 1
PARAMETERS OF THEN-BODY INTEGRATIONS

Run γ M2/M1 rh1 rh12 Tr (rh12) ah r ′h Tr (r ′h) Tr (0.2r ′h) Tgap r ′′h
1 0.5 0.5 0.264 0.326 1170. 0.0181 0.39 1420. 620 79. 0.38
2 0.5 0.25 0.264 0.296 1010. 0.0119 0.35 1210. 420 48. 0.34
3 0.5 0.1 0.264 0.278 916. 0.00573 0.32 1070. 390 22. 0.31

4 1.0 0.5 0.165 0.210 599. 0.0116 0.28 870. 300 48. 0.27
5 1.0 0.25 0.165 0.188 499. 0.00751 0.23 640. 270 26. 0.23
6 1.0 0.1 0.165 0.174 441. 0.00360 0.20 520. 220 11. 0.20

7 1.5 0.5 0.0795 0.107 217. 0.00594 0.17 420. 160 23. 0.17

2. MODELS AND METHODS

We started by constructing Monte-Carlo realizations of
steady-state galaxy models having Dehnen’s (1993) density
law, with an additional, central point mass representing a
black hole. The Dehnen-model density followsρ(r) ∝ r−γ

at small radii, and the isotropic phase-space distributionfunc-
tion that reproduces Dehnen’sρ(r) in the presence of a cen-
tral point mass is non-negative for allγ ≥ 0.5; henceγ = 0.5
is the flattest central profile that can be adopted if the initial
conditions are to represent an isotropic, steady state. We con-
sidered initial models withγ = (0.5,1.0,1.5). The massM1 of
the central “black hole” was always 0.01, in units where the
total mass in starsMgal was one; the Dehnen scale lengthrD
and the gravitational constantG were also unity. TheN-body
models so constructed were in a precise steady state at time
zero.

Destruction of the cusp was achieved by introducing a sec-
ond “black hole” into this model, which spiralled into the cen-
ter, forming a binary with the first (more massive) hole and
displacing stars. Three values were used for the mass of the
smaller hole:M2/M1 ≡ q = (0.5,0.25,0.1). The smaller hole
was placed initially at a distance 1.6 from the center, with a
velocity roughly 1/2 times the circular velocity at that radius;
a non-circular orbit was chosen in order to speed up the orbital
decay.

After the orbit of the smaller black hole had decayed via dy-
namical friction against the stars, it formed a tight binarywith
the more massive hole, with a relative orbit close to circular.
An estimate of the semi-major axisah at which the binary first
becomes “hard” isah = Gµ/4σ2 whereµ≡M1M1/(M1+M2)
is the reduced mass. The precise meaning of “hard” is debat-
able; the definition just given defines a “hard” binary as one
whose binding energy per unit mass,|E|/(M1+M2), exceeds
2σ2. While simple, this definition contains the ill-defined
quantityσ, which is a steep function of position near the black
hole(s). We followed Merritt & Wang (2005) and used the al-
ternative definition

ah ≡
µ

M1 +M2

rh12

4
=

q
(1+q)2

rh12

4
, (1)

with rh12 the gravitational influence radius defined below. In
practice,ah so defined was found to be roughly (within a fac-
tor ∼ 2) the value of the semi-major axis at which the binary
hardening rate(d/dt)(1/a) first became approximately con-
stant.

Decay was allowed to continue until the binary semi-major
axis had reached a value ofah/5 ≈ qrh/20. At this point,
the two black holes were replaced by a single particle of mass
M12 = M1+M2, with position and velocity given by the center

of mass of the binary. TheN-body integration was then con-
tinued for a time roughly equal to the relaxation timeTr(r ′h)
defined below. The most suitable time at which to merge the
two black holes was not cleara priori; our choice is of order
the separation at which gravitational-wave emission would
induce coalescence in∼ 1010 yr (Merritt & Milosavljevic
2005), but in fact we expect that other processes like inter-
action of the binary with ambient gas may drive the final coa-
lescence in real galaxies, and it is not clear at what separation
these processes are likely to dominate the evolution.

The ratio(M1 +M2)/Mgal ≈ 0.01 in our models is roughly
a factor ten larger than the ratio of black hole mass to
galaxy mass in real spheroids (Merritt & Ferrarese 2001;
Marconi & Hunt 2003). This is acceptable as long as we are
careful to present masses and radii in units scaled toM1 +M2
when making comparisons with real galaxies.

Table 1 gives a number of parameters associated with the
N-body integrations. The gravitational influence radiusrh was
defined as the radius containing a mass in stars equal to twice
the massM• of the central black hole. This definition, while
superior toGM•/σ2, is somewhat ambiguous in ourN-body
models, given that the effective mass of the central object,
and the distribution of the stars, both change with time. We
accordingly defined four different influence radii. (1) At the
start of the integrations, the larger black hole, of massM1,
was located at the center of the galaxy. Its influence radiusrh1
was computed by settingM• = M1 and using thet = 0 stellar
distribution. (2) After the smaller black hole has fallen into
a distance∼< rh1 from the larger hole, the appropriate value
of M• becomesM1+M2. We defined the associated influence
radius to berh12, which we computed ignoring the changes
that had occurred in the stellar distribution sincet = 0. (3) The
third influence radius,r ′h, was computed by settingM• = M1+
M2, but this mass was compared with the stellar distribution at
the end of the binary evolution phase, after the phase of cusp
destruction. (4) Finally,r ′′h is the influence radius at the end
of the second phase of integration, after a Bahcall-Wolf cusp
has formed around the single black hole. As Table 1 shows,
r ′′h is only slightly smaller thanr ′h since the regenerated cusp
contains a mass that is small compared withM•.

The relaxation timesTr in Table 1 were computed from
the standard expression (eq. 2-62 of Spitzer 1987), setting
lnΛ = ln(σ2rh12/2Gm⋆), with σ the 1D stellar velocity dis-
persion atrh12 andm⋆ = N−1 the mass of anN-body particle.
This definition ofΛ is equivalent to equatingbmax, the max-
imum impact parameter for encounters in Chandrasekhar’s
theory, with rh (Preto, Merritt & Spurzem 2004). Table 1
gives values ofTr evaluated at two of the four influence radii
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FIG. 1.— Cusp destruction. Solid lines are stellar density profiles just before the two “black holes” were combined into one.Dashed lines show the initial
models.q = M2/M1 is the binary mass ratio.

defined above.T(rh12) was computed using the structural pa-
rameters of the initial galaxy model, whileTr(r ′h) was com-
puted using estimates like those in Figures 1 and 3. of the
stellar density and velocity dispersion in the evolved models.
We also giveTr(0.2rh′); the motivation for this is given be-
low. The final time scale in Table 1,Tgap, is defined below
(equation 7) and is an estimate of the time required for the
angular-momentum gap created by the binary to be refilled;
Tgap varied between∼ Tr(rh)/20 and∼ Tr(rh)/50.

The power-law cusps in our initial models were motivated
by the approximately power-law dependence of luminosity
density on radius observed near the centers of many early-
type galaxies (Ferrarese et al. 2005). Since the observations
often do not resolverh, the stellar distribution atr ∼< rh in
some galaxies might be different than the inward extrapola-
tion of the power laws that are fit to larger radii. For instance,
galaxies with sufficiently short relaxation times are expected
to haveρ ∼ r−7/4 density cusps like the ones that form in
our N-body models at late times. Other galaxies may have
compact stellar nuclei (Coté et al. 2005). We did not include
such dense features in our initial models: first, because the
associated mass would have been small compared with the
mass removed by the binary; and second, because doing so
would have more than doubled the computational effort due
to the short time steps required for stars initially near theblack
holes.

All N-body integrations usedN = 0.12 × 106 par-
ticles and were carried out on a GRAPE-6 special-
purpose computer. TheN-body integrator is described
in Merritt, Mikkola & Szell (2005). This algorithm is an
adaptation ofNBODY1 Aarseth (1999) to the GRAPE-6; it
uses a fourth-order Hermite integration scheme with indi-
vidual, adaptive, block time steps (Aarseth 2003). For
the majority of the particles, the forces and force deriva-
tives were calculated via a direct-summation scheme on the
GRAPE-6, using the particle advancement scheme described
in Berczik, Merritt & Spurzem (2005) with an accuracy pa-
rameter ofη = 0.01 and zero softening. Close encounters be-
tween the black holes, and between black holes and stars, re-
quire prohibitively small time steps in such a scheme and were
regularized using the chain regularization routine of Mikkola

and Aarseth (Mikkola & Aarseth 1990, 1993). A detailed de-
scription of the chain algorithm, including the results of per-
formance tests, are given in Merritt, Mikkola & Szell (2005).

Our initial conditions (one black hole at the center, a smaller
black hole orbiting about it) are not as realistic as in simula-
tions that follow both merging galaxies from the start (e.g.
Milosavljevic & Meritt (2001), Merritt et al. (2002)), but are
superior to simulations that drop one or two black holes
into a pre-existing galaxy that contains no black hole (e.g.
Quinlan & Hernquist (1997); Nakano & Makino (1999a,b)).
We ignore the radiation recoil that would accompany the final
coalescence of the two black holes, displacing the remnant
hole temporarily from its central location and increasing the
size of the core (Merritt et al. 2004b; Boylan-Kolchin et al.
2004). We also ignore processes like loss of stars into the
black hole(s), stellar tidal disruptions, and stellar collsions,
all of which might affect the form of the final density profile.

3. CUSP DESTRUCTION

After formation of a hard binary ata ≈ ah, the bi-
nary’s binding energy continues to increase as the two
massive particles eject stars via the gravitational sling-
shot (Saslaw, Valtonen & Aarseth 1974; Mikkola & Valtonen
1992; Quinlan 1996). As in a number of recent studies
(Berczik, Merritt & Spurzem 2005; Merritt, Mikkola & Szell
2005), we found that the hardening rates were nearly in-
dependent of time,s ≡ (d/dt)(1/a) ≈ const., fora < ah.
The values ofs are not of particular interest here, sinceN-
body hardening rates are known to depend strongly on par-
ticle number(Berczik, Merritt & Spurzem 2005), and we do
not expect these simulations to be in the “empty loss cone”
regime that characterizes binary evolution in real galaxies
(Milosavljevic & Meritt 2003). However the “damage” done
by the binary to the pre-existing stellar distribution is expected
on energetic grounds to be a function ofah/a, essentially in-
dependent of therate of hardening and hence ofN (Quinlan
1996), and this expectation has recently been confirmed in
N-body experiments (Merritt, Mikkola & Szell 2005). As de-
scribed above, the binary phase of the integrations was termi-
nated whena = ah/5.

Figure 1 shows density profiles of theN-body models at the
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FIG. 2.— Mass deficits, computed as described in the text, duringthe binary phase of the integrations;a = a(t) is the binary semi-major axis andah is defined
in equation (1).q = M2/M1 is the binary mass ratio.

FIG. 3.— Stellar velocity dispersions at the end of the binary phase, in the integrations withM2/M1 = 0.5. Solid lines:σr ; dashed lines:σt . The binary creates
a tangentially-biased velocity distribution near the center by preferentially ejecting stars on radial orbits. Arrows indicate the black hole influence radiusr ′h.

end of the binary phase. Radii of the “star” particles were
computed relative to the center of mass of the binary, and
estimates ofρ(r) were constructed using the nonparametric
kernel estimator of Merritt & Tremblay (1994). The damage
done by the infalling black hole can be seen to increase with
its mass forγ = 0.5 and 1, and extends out to a radius∼ rh.
Theγ = 0.5 cusp is converted into an approximately constant-
density core, while theγ = 1 andγ = 1.5 cusps are “softened,”
to power laws of index∼ 0.5 (γ = 1) and∼ 1.0 (γ = 1.5).

A standard measure of the damage done by an infalling
black hole to a pre-exising density cusp is the “mass deficit”
Mde f, defined as the decrease in the central mass within a
sphere that contains the affected region (Milosavljevic etal.
2002). The mass deficit is potentially observable
(Milosavljevic et al. 2002; Ravindranath, Ho & Filippenko
2002; Graham 2004), assuming that one can guess the pre-
existing density profile, and its value is an index of the cumu-
lative effect of mergers on the galaxy (Volonteri et al. 2003).
Since there are few results in the literature on the sizes of

mass deficits generated by large-mass-ratio inspirals, we show
in Figure 2 mass deficits for these integrations, expressed in
terms ofah/a(t); we extended some of the integrations be-
yonda = ah/5 in order to further elucidate this dependence.
Figure 2 shows that – for a given degree of binary hardness –
the mass deficit is much better predicted byM1 or M12 than
by M2. In other words, the damage done by the smaller black
hole is rougly proportional to the mass of thebinary, at a given
value ofah/a.

This is a reasonable result. Equating the increase in the
binary’s binding energy with the energy lost to an ejected star
gives

Gµ(M1 +M2)

2
δ
(

1
a

)

= (Ef −Ei)δMe j (2)

with Ei andEf the initial and final kinetic energy per unit mass
of the ejected star andδMe j its mass;µ is the reduced mass of
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FIG. 4.— Mean velocity anisotropy of the stars in a sphere of radiusr ′h around the single black hole, as a function of time after the massive binary was combined
into a single particle. Shown are the integrations withM2/M1 = 0.5. Arrows indicate the timeTgap defined in the text (equation 7, Table 1).

the binary. This can be written

dMe j

d ln(1/a)
=

µ
2

V2
bin

Ef −Ei
(3)

whereVbin =
√

G(M1 +M2)/a is the relative velocity be-
tween the components of the binary (assuming a circular or-
bit). Hills (1983) finds from scattering experiments that, for a
hard binary in the limitM2 ≪ M1, Ef −Ei for a zero-impact-
parameter encounter is∼ 1.4Gµ/a. This implies

dMe j

d ln(1/a)
≈ 0.36(M1+M2) (4)

and the total mass ejected by the binary in hardening from
a≈ ah to af is

∆Me j

M1 +M2
≈ 0.36ln

(

ah

af

)

, (5)

i.e., the mass ejected in reaching a given degree of hardening
ah/a is proportional toM1 + M2. Quinlan (1996) used scat-
tering experiments to computeJ in the relation

dMe j

d ln(1/a)
= J(M1 +M2) (6)

as a function ofM2/M1, assuming a Maxwellian distribution
of velocities at infinity. He defined “ejected” stars to be those
with final velocities exceeding max{1.5V0,

√
3σ}; here “final”

means after the star has moved far from the binary (ignoring
any velocity changes that result from the galactic potential),
V0 is the velocity before the encounter, andσ is the velocity
dispersion far from the massive binary. Quinlan’s definition
is a reasonable one ifMe j is to be equated withMde f, and
Quinlan found thatJ is nearly independent ofM2/M1 for a
hard binary, decreasing fromJ≈ 1 for M2 = M1 to J≈ 0.5 for
M2 = M1/256 (his Figure 5). TheseJ-values are consistent
with Figure 2.

Expressions like (5) seem counter-intuitive, since they seem
to imply an ejected mass that is large even for smallM2. How-
ever for smallM2, ah ∝ M2/M1 (equation 1), so for a givenaf ,

the ejected mass is predicted to scale as∼ lnM2. The depen-
dence ofMde f on binary mass ratio is a topic that deserves fur-
ther study since the central structure of bright ellipticalgalax-
ies is expected to reflect the cumulative effect of many minor
mergers (Volonteri et al. 2003).

We do observe an additional dependence ofMde f on bothγ
andq at givenah/a (Figure 2). However the definition ofah is
somewhat arbitrary (§2) and we do not pursue that additional
dependence here.

The binary preferentially ejects stars on eccentric orbits.
The result is an induced anisotropy in the stellar velocity dis-
tribution at r ∼< rh. Figure 3 illustrates this, for the integra-
tions with the most massive secondaries (M2/M1 = 0.5). The
induced anisotropy is mild, similar to what has been observed
in otherN-body studies (e.g.Milosavljevic & Meritt (2001)).

4. CUSP REGENERATION

When the separation between the two components of the bi-
nary had dropped toa = ah/5, the two massive particles were
combined into one and placed at the center of mass of the bi-
nary. The integrations were then continued until an additional
time of roughlyTr(r ′h) had elapsed (Table 1). During this sec-
ond phase of the integrations, the stellar distribution around
the single black hole evolved due to star-star encounters. The
initial effect of encounters was to refill the phase space gap
created when the binary ejected stars with pericentersrp ∼< ah.
The refilling time is approximately

Tgap≈
ah

rh
Tr(rh) ≈

1
4

q
(1+q)2Tr(rh) (7)

(Merritt & Wang 2005). Table 1 shows thatTgap varies be-
tween∼ 10 (γ = 1.0,q = 0.1) and∼ 80 (γ = 0.5,q = 0.5) in
our units, or between∼ 0.02Tr(rh) and∼ 0.05Tr(rh). Fig-
ure 4 verifies that the initially anisotropic velocity distribu-
tion at r ∼< rh becomes isotropic in a time of orderTgap. In
luminous galaxies, evenTgap can exceed a galaxy lifetime
(Merritt & Wang 2005), and such galaxies will experience a
greatly reduced rate of interaction of stars with the black hole
compared to galaxies with a full loss cone.

On the longer time scale of∼ Tr(rh), energy exchange
between stars modifies their radial distribution, eventually
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FIG. 5.— Cusp regeneration. Plots show the stellar density profile around the single black hole, at post-coalescence times of approximately(0,0.1,0.5,1)Tr (rh)
(γ = 0.5) and(0,0.2,1)Tr (rh) (γ = 1.0). Dotted lines show the density profiles at the start of the binary integrations, when only one black hole was located at the
center. Dashed lines have logarithmic slope of−1.75. Arrows indicater ′h, the influence radius of the single black hole just after coalescence of the binary (Table
1).
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FIG. 6.— Final density profiles after growth of the cusp. Black lines had
γ = 0.5 for the pre-binary initial conditions, red lines hadγ = 1.0, and blue
line hadγ = 1.5. Dashed lines show the initial models.

reaching the zero-flux Bahcall-Wolf (1976) solutionρ ∼
r−7/4. This is shown in Figure 5 for theγ = 0.4 andγ = 1
models. (Results forγ = 1.5 are shown in Figures 6 and 7
and are discussed separately below.) The new cusp attains the
ρ ∼ r−7/4 form inside of∼ 0.2r ′h. In all of the integrations,
the logarithmic slope of the final cusp is steeper than that of
the initial (pre-binary) galaxy at radiir ∼< 0.5r ′h, although the
final density remains below the initial density atr ≈ r ′h.

Figure 6 shows the final density profiles for all seven mod-
els. There is remarkably little dependence of the final result
on the mass ratio of the binary. The reason can be seen by
comparing Figures 1 and 6: while the different mass ratios do
yield different density profiles at the end of the binary phase,
most of these differences are atr ∼< 0.3rh, and this region is
efficiently refilled by the new cusp.

The final density profiles in Figure 6 can be well approxi-
mated as broken power laws at radiir ∼< rh:

ρ(r)= ρ(r0)

(

r
r0

)−7/4

, r ≤ r0,

= ρ(r0)

(

r
r0

)−1

, r0 < r ∼< rh. (8)

The “break” radiusr0 is ∼ 0.15r ′′h in the models with initial
cusp slopeγ = 0.5, ∼ 0.20r ′′h for γ = 1.0, and∼ 0.25r ′′h for
γ = 1.5. In this approximation toρ(r), the mass in the cusp,
Mcusp≡ M(r ≤ r0), is given by

Mcusp=
2M•

1+0.75
[

(rh/r0)
2−1

] . (9)

ThusMcusp/M• ≈ 0.03 (γ = 0.5),∼ 0.12 (γ = 1.0), and∼ 0.16
(γ = 1.5), confirming thatMcusp is small compared withM•.
One consequence is thatr ′′h, the influence radius at the final
time step, differs only slightly fromr ′h, the influence radius at
the end of the binary phase (Table 1).

Finally, we consider how much time is required to regrow
the cusps. As noted above, all of the post-binary integrations
were carried out until an elapsed time of∼ Tr(r ′h), and this
was also roughly the time required for the cusp to reach its
steady-state form. However the cusp extends only to a radius
of ∼ 0.2r ′h, and a more relevant estimate of the relaxation time
is probablyTr(0.2r ′h). Estimates of this time are given in Ta-
ble 1. The time to fully grow the cusp is approximately 2−3
times the relaxation time at 0.2r ′h. As Figure 5 shows, consid-
erable regeneration takes place even in a much shorter time,
hence we might predict the presence of steep central profiles
even in galaxies substantially younger than eitherTr(rh) or
(2−3)Tr(0.2rh). We return to this issue below.

5. IMPLICATIONS

5.1. Cusp Regeneration in Local Group Galaxies

The relaxation time in the Milky Way nucleus is less than
1010 yr and a number of authors have suggested that the stellar
cluster around the supermassive black hole might be collision-
ally relaxed (Alexander 1999; Genzel et al. 2003). The stellar
mass density, based on number counts that extend down to
∼ 0.005 pc, is

ρ(r) ≈ 1.2×106M⊙pc−3
(

r
0.38pc

)−α
(10)

(Genzel et al. 2003), withα ≈ 2.0 atr ≥ 0.38 pc andα ≈ 1.4
at r < 0.38 pc. The black hole mass is 3.7± 0.2× 106M⊙
(Ghez et al. 2005). The implied influence radius, defined as
the radius containing a mass in stars that is twice the black
hole mass, isrh ≈ 88′′ ≈ 3.4 pc.

We used equation (10) and the measured value ofM• to
compute the stellar velocity dispersion profile in the Milky
Way nucleus, assuming a spherical velocity ellipsoid. The re-
laxation timeTr was then calculated as in theN-body models,
i.e.

Tr(r) =
0.338σ(r)3

ρ(r)m⋆G2 lnΛ
(11a)

≈ 1.69×109yr× (11b)
(

σ(r)

100 km s−1

)3(

ρ(r)
106M⊙

)−1(

m⋆

0.7M⊙

)−1(

lnΛ
15

)−1

(11c)

with m⋆ = 0.7M⊙ andΛ = σ2(rh)rh/2Gm⋆. The relaxation
time atr = rh was found to be 5.4× 1010 yr, dropping to∼
6×109 yr at 0.2rh and∼ 3.5×109 yr at∼ 0.1rh; at smaller
radii, Tr increases very slowly with decreasingr.

As noted above, cusp regeneration in theN-body models
required a time of∼ 1Tr(rh), or ∼ 2− 3Tr(0.2rh). However
these two timescales are substantially different in the Milky
Way, suggesting that the structure of the Milky Way nucleus
differs in some respect from that of theN-body models in the
region 0.2rh ∼< r ∼< rh.

Figure 7 makes the comparison. We show the evolution
of ρ(r) andΣ(R) (the latter is the projected density) in the
post-binary integration with parameters (γ = 1.5,q = 0.5);
the right-hand frame also shows the measured surface den-
sity of stars at the Galactic center, from the number counts
of Genzel et al. (2003), with arbitrary vertical normalization.
The N-body model successfully reproduces the slope of the
observed stellar cusp at late times, but theN-body profile is
less steep than the observed counts atr ∼> 0.2rh, i.e., outside
of the cusp. In the Milky Way, an approximately power-law
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FIG. 7.— Evolution of the spatial (a) and projected (b) density profiles in the simulation that most closely resembles the Milky Way nucleus. The initial
model (dotted line) had aρ ∼ r−1.5 density cusp and a central black hole of massM1 = 0.01, in units where the total stellar mass of the model is 1. Blue
(lower) line shows the density after infall and capture of a second black hole of massM2 = 0.5M1. Green, red and black lines show the evolving density at
times (100,200,300) after coalesence; based on the discussion in the text, the corresponding physical times are roughly (4,8,12)×109 yr. Symbols in (b) show
the observed surface density of stars near the Galactic Center, from Genzel et al. (2003); see Figure 7 from that paper forsymbol definitions. The vertical
normalization of the symbols was set by eye in order to give a good match to theN-body data atR∼< 0.2rh. Dashed lines have logarithmic slopes of−1.75 (a)
and−0.75 (b).

dependence ofρ on r extends well beyondrh, while theN-
body models exhibit a shallower slope at these radii. Better
correspondence betweenN-body model and data could pre-
sumably have been achieved by modifying the initial model,
or by repeating the integrations with smallerM• (which would
have mandated a largerN in order to resolve the smaller
cusp); the unphysically large value ofM• adopted here (M• =
0.015Mgal) implies an influence radius that is comparable to
the Dehnen-model scale length.

In light of these ambiguities, it is reasonable to fix the phys-
ical unit of time by comparing theN-body model to the Milky
Way at∼ 0.2rh; this is roughly the outer radius of the cusp,
and Figure 7 shows that the model fits the data well out to this
radius. We find thatTr(0.2rh) ≈ 160 in N-body units, while
in the Milky Way, Tr(0.2rh) ≈ 6× 109 yr. The integration
time of 300 in Figure 7 then corresponds to a physical time
of ∼ 1.1×1010 yr. In fact, theN-body cusp attains nearly its
final form by a time of∼ 200, or∼ 8×109 yr. We conclude
that the distribution of stars near the Milky Way black hole is
consistent with a major merger having occurred at a time∼> 8
Gyr in the past.

In fact, the probability is∼ 68% that a galaxy with a dark-
matter halo as large as that of the Milky Way has experienced
a major merger (mass ratio of at least 4 : 1) since a redshift of
z= 2, i.e., in the last∼ 10 Gyr (Merritt et al. 2002). If this
occurred, our results suggest the interesting possibilitythat
the Milky Way cusp may still be evolving toward its steady-
state form. Evidence for this might be sought in the form of
a flattening the density profile at very small radii,r ∼< 0.1rh ≈
10′′.

The stellar density near the center of M32 is

ρ(r) ≈ 2.2×105M⊙pc−3
(

r
1pc

)−α
, α ≈ 1.5 (12)

(Lauer et al. 1998), very similar to that of the Milky Way. Un-
fortunately the estimation ofM• in M32 suffers from the de-
generacy inherent in orbital modelling of axisymmetric sys-
tems and the black hole mass could lie anywhere in the
range 1.5×106M⊙ ∼< M• ∼< 5×106M⊙ with equal likelihood
(Valluri, Merritt & Emsellem 2004). Applying theM•−σ re-
lation (Ferrarese & Merritt 2000) givesM• ≈ 2.0× 106M⊙
which we adopt here. The black hole influence radius be-
comes∼ 1.7 pc≈ 0.5′′ andTr(rh) ≈ 2.2× 1010 yr. This is
somewhat smaller than the estimate ofTr(rh) in the Galactic
nucleus, suggesting that a collisional cusp could easily have
been regenerated in M32. However, the cusp should only ex-
tend outward to∼ 0.2rh ≈ 0.1′′ at the distance of M32, barely
resolvable even with HST. Depending on the exact value of
M•, the collisional cusp in M32 may or may not have been
resolved.

Both the mass of the black hole in M31, and the dynamical
state of its nucleus, are less certain than in the Milky Way
and M32 due to M31’s complex morphology. However most
estimates of the relaxation time at the center of P2, the nuclear
component believed to contain the black hole, are of order
1011 yr (e.g. Lauer et al. 1998). M33 has a very short central
relaxation time but no dynamical signature of a black hole
(Valluri et al. 2005).

5.2. Cusp Regeneration in Galaxies Beyond the Local Group

Which galaxies beyond the Local Group should contain
Bahcall-Wolf cusps? Figure 8 shows estimates ofTr(rh) in the
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FIG. 8.— Estimates of the relaxation time at the black hole’s influence ra-
dius, rh, in the sample of early-type galaxies modelled by Wang & Merritt
(2004). Black hole masses were computed from theM• − σ relation
(Merritt & Ferrarese 2001), except in the case of the Milky Way, for which
M• = 3.7× 106M⊙ was assumed (Ghez et al. 2005). The stellar mass was
set equal to 0.7M⊙ when computingTr . Horizonal axis is absolute visual
magnitude of the galaxy or, in the case of the Milky Way, the stellar bulge.
The size of the symbols is proportional to log10(θrh/θobs), whereθrh is the
angular size of the black hole’s influence radius andθobs is the observational
resolution. Filled symbols haveθrh > θobs(rh resolved) and open circles have
θrh < θobs(rh unresolved). Values ofTr (rh) in the unresolved galaxies should
be considered approximate since the luminosity profiles in these galaxies are
not well known atr < rh.

sample of early-type galaxies modelled by Wang & Merritt
(2004); these are a subset of the Magorrian et al. (1998) galax-
ies. In this plot, filled symbols denote galaxies observed with
angular resolutionθobs < θrh, and the size of the symbol is
proportional to log(θrh/θobs). (In galaxies whererh is not
resolved, we note that the estimates ofTr are particularly un-
certain, since they depend on an inward extrapolation of lu-
minosity profiles measured atr > rh.)

Figure 8 reveals that the brightest spheroids,MV ∼< −20,
have central relaxation times that always greatly exceed 1010

yr. In these galaxies, a low-density core created by a bi-
nary supermassive black hole would persist for the age of
the universe. HoweverTr(rh) drops with decreasing luminos-
ity, falling below 1010 yr for MV ∼> − 18. The Milky Way
bulge falls on the relation defined by the more distant galaxies,
which is reassuring given the uncertainties in its luminosity.
(We adopted a bulge blue absolute magnitude ofMB = −17.6
from Marconi & Hunt (2003) and assumedMV = MB−0.9.)
However M32 appears to be shifted from the relation defined
by the other galaxies, as if it is the dense core of a once much
brighter galaxy. This possibility has often been raised in the
past (King 1962; Faber 1973; Nieto & Prugniel 1987).

Figure 8, combined with the arguments in §5.1, suggests
that spheroids fainter thanMV ≈ −18.5 are dynamically old
enough to contain Bahcall-Wolf cusps.

However outside of the Local Group, Figure 8 also sug-
gests that such cusps are unlikely to be resolved. We can
check this prediction by relating the angular size of the cusp
to black hole mass via theM• −σ relation,M8 ≈ 1.66σ4.86

200

(Ferrarese & Ford 2005), withM8 ≡ M•/108M⊙ andσ200≡
σ/200 km s−1, and (temporarily) redefiningrh asGM•/σ2 ≈
11.2M8σ−2

200 pc. Then

rh ≈ 2.76M0.59
8 pc. (13)

Taking for the outer radius of the cuspr0 ≈ 0.2rh (equation
8), its angular size becomes

θ0 ≈ 0.57′′M0.59
8 D−1

Mpc (14)

with DMpc the distance to the galaxy in Mpc. Thus, at the dis-
tance of the Virgo cluster,θ0 > 0.1′′ impliesM• ∼> 6×108M⊙;
however such massive black holes would almost certainly sit
in galaxies with central relaxation times longer than 1010 yr
(Figure 8) and a cusp would not have formed. If we assume
that black holes like the ones in the Milky Way and M32 (i.e.
M• ≈ 3×106M⊙) are the most massive to be associated with
collisionally-relaxed nuclei, then the associated cusps could
be resolved to a distance of∼ 0.7 Mpc, roughly the distance to
M32 – consistent with the statement made above that the cusp
in M32 is only barely resolved. Hence, collisional cusps are
unlikely to be observed in galaxies beyond the Local Group.

Unresolved density cusps might appear as pointlike nu-
clei, particularly in dE galaxies which have low central sur-
face brightnesses. Pointlike nuclei are in fact nearly ubiq-
uitous in elliptical galaxies as faint asMV ≈ −18, disap-
pearing forMV ∼> −13 (van den Bergh 1986). Luminosities
of the nuclei are observed to average∼ 0.003 times that of
their host galaxies, albeit with considerable scatter (Coté et al.
2005). As shown in §4, Bahcall-Wolf cusps entrain a mass
of order 0.1M•. If the ratio of black hole mass to stellar
mass that characterizes bright galaxies,M•/Mgal ≈ 0.0013
(Merritt & Ferrarese 2001), also holds for dE galaxies, the lu-
minosity associated with the cusps would be only∼ 10−4Lgal,
too small to explain the majority of the observed nuclei. On
the other hand, essentially nothing is known about the masses
(or even the existence) of black holes in spheroids fainter than
MV = −18 (with the exception of M32, probably a special
case) and it is possible thatM• ∼> 10−3Mgal in these galaxies.
It is intriguing to speculate that the disappearance of pointlike
nuclei in dE galaxies fainter thanMV ≈−13 might signal the
disappearance of the black holes.

We note that the nuclear cusps of the Milky Way and M32
extend approximately as power laws out to radii far beyondrh.
Even these more extended cusps would be unresolved beyond
the Local Group and might contain enough light to explain
the pointlike nuclei.

The black holes in the Milky Way and M32 are
among the smallest with dynamically-determined masses
(Ferrarese & Ford 2005). If smaller black holes do not exist,
Figure 8 suggests that Bahcall-Wolf cusps might be present
only in a small subset of spheroids containing black holes
with masses 106M⊙ ∼< M• ∼< 3×106M⊙. However it has been
argued that some late-type spirals host AGN with black hole
masses as low as∼ 104M⊙ (Ho 2004). If so, Figure 8 sug-
gests that Bahcall-Wolf cusps would be present around these
black holes.

The presence of cores, or “mass deficits,” at the cen-
ters of bright elliptical galaxies has been taken as ev-
idence of past merger events (Milosavljevic et al. 2002;
Ravindranath, Ho & Filippenko 2002; Graham 2004). Mass
deficits are observed to disappear in galaxies fainter than
MV ≈ −19.5 (Milosavljevic et al. 2002). Could this be due
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to cusp regeneration? Figure 8 suggests an alternative expla-
nation. Galaxies fainter thanMV = −19.5 are mostly unre-
solved on scales ofrh, which is also the approximate size of
a core created by a binary supermassive black hole. The lack
of mass deficits in galaxies withMV ∼> −19.5 probably just
reflects a failure to resolve the cores in these galaxies.

5.3. Black Hole Feeding Rates

The low-luminosity galaxies most likely to harbor Bahcall-
Wolf cusps (Figure 8) are the same galaxies that would
dominate the overall rate of stellar tidal disruptions, assum-
ing of course that they contain black holes (Wang & Merritt
2004). Published estimates ofṄ, the rate of stellar disrup-
tions, in such low-luminosity galaxies (Syer & Ulmer 1999;
Magorrian & Tremaine 1999; Wang & Merritt 2004) have al-
most always been based on an inward extrapolation of lumi-
nosity profiles measured atr > rh. In principle, knowing that
ρ(r) has the Bahcall-Wolf form near the black hole should
allow a more accurate estimate ofṄ in the low-luminosity
galaxies that dominate the overall flaring rate.

Here we show that the presence of a Bahcall-Wolf cusp im-
plies a lower limit onṄ, of order 10−4 yr−1. The stellar den-
sity in the cusp is

ρ(r) ≈ ρ(r0)

(

r
r0

)−7/4

(15)

(equation 8), withr0 = αrh, α ≈ 0.2. We can writeρ(r0) =
KM•/r3

h, where the constantK depends on the form ofρ(r)
at r > r0; assuming aρ ∼ r−2 power law forr > r0, as in
the Milky Way and many other low-luminosity spheroids, we
find K ≈ 4.0. The rate at which stars in the cusp are fed to the
black hole is approximately

Ṅcusp≈
4π
m⋆

∫ αrh

0

ρ
Tr ln(2/θlc)

r2dr (16)

(Lightman & Shapiro 1977; Syer & Ulmer 1999). Hereθlc ≈
√

rt/r is the angular size of the loss cone at radiusr andrt

is the tidal disruption radius,rt ≈ (M•/m⋆)
1/3r⋆. This ex-

pression assumes that the feeding rate is limited by diffusion,
i.e. that the loss cone is “empty”; an equivalent statement
is that rcrit , the radius above which a star can scatter in and
out of the loss cone in one orbital period, is greater thanαrh.
In the case of the Milky Way black hole, it can be shown
that 0.2rh < rcrit < rh. Taking the slowly-varying logarith-
mic terms out of the integral, we find a feeding rate for stars
in the cusp:

Ṅcusp≈ 1.6
lnΛ

ln(2/θlc)

(

GM•
r3
h

)1/2

. (17)

Evaluatingθlc at r = αrh and setting lnΛ = 15, this becomes

Ṅcusp≈ 7×10−5yr−1M1/2
•,MWr−3/2

h,MW (18)

whereM•,MW and rh,MW are in units of the values quoted
above for the Milky Way. Thus, the flaring rate due to stars
in the Milky Way cusp is∼ 10−4 yr−1. This is of course
a lower limit on the totalṄ since it ignores the contribution
from stars outside the cusp, atr > αr0 ≈ 0.7 pc. In fainter
spheroids, theM•−σ relation, combined with equation (18),
impliesṄ ∝ M−0.4

• and hence even higher flaring rates.
The Bahcall-Wolf solution will break down at radii where

the physical collision time is shorter than the diffusion time

ln(2/θlc)Tr . Adopting the standard expression for the colli-
sion time,

Tcoll =
[

16
√

πnσr2
⋆(1+ Θ)

]−1
(19)

with Θ ≡ Gm⋆/(2σ2r⋆) andn the number density of stars, we
find that physical collisions begin to affect the stellar distri-
bution atr ∼< 0.08 pc ∼< 0.023rh for Solar-type stars in the
Galactic nucleus.

5.4. Gravitational Lensing

The central parts of galaxies can act as strong gravita-
tional lenses; the lack of a “core” image in observed lens sys-
tems implies a lower limit on the stellar density of the lens-
ing galaxy within the central∼ 102 pc (Rusin & Ma 2001;
Keeton 2003). Broken power-law density profiles like those
in equation (8) have been used to model lensing galaxies
(Muñoz et al. 2001; Bowman et al. 2004), although the break
radii in these studies were chosen to be much larger than the
valuer0 ≈ 0.2rh that describes the Bahcall-Wolf cusps (Fig-
ure 6). However the presence or absence of the cusps should
have little effect on the lensing properties of galaxies, because
the mass contained within the cusp is small compared with
M•, and because even the supermassive black holes contribute
only slightly to the lensing signal (Rusin et al. 2005). The
low-luminosity galaxies that are likely to contain cusps (Fig-
ure 8) are also unlikely to act as lenses.

5.5. Dark Matter

The distribution ofdark matteron sub-parsec scales near
the center of the Milky Way and other galaxies is relevant
to the so-called “indirect detection” problem, in which infer-
ences are drawn about the properties of particle dark matter
based on measurements of its self-annihililation by-products
(Bertone & Merritt 2005). A recent detection of TeV ra-
diation from the Galactic center by the HESS consortium
(Aharonian et al. 2004) is consistent with a particle annihila-
tion signal, but only if the dark matter density in the inner few
parsecs is much higher than predicted by an inward extrapola-
tion of the standard,ΛCDM halo models (Hooper et al. 2004).
One possibility is that the dark matter forms a steep “spike”
around the black hole (Gondolo & Silk 1999). Particle dark
matter would not spontaneously form a Bahcall-Wolf cusp
since its relaxation time is extremely long. However, once a
cusp forms in thestars, scattering of dark matter particles off
of stars would redistribute the dark matter in phase space ona
time scale of orderTr(rh), the star-star relaxation time (Merritt
2004). The ultimate result is aρ ∼ r−3/2 density cusp in
the dark matter (Gnedin & Primack 2004), but with possibly
low normalization, particularly if the dark matter distribution
was previously modified by a binary black hole (Merritt et al.
2002). TheN-body techniques applied here would be an ef-
fective way to address this problem.
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Abstract
After being destroyed by a binary supermassive black hole, astellar density cusp can regrow at the center of
a galaxy via energy exchange between stars moving in the gravitational field of the single, coalesced hole.
We illustrate this process via high-accuracyN-body simulations. Regeneration requires roughly one relaxation
time and the new cusp extends to a distance of roughly one-fifth the black hole’s influence radius, with density
ρ ∼ r−7/4; the mass in the cusp is of order 10% the mass of the black hole.Growth of the cusp is preceded
by a stage in which the stellar velocity dispersion evolves toward isotropy and away from the tangentially-
anisotropic state induced by the binary. We show that density profiles similar to those observed at the center of
the Milky Way and M32 can regenerate themselves in several Gyr following infall of a second black hole; the
presence of density cusps at the centers of these galaxies can therefore not be used to infer that no merger has
occurred. We argue thatρ ∼ r−7/4 density cusps are ubiquitous in stellar spheroids fainter thanMV ≈ −18.5
that contain supermassive black holes, but the cusps have not been detected outside of the Local Group since
their angular sizes are less than∼ 0.1′′. We show that the presence of a cusp implies a lower limit of∼ 10−4

yr−1 on the rate of stellar tidal disruptions, and discuss the consequences of the cusps for gravitational lensing
and the distribution of dark matter on sub-parsec scales.
Subject headings:

1. INTRODUCTION

Mass distributions near the centers of early-type galaxies
are well described as power laws,ρ ∼ r−γ, with indicesγ
that change gradually with radius. At their innermost resolved
radii, most galaxies have 0.5∼< γ ∼< 2., with the steeper slopes
characteristic of fainter galaxies (Ferrarese et al. 2005). If a
supermassive black hole is present, the orbits of stars willbe
strongly influenced at distances less than∼ rh = GM•/σ2 ≈
10 pc(M•/108M⊙)(σ/200km s−1)−2, the black hole’s grav-
itational influence radius. Most galaxies are spatially unre-
solved on these small scales; two clear exceptions are the
nucleus of the Milky Way, for which number counts extend
inward to∼ 0.002rh (Genzel et al. 2003), and M32, which is
resolved down to a radius of∼ 0.2rh (Lauer et al. 1998). Both
galaxies exhibit steep density slopes,γ ≈ 1.5, atr ∼< rh. Out-
side of the Local Group, only giant ellipticals have sufficiently
large black holes thatrh can be resolved; the nuclear luminos-
ity profiles in these galaxies are also power laws but very flat,
γ ∼< 1.

Many distributions of stars are possible around a black hole,
but under two circumstances, the stellar distribution atr ∼< rh
is predictable. (1) If the black hole has been present for a
time longer thanTr , the relaxation time in the nucleus, ex-
change of energy between stars will drive the stellar distri-
bution toward a collisional steady state; assuming a single
stellar mass and ignoring physical collisions between stars,
this steady state hasρ ∼ r−7/4 at r ∼< rh (Bahcall & Wolf
1976). (2) If the nucleus formed via the merger of two galax-
ies each with its own supermassive black hole, the two black
holes will displace of order their combined mass in the pro-
cess of forming a tightly-bound pair (Milosavljevic & Meritt
2001), producing a low-density core. The first mechanism
may be responsible for the steep density profiles observed at
the centers of the Milky Way and M32, since both galax-
ies have central relaxation times of order 109 yr and both
are near enough that linear scales of orderrh are well re-

solved. The second mechanism may explain the very flat cen-
tral profiles of luminous E galaxies (Milosavljevic et al. 2002;
Ravindranath, Ho & Filippenko 2002); the central relaxation
times of these galaxies are much longer than 1010 yr and the
stellar distribution would be expected to remain nearly un-
changed after the two black holes had coalesced into one.

In this paper we point out that both outcomes are possi-
ble. A galaxy may form via mergers, but at the same time, its
central relaxation time following the merger may be shorter
than 1010 yr. In this circumstance, the cusp of stars around
the black hole is first destroyed by the massive binary, then is
regenerated via encounters between stars in the gravitational
field of the single, coalesced hole. The result is a steep inner
density profile in a galaxy that had previously experienced
the scouring effects of a massive binary. To the extent thatall
stellar spheroids experienced mergers – if only in the distant
past – this picture is probably generic, applying even to small
dense systems like M32 and to the bulges of spiral galax-
ies like the Milky Way. Understanding the conditions under
which a previously-destroyed density cusp can spontaneously
regenerate is crucial if one wishes to interpret the present-day
luminosity profiles of galaxies as fossil relics of their merger
histories (Volonteri et al. 2003).

We useN-body simulations (§2) to follow first the destruc-
tion (§3) and then the spontaneous regeneration (§4) of den-
sity cusps around black holes. The two most important free
parameters in this problem are the mass ratioq≡ M2/M1 of
the binary black hole, and the slopeγ of the initial density
cusp surrounding the larger hole. We present results for sev-
eral combinations ofq andγ (Table 1). Our conclusion is that
collisional, Bahcall-Wolf density cusps should be ubiquitous
in stellar spheroids fainter thanMV ≈−18.5 that contain mas-
sive black holes, essentially regardless of their merger histo-
ries. However these cusps have gone undetected in galaxies
outside the Local Group because they are unresolved. In §5
we discuss a number of consequences of the presence of the
cusps.
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TABLE 1
PARAMETERS OF THEN-BODY INTEGRATIONS

Run γ M2/M1 rh1 rh12 Tr (rh12) ah r ′h Tr (r ′h) Tr (0.2r ′h) Tgap r ′′h
1 0.5 0.5 0.264 0.326 1170. 0.0181 0.39 1420. 620 79. 0.38
2 0.5 0.25 0.264 0.296 1010. 0.0119 0.35 1210. 420 48. 0.34
3 0.5 0.1 0.264 0.278 916. 0.00573 0.32 1070. 390 22. 0.31

4 1.0 0.5 0.165 0.210 599. 0.0116 0.28 870. 300 48. 0.27
5 1.0 0.25 0.165 0.188 499. 0.00751 0.23 640. 270 26. 0.23
6 1.0 0.1 0.165 0.174 441. 0.00360 0.20 520. 220 11. 0.20

7 1.5 0.5 0.0795 0.107 217. 0.00594 0.17 420. 160 23. 0.17

2. MODELS AND METHODS

We started by constructing Monte-Carlo realizations of
steady-state galaxy models having Dehnen’s (1993) density
law, with an additional, central point mass representing a
black hole. The Dehnen-model density followsρ(r) ∝ r−γ

at small radii, and the isotropic phase-space distributionfunc-
tion that reproduces Dehnen’sρ(r) in the presence of a cen-
tral point mass is non-negative for allγ ≥ 0.5; henceγ = 0.5
is the flattest central profile that can be adopted if the initial
conditions are to represent an isotropic, steady state. We con-
sidered initial models withγ = (0.5,1.0,1.5). The massM1 of
the central “black hole” was always 0.01, in units where the
total mass in starsMgal was one; the Dehnen scale lengthrD
and the gravitational constantG were also unity. TheN-body
models so constructed were in a precise steady state at time
zero.

Destruction of the cusp was achieved by introducing a sec-
ond “black hole” into this model, which spiralled into the cen-
ter, forming a binary with the first (more massive) hole and
displacing stars. Three values were used for the mass of the
smaller hole:M2/M1 ≡ q = (0.5,0.25,0.1). The smaller hole
was placed initially at a distance 1.6 from the center, with a
velocity roughly 1/2 times the circular velocity at that radius;
a non-circular orbit was chosen in order to speed up the orbital
decay.

After the orbit of the smaller black hole had decayed via dy-
namical friction against the stars, it formed a tight binarywith
the more massive hole, with a relative orbit close to circular.
An estimate of the semi-major axisah at which the binary first
becomes “hard” isah = Gµ/4σ2 whereµ≡M1M1/(M1+M2)
is the reduced mass. The precise meaning of “hard” is debat-
able; the definition just given defines a “hard” binary as one
whose binding energy per unit mass,|E|/(M1+M2), exceeds
2σ2. While simple, this definition contains the ill-defined
quantityσ, which is a steep function of position near the black
hole(s). We followed Merritt & Wang (2005) and used the al-
ternative definition

ah ≡
µ

M1 +M2

rh12

4
=

q
(1+q)2

rh12

4
, (1)

with rh12 the gravitational influence radius defined below. In
practice,ah so defined was found to be roughly (within a fac-
tor ∼ 2) the value of the semi-major axis at which the binary
hardening rate(d/dt)(1/a) first became approximately con-
stant.

Decay was allowed to continue until the binary semi-major
axis had reached a value ofah/5 ≈ qrh/20. At this point,
the two black holes were replaced by a single particle of mass

M12 = M1+M2, with position and velocity given by the center
of mass of the binary. TheN-body integration was then con-
tinued for a time roughly equal to the relaxation timeTr(r ′h)
defined below. The most suitable time at which to merge the
two black holes was not cleara priori; our choice is of order
the separation at which gravitational-wave emission would
induce coalescence in∼ 1010 yr (Merritt & Milosavljevic
2005), but in fact we expect that other processes like inter-
action of the binary with ambient gas may drive the final coa-
lescence in real galaxies, and it is not clear at what separation
these processes are likely to dominate the evolution.

The ratio(M1 +M2)/Mgal ≈ 0.01 in our models is roughly
a factor ten larger than the ratio of black hole mass to
galaxy mass in real spheroids (Merritt & Ferrarese 2001;
Marconi & Hunt 2003). This is acceptable as long as we are
careful to present masses and radii in units scaled toM1 +M2
when making comparisons with real galaxies.

Table 1 gives a number of parameters associated with the
N-body integrations. The gravitational influence radiusrh was
defined as the radius containing a mass in stars equal to twice
the massM• of the central black hole. This definition, while
superior toGM•/σ2, is somewhat ambiguous in ourN-body
models, given that the effective mass of the central object,
and the distribution of the stars, both change with time. We
accordingly defined four different influence radii. (1) At the
start of the integrations, the larger black hole, of massM1,
was located at the center of the galaxy. Its influence radiusrh1
was computed by settingM• = M1 and using thet = 0 stellar
distribution. (2) After the smaller black hole has fallen into
a distance∼< rh1 from the larger hole, the appropriate value
of M• becomesM1+M2. We defined the associated influence
radius to berh12, which we computed ignoring the changes
that had occurred in the stellar distribution sincet = 0. (3) The
third influence radius,r ′h, was computed by settingM• = M1+
M2, but this mass was compared with the stellar distribution at
the end of the binary evolution phase, after the phase of cusp
destruction. (4) Finally,r ′′h is the influence radius at the end
of the second phase of integration, after a Bahcall-Wolf cusp
has formed around the single black hole. As Table 1 shows,
r ′′h is only slightly smaller thanr ′h since the regenerated cusp
contains a mass that is small compared withM•.

The relaxation timesTr in Table 1 were computed from
the standard expression (eq. 2-62 of Spitzer 1987), setting
lnΛ = ln(σ2rh12/2Gm⋆), with σ the 1D stellar velocity dis-
persion atrh12 andm⋆ = N−1 the mass of anN-body particle.
This definition ofΛ is equivalent to equatingbmax, the max-
imum impact parameter for encounters in Chandrasekhar’s
theory, with rh (Preto, Merritt & Spurzem 2004). Table 1
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FIG. 1.— Cusp destruction. Solid lines are stellar density profiles just before the two “black holes” were combined into one.Dashed lines show the initial
models.q = M2/M1 is the binary mass ratio.

gives values ofTr evaluated at two of the four influence radii
defined above.T(rh12) was computed using the structural pa-
rameters of the initial galaxy model, whileTr(r ′h) was com-
puted using estimates like those in Figures 1 and 3. of the
stellar density and velocity dispersion in the evolved models.
We also giveTr(0.2rh′); the motivation for this is given be-
low. The final time scale in Table 1,Tgap, is defined below
(equation 7) and is an estimate of the time required for the
angular-momentum gap created by the binary to be refilled;
Tgap varied between∼ Tr(rh)/20 and∼ Tr(rh)/50.

The power-law cusps in our initial models were motivated
by the approximately power-law dependence of luminosity
density on radius observed near the centers of many early-
type galaxies (Ferrarese et al. 2005). Since the observations
often do not resolverh, the stellar distribution atr ∼< rh in
some galaxies might be different than the inward extrapola-
tion of the power laws that are fit to larger radii. For instance,
galaxies with sufficiently short relaxation times are expected
to haveρ ∼ r−7/4 density cusps like the ones that form in
our N-body models at late times. Other galaxies may have
compact stellar nuclei (Coté et al. 2005). We did not include
such dense features in our initial models: first, because the
associated mass would have been small compared with the
mass removed by the binary; and second, because doing so
would have more than doubled the computational effort due
to the short time steps required for stars initially near theblack
holes.

All N-body integrations usedN = 0.12 × 106 par-
ticles and were carried out on a GRAPE-6 special-
purpose computer. TheN-body integrator is described
in Merritt, Mikkola & Szell (2005). This algorithm is an
adaptation ofNBODY1 Aarseth (1999) to the GRAPE-6; it
uses a fourth-order Hermite integration scheme with indi-
vidual, adaptive, block time steps (Aarseth 2003). For
the majority of the particles, the forces and force deriva-
tives were calculated via a direct-summation scheme on the
GRAPE-6, using the particle advancement scheme described
in Berczik, Merritt & Spurzem (2005) with an accuracy pa-
rameter ofη = 0.01 and zero softening. Close encounters be-
tween the black holes, and between black holes and stars, re-
quire prohibitively small time steps in such a scheme and were

regularized using the chain regularization routine of Mikkola
and Aarseth (Mikkola & Aarseth 1990, 1993). A detailed de-
scription of the chain algorithm, including the results of per-
formance tests, are given in Merritt, Mikkola & Szell (2005).

Our initial conditions (one black hole at the center, a smaller
black hole orbiting about it) are not as realistic as in simula-
tions that follow both merging galaxies from the start (e.g.
Milosavljevic & Meritt (2001), Merritt et al. (2002)), but are
superior to simulations that drop one or two black holes
into a pre-existing galaxy that contains no black hole (e.g.
Quinlan & Hernquist (1997); Nakano & Makino (1999a,b)).
We ignore the radiation recoil that would accompany the final
coalescence of the two black holes, displacing the remnant
hole temporarily from its central location and increasing the
size of the core (Merritt et al. 2004b; Boylan-Kolchin et al.
2004). We also ignore processes like loss of stars into the
black hole(s), stellar tidal disruptions, and stellar collsions,
all of which might affect the form of the final density profile.

3. CUSP DESTRUCTION

After formation of a hard binary ata ≈ ah, the bi-
nary’s binding energy continues to increase as the two
massive particles eject stars via the gravitational sling-
shot (Saslaw, Valtonen & Aarseth 1974; Mikkola & Valtonen
1992; Quinlan 1996). As in a number of recent studies
(Berczik, Merritt & Spurzem 2005; Merritt, Mikkola & Szell
2005), we found that the hardening rates were nearly in-
dependent of time,s ≡ (d/dt)(1/a) ≈ const., fora < ah.
The values ofs are not of particular interest here, sinceN-
body hardening rates are known to depend strongly on par-
ticle number(Berczik, Merritt & Spurzem 2005), and we do
not expect these simulations to be in the “empty loss cone”
regime that characterizes binary evolution in real galaxies
(Milosavljevic & Meritt 2003). However the “damage” done
by the binary to the pre-existing stellar distribution is expected
on energetic grounds to be a function ofah/a, essentially in-
dependent of therate of hardening and hence ofN (Quinlan
1996), and this expectation has recently been confirmed in
N-body experiments (Merritt, Mikkola & Szell 2005). As de-
scribed above, the binary phase of the integrations was termi-
nated whena = ah/5.
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FIG. 2.— Mass deficits, computed as described in the text, duringthe binary phase of the integrations;a = a(t) is the binary semi-major axis andah is defined
in equation (1).q = M2/M1 is the binary mass ratio.

FIG. 3.— Stellar velocity dispersions at the end of the binary phase, in the integrations withM2/M1 = 0.5. Solid lines:σr ; dashed lines:σt . The binary creates
a tangentially-biased velocity distribution near the center by preferentially ejecting stars on radial orbits. Arrows indicate the black hole influence radiusr ′h.

Figure 1 shows density profiles of theN-body models at the
end of the binary phase. Radii of the “star” particles were
computed relative to the center of mass of the binary, and
estimates ofρ(r) were constructed using the nonparametric
kernel estimator of Merritt & Tremblay (1994). The damage
done by the infalling black hole can be seen to increase with
its mass forγ = 0.5 and 1, and extends out to a radius∼ rh.
Theγ = 0.5 cusp is converted into an approximately constant-
density core, while theγ = 1 andγ = 1.5 cusps are “softened,”
to power laws of index∼ 0.5 (γ = 1) and∼ 1.0 (γ = 1.5).

A standard measure of the damage done by an infalling
black hole to a pre-exising density cusp is the “mass deficit”
Mde f, defined as the decrease in the central mass within a
sphere that contains the affected region (Milosavljevic etal.
2002). The mass deficit is potentially observable
(Milosavljevic et al. 2002; Ravindranath, Ho & Filippenko
2002; Graham 2004), assuming that one can guess the pre-
existing density profile, and its value is an index of the cumu-
lative effect of mergers on the galaxy (Volonteri et al. 2003).

Since there are few results in the literature on the sizes of
mass deficits generated by large-mass-ratio inspirals, we show
in Figure 2 mass deficits for these integrations, expressed in
terms ofah/a(t); we extended some of the integrations be-
yonda = ah/5 in order to further elucidate this dependence.
Figure 2 shows that – for a given degree of binary hardness –
the mass deficit is much better predicted byM1 or M12 than
by M2. In other words, the damage done by the smaller black
hole is rougly proportional to the mass of thebinary, at a given
value ofah/a.

This is a reasonable result. Equating the increase in the
binary’s binding energy with the energy lost to an ejected star
gives

Gµ(M1 +M2)

2
δ
(

1
a

)

= (Ef −Ei)δMe j (2)

with Ei andEf the initial and final kinetic energy per unit mass
of the ejected star andδMe j its mass;µ is the reduced mass of
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FIG. 4.— Mean velocity anisotropy of the stars in a sphere of radiusr ′h around the single black hole, as a function of time after the massive binary was combined
into a single particle. Shown are the integrations withM2/M1 = 0.5. Arrows indicate the timeTgap defined in the text (equation 7, Table 1).

the binary. This can be written

dMe j

d ln(1/a)
=

µ
2

V2
bin

Ef −Ei
(3)

whereVbin =
√

G(M1 +M2)/a is the relative velocity be-
tween the components of the binary (assuming a circular or-
bit). Hills (1983) finds from scattering experiments that, for a
hard binary in the limitM2 ≪ M1, Ef −Ei for a zero-impact-
parameter encounter is∼ 1.4Gµ/a. This implies

dMe j

d ln(1/a)
≈ 0.36(M1+M2) (4)

and the total mass ejected by the binary in hardening from
a≈ ah to af is

∆Me j

M1 +M2
≈ 0.36ln

(

ah

af

)

, (5)

i.e., the mass ejected in reaching a given degree of hardening
ah/a is proportional toM1 + M2. Quinlan (1996) used scat-
tering experiments to computeJ in the relation

dMe j

d ln(1/a)
= J(M1 +M2) (6)

as a function ofM2/M1, assuming a Maxwellian distribution
of velocities at infinity. He defined “ejected” stars to be those
with final velocities exceeding max{1.5V0,

√
3σ}; here “final”

means after the star has moved far from the binary (ignoring
any velocity changes that result from the galactic potential),
V0 is the velocity before the encounter, andσ is the velocity
dispersion far from the massive binary. Quinlan’s definition
is a reasonable one ifMe j is to be equated withMde f, and
Quinlan found thatJ is nearly independent ofM2/M1 for a
hard binary, decreasing fromJ≈ 1 for M2 = M1 to J≈ 0.5 for
M2 = M1/256 (his Figure 5). TheseJ-values are consistent
with Figure 2.

Expressions like (5) seem counter-intuitive, since they seem
to imply an ejected mass that is large even for smallM2. How-
ever for smallM2, ah ∝ M2/M1 (equation 1), so for a givenaf ,

the ejected mass is predicted to scale as∼ lnM2. The depen-
dence ofMde f on binary mass ratio is a topic that deserves fur-
ther study since the central structure of bright ellipticalgalax-
ies is expected to reflect the cumulative effect of many minor
mergers (Volonteri et al. 2003).

We do observe an additional dependence ofMde f on bothγ
andq at givenah/a (Figure 2). However the definition ofah is
somewhat arbitrary (§2) and we do not pursue that additional
dependence here.

The binary preferentially ejects stars on eccentric orbits.
The result is an induced anisotropy in the stellar velocity dis-
tribution at r ∼< rh. Figure 3 illustrates this, for the integra-
tions with the most massive secondaries (M2/M1 = 0.5). The
induced anisotropy is mild, similar to what has been observed
in otherN-body studies (e.g.Milosavljevic & Meritt (2001)).

4. CUSP REGENERATION

When the separation between the two components of the bi-
nary had dropped toa = ah/5, the two massive particles were
combined into one and placed at the center of mass of the bi-
nary. The integrations were then continued until an additional
time of roughlyTr(r ′h) had elapsed (Table 1). During this sec-
ond phase of the integrations, the stellar distribution around
the single black hole evolved due to star-star encounters. The
initial effect of encounters was to refill the phase space gap
created when the binary ejected stars with pericentersrp ∼< ah.
The refilling time is approximately

Tgap≈
ah

rh
Tr(rh) ≈

1
4

q
(1+q)2Tr(rh) (7)

(Merritt & Wang 2005). Table 1 shows thatTgap varies be-
tween∼ 10 (γ = 1.0,q = 0.1) and∼ 80 (γ = 0.5,q = 0.5) in
our units, or between∼ 0.02Tr(rh) and∼ 0.05Tr(rh). Fig-
ure 4 verifies that the initially anisotropic velocity distribu-
tion at r ∼< rh becomes isotropic in a time of orderTgap. In
luminous galaxies, evenTgap can exceed a galaxy lifetime
(Merritt & Wang 2005), and such galaxies will experience a
greatly reduced rate of interaction of stars with the black hole
compared to galaxies with a full loss cone.

On the longer time scale of∼ Tr(rh), energy exchange
between stars modifies their radial distribution, eventually
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FIG. 5.— Cusp regeneration. Plots show the stellar density profile around the single black hole, at post-coalescence times of approximately(0,0.1,0.5,1)Tr (rh)
(γ = 0.5) and(0,0.2,1)Tr (rh) (γ = 1.0). Dotted lines show the density profiles at the start of the binary integrations, when only one black hole was located at the
center. Dashed lines have logarithmic slope of−1.75. Arrows indicater ′h, the influence radius of the single black hole just after coalescence of the binary (Table
1).
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FIG. 6.— Final density profiles after growth of the cusp. Black lines had
γ = 0.5 for the pre-binary initial conditions, red lines hadγ = 1.0, and blue
line hadγ = 1.5. Dashed lines show the initial models.

reaching the zero-flux Bahcall-Wolf (1976) solutionρ ∼
r−7/4. This is shown in Figure 5 for theγ = 0.4 andγ = 1
models. (Results forγ = 1.5 are shown in Figures 6 and 7
and are discussed separately below.) The new cusp attains the
ρ ∼ r−7/4 form inside of∼ 0.2r ′h. In all of the integrations,
the logarithmic slope of the final cusp is steeper than that of
the initial (pre-binary) galaxy at radiir ∼< 0.5r ′h, although the
final density remains below the initial density atr ≈ r ′h.

Figure 6 shows the final density profiles for all seven mod-
els. There is remarkably little dependence of the final result
on the mass ratio of the binary. The reason can be seen by
comparing Figures 1 and 6: while the different mass ratios do
yield different density profiles at the end of the binary phase,
most of these differences are atr ∼< 0.3rh, and this region is
efficiently refilled by the new cusp.

The final density profiles in Figure 6 can be well approxi-
mated as broken power laws at radiir ∼< rh:

ρ(r)= ρ(r0)

(

r
r0

)−7/4

, r ≤ r0,

= ρ(r0)

(

r
r0

)−1

, r0 < r ∼< rh. (8)

The “break” radiusr0 is ∼ 0.15r ′′h in the models with initial
cusp slopeγ = 0.5, ∼ 0.20r ′′h for γ = 1.0, and∼ 0.25r ′′h for
γ = 1.5. In this approximation toρ(r), the mass in the cusp,
Mcusp≡ M(r ≤ r0), is given by

Mcusp=
2M•

1+0.75
[

(rh/r0)
2−1

] . (9)

ThusMcusp/M• ≈ 0.03 (γ = 0.5),∼ 0.12 (γ = 1.0), and∼ 0.16
(γ = 1.5), confirming thatMcusp is small compared withM•.
One consequence is thatr ′′h, the influence radius at the final
time step, differs only slightly fromr ′h, the influence radius at
the end of the binary phase (Table 1).

Finally, we consider how much time is required to regrow
the cusps. As noted above, all of the post-binary integrations
were carried out until an elapsed time of∼ Tr(r ′h), and this
was also roughly the time required for the cusp to reach its
steady-state form. However the cusp extends only to a radius
of ∼ 0.2r ′h, and a more relevant estimate of the relaxation time
is probablyTr(0.2r ′h). Estimates of this time are given in Ta-
ble 1. The time to fully grow the cusp is approximately 2−3
times the relaxation time at 0.2r ′h. As Figure 5 shows, consid-
erable regeneration takes place even in a much shorter time,
hence we might predict the presence of steep central profiles
even in galaxies substantially younger than eitherTr(rh) or
(2−3)Tr(0.2rh). We return to this issue below.

5. IMPLICATIONS

5.1. Cusp Regeneration in Local Group Galaxies

The relaxation time in the Milky Way nucleus is less than
1010 yr and a number of authors have suggested that the stellar
cluster around the supermassive black hole might be collision-
ally relaxed (Alexander 1999; Genzel et al. 2003). The stellar
mass density, based on number counts that extend down to
∼ 0.005 pc, is

ρ(r) ≈ 1.2×106M⊙pc−3
(

r
0.38pc

)−α
(10)

(Genzel et al. 2003), withα ≈ 2.0 atr ≥ 0.38 pc andα ≈ 1.4
at r < 0.38 pc. The black hole mass is 3.7± 0.2× 106M⊙
(Ghez et al. 2005). The implied influence radius, defined as
the radius containing a mass in stars that is twice the black
hole mass, isrh ≈ 88′′ ≈ 3.4 pc.

We used equation (10) and the measured value ofM• to
compute the stellar velocity dispersion profile in the Milky
Way nucleus, assuming a spherical velocity ellipsoid. The re-
laxation timeTr was then calculated as in theN-body models,
i.e.

Tr(r) =
0.338σ(r)3

ρ(r)m⋆G2 lnΛ
(11a)

≈ 1.69×109yr× (11b)
(

σ(r)

100 km s−1

)3(

ρ(r)
106M⊙

)−1(

m⋆

0.7M⊙

)−1(

lnΛ
15

)−1

(11c)

with m⋆ = 0.7M⊙ andΛ = σ2(rh)rh/2Gm⋆. The relaxation
time atr = rh was found to be 5.4× 1010 yr, dropping to∼
6×109 yr at 0.2rh and∼ 3.5×109 yr at∼ 0.1rh; at smaller
radii, Tr increases very slowly with decreasingr.

As noted above, cusp regeneration in theN-body models
required a time of∼ 1Tr(rh), or ∼ 2− 3Tr(0.2rh). However
these two timescales are substantially different in the Milky
Way, suggesting that the structure of the Milky Way nucleus
differs in some respect from that of theN-body models in the
region 0.2rh ∼< r ∼< rh.

Figure 7 makes the comparison. We show the evolution
of ρ(r) andΣ(R) (the latter is the projected density) in the
post-binary integration with parameters (γ = 1.5,q = 0.5);
the right-hand frame also shows the measured surface den-
sity of stars at the Galactic center, from the number counts
of Genzel et al. (2003), with arbitrary vertical normalization.
The N-body model successfully reproduces the slope of the
observed stellar cusp at late times, but theN-body profile is
less steep than the observed counts atr ∼> 0.2rh, i.e., outside
of the cusp. In the Milky Way, an approximately power-law
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FIG. 7.— Evolution of the spatial (a) and projected (b) density profiles in the simulation that most closely resembles the Milky Way nucleus. The initial
model (dotted line) had aρ ∼ r−1.5 density cusp and a central black hole of massM1 = 0.01, in units where the total stellar mass of the model is 1. Blue
(lower) line shows the density after infall and capture of a second black hole of massM2 = 0.5M1. Green, red and black lines show the evolving density at
times (100,200,300) after coalesence; based on the discussion in the text, the corresponding physical times are roughly (4,8,12)×109 yr. Symbols in (b) show
the observed surface density of stars near the Galactic Center, from Genzel et al. (2003); see Figure 7 from that paper forsymbol definitions. The vertical
normalization of the symbols was set by eye in order to give a good match to theN-body data atR∼< 0.2rh. Dashed lines have logarithmic slopes of−1.75 (a)
and−0.75 (b).

dependence ofρ on r extends well beyondrh, while theN-
body models exhibit a shallower slope at these radii. Better
correspondence betweenN-body model and data could pre-
sumably have been achieved by modifying the initial model,
or by repeating the integrations with smallerM• (which would
have mandated a largerN in order to resolve the smaller
cusp); the unphysically large value ofM• adopted here (M• =
0.015Mgal) implies an influence radius that is comparable to
the Dehnen-model scale length.

In light of these ambiguities, it is reasonable to fix the phys-
ical unit of time by comparing theN-body model to the Milky
Way at∼ 0.2rh; this is roughly the outer radius of the cusp,
and Figure 7 shows that the model fits the data well out to this
radius. We find thatTr(0.2rh) ≈ 160 in N-body units, while
in the Milky Way, Tr(0.2rh) ≈ 6× 109 yr. The integration
time of 300 in Figure 7 then corresponds to a physical time
of ∼ 1.1×1010 yr. In fact, theN-body cusp attains nearly its
final form by a time of∼ 200, or∼ 8×109 yr. We conclude
that the distribution of stars near the Milky Way black hole is
consistent with a major merger having occurred at a time∼> 8
Gyr in the past.

In fact, the probability is∼ 68% that a galaxy with a dark-
matter halo as large as that of the Milky Way has experienced
a major merger (mass ratio of at least 4 : 1) since a redshift of
z= 2, i.e., in the last∼ 10 Gyr (Merritt et al. 2002). If this
occurred, our results suggest the interesting possibilitythat
the Milky Way cusp may still be evolving toward its steady-
state form. Evidence for this might be sought in the form of
a flattening the density profile at very small radii,r ∼< 0.1rh ≈
10′′.

The stellar density near the center of M32 is

ρ(r) ≈ 2.2×105M⊙pc−3
(

r
1pc

)−α
, α ≈ 1.5 (12)

(Lauer et al. 1998), very similar to that of the Milky Way. Un-
fortunately the estimation ofM• in M32 suffers from the de-
generacy inherent in orbital modelling of axisymmetric sys-
tems and the black hole mass could lie anywhere in the
range 1.5×106M⊙ ∼< M• ∼< 5×106M⊙ with equal likelihood
(Valluri, Merritt & Emsellem 2004). Applying theM•−σ re-
lation (Ferrarese & Merritt 2000) givesM• ≈ 2.0× 106M⊙
which we adopt here. The black hole influence radius be-
comes∼ 1.7 pc≈ 0.5′′ andTr(rh) ≈ 2.2× 1010 yr. This is
somewhat smaller than the estimate ofTr(rh) in the Galactic
nucleus, suggesting that a collisional cusp could easily have
been regenerated in M32. However, the cusp should only ex-
tend outward to∼ 0.2rh ≈ 0.1′′ at the distance of M32, barely
resolvable even with HST. Depending on the exact value of
M•, the collisional cusp in M32 may or may not have been
resolved.

Both the mass of the black hole in M31, and the dynamical
state of its nucleus, are less certain than in the Milky Way
and M32 due to M31’s complex morphology. However most
estimates of the relaxation time at the center of P2, the nuclear
component believed to contain the black hole, are of order
1011 yr (e.g. Lauer et al. 1998). M33 has a very short central
relaxation time but no dynamical signature of a black hole
(Valluri et al. 2005).

5.2. Cusp Regeneration in Galaxies Beyond the Local Group

Which galaxies beyond the Local Group should contain
Bahcall-Wolf cusps? Figure 8 shows estimates ofTr(rh) in the
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FIG. 8.— Estimates of the relaxation time at the black hole’s influence ra-
dius, rh, in the sample of early-type galaxies modelled by Wang & Merritt
(2004). Black hole masses were computed from theM• − σ relation
(Merritt & Ferrarese 2001), except in the case of the Milky Way, for which
M• = 3.7× 106M⊙ was assumed (Ghez et al. 2005). The stellar mass was
set equal to 0.7M⊙ when computingTr . Horizonal axis is absolute visual
magnitude of the galaxy or, in the case of the Milky Way, the stellar bulge.
The size of the symbols is proportional to log10(θrh/θobs), whereθrh is the
angular size of the black hole’s influence radius andθobs is the observational
resolution. Filled symbols haveθrh > θobs(rh resolved) and open circles have
θrh < θobs(rh unresolved). Values ofTr (rh) in the unresolved galaxies should
be considered approximate since the luminosity profiles in these galaxies are
not well known atr < rh.

sample of early-type galaxies modelled by Wang & Merritt
(2004); these are a subset of the Magorrian et al. (1998) galax-
ies. In this plot, filled symbols denote galaxies observed with
angular resolutionθobs < θrh, and the size of the symbol is
proportional to log(θrh/θobs). (In galaxies whererh is not
resolved, we note that the estimates ofTr are particularly un-
certain, since they depend on an inward extrapolation of lu-
minosity profiles measured atr > rh.)

Figure 8 reveals that the brightest spheroids,MV ∼< −20,
have central relaxation times that always greatly exceed 1010

yr. In these galaxies, a low-density core created by a bi-
nary supermassive black hole would persist for the age of
the universe. HoweverTr(rh) drops with decreasing luminos-
ity, falling below 1010 yr for MV ∼> − 18. The Milky Way
bulge falls on the relation defined by the more distant galaxies,
which is reassuring given the uncertainties in its luminosity.
(We adopted a bulge blue absolute magnitude ofMB = −17.6
from Marconi & Hunt (2003) and assumedMV = MB−0.9.)
However M32 appears to be shifted from the relation defined
by the other galaxies, as if it is the dense core of a once much
brighter galaxy. This possibility has often been raised in the
past (King 1962; Faber 1973; Nieto & Prugniel 1987).

Figure 8, combined with the arguments in §5.1, suggests
that spheroids fainter thanMV ≈ −18.5 are dynamically old
enough to contain Bahcall-Wolf cusps.

However outside of the Local Group, Figure 8 also sug-
gests that such cusps are unlikely to be resolved. We can
check this prediction by relating the angular size of the cusp
to black hole mass via theM• −σ relation,M8 ≈ 1.66σ4.86

200

(Ferrarese & Ford 2005), withM8 ≡ M•/108M⊙ andσ200≡
σ/200 km s−1, and (temporarily) redefiningrh asGM•/σ2 ≈
11.2M8σ−2

200 pc. Then

rh ≈ 2.76M0.59
8 pc. (13)

Taking for the outer radius of the cuspr0 ≈ 0.2rh (equation
8), its angular size becomes

θ0 ≈ 0.57′′M0.59
8 D−1

Mpc (14)

with DMpc the distance to the galaxy in Mpc. Thus, at the dis-
tance of the Virgo cluster,θ0 > 0.1′′ impliesM• ∼> 6×108M⊙;
however such massive black holes would almost certainly sit
in galaxies with central relaxation times longer than 1010 yr
(Figure 8) and a cusp would not have formed. If we assume
that black holes like the ones in the Milky Way and M32 (i.e.
M• ≈ 3×106M⊙) are the most massive to be associated with
collisionally-relaxed nuclei, then the associated cusps could
be resolved to a distance of∼ 0.7 Mpc, roughly the distance to
M32 – consistent with the statement made above that the cusp
in M32 is only barely resolved. Hence, collisional cusps are
unlikely to be observed in galaxies beyond the Local Group.

Unresolved density cusps might appear as pointlike nu-
clei, particularly in dE galaxies which have low central sur-
face brightnesses. Pointlike nuclei are in fact nearly ubiq-
uitous in elliptical galaxies as faint asMV ≈ −18, disap-
pearing forMV ∼> −13 (van den Bergh 1986). Luminosities
of the nuclei are observed to average∼ 0.003 times that of
their host galaxies, albeit with considerable scatter (Coté et al.
2005). As shown in §4, Bahcall-Wolf cusps entrain a mass
of order 0.1M•. If the ratio of black hole mass to stellar
mass that characterizes bright galaxies,M•/Mgal ≈ 0.0013
(Merritt & Ferrarese 2001), also holds for dE galaxies, the lu-
minosity associated with the cusps would be only∼ 10−4Lgal,
too small to explain the majority of the observed nuclei. On
the other hand, essentially nothing is known about the masses
(or even the existence) of black holes in spheroids fainter than
MV = −18 (with the exception of M32, probably a special
case) and it is possible thatM• ∼> 10−3Mgal in these galaxies.
It is intriguing to speculate that the disappearance of pointlike
nuclei in dE galaxies fainter thanMV ≈−13 might signal the
disappearance of the black holes.

We note that the nuclear cusps of the Milky Way and M32
extend approximately as power laws out to radii far beyondrh.
Even these more extended cusps would be unresolved beyond
the Local Group and might contain enough light to explain
the pointlike nuclei.

The black holes in the Milky Way and M32 are
among the smallest with dynamically-determined masses
(Ferrarese & Ford 2005). If smaller black holes do not exist,
Figure 8 suggests that Bahcall-Wolf cusps might be present
only in a small subset of spheroids containing black holes
with masses 106M⊙ ∼< M• ∼< 3×106M⊙. However it has been
argued that some late-type spirals host AGN with black hole
masses as low as∼ 104M⊙ (Ho 2004). If so, Figure 8 sug-
gests that Bahcall-Wolf cusps would be present around these
black holes.

The presence of cores, or “mass deficits,” at the cen-
ters of bright elliptical galaxies has been taken as ev-
idence of past merger events (Milosavljevic et al. 2002;
Ravindranath, Ho & Filippenko 2002; Graham 2004). Mass
deficits are observed to disappear in galaxies fainter than
MV ≈ −19.5 (Milosavljevic et al. 2002). Could this be due
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to cusp regeneration? Figure 8 suggests an alternative expla-
nation. Galaxies fainter thanMV = −19.5 are mostly unre-
solved on scales ofrh, which is also the approximate size of
a core created by a binary supermassive black hole. The lack
of mass deficits in galaxies withMV ∼> −19.5 probably just
reflects a failure to resolve the cores in these galaxies.

5.3. Black Hole Feeding Rates

The low-luminosity galaxies most likely to harbor Bahcall-
Wolf cusps (Figure 8) are the same galaxies that would
dominate the overall rate of stellar tidal disruptions, assum-
ing of course that they contain black holes (Wang & Merritt
2004). Published estimates ofṄ, the rate of stellar disrup-
tions, in such low-luminosity galaxies (Syer & Ulmer 1999;
Magorrian & Tremaine 1999; Wang & Merritt 2004) have al-
most always been based on an inward extrapolation of lumi-
nosity profiles measured atr > rh. In principle, knowing that
ρ(r) has the Bahcall-Wolf form near the black hole should
allow a more accurate estimate ofṄ in the low-luminosity
galaxies that dominate the overall flaring rate.

Here we show that the presence of a Bahcall-Wolf cusp im-
plies a lower limit onṄ, of order 10−4 yr−1. The stellar den-
sity in the cusp is

ρ(r) ≈ ρ(r0)

(

r
r0

)−7/4

(15)

(equation 8), withr0 = αrh, α ≈ 0.2. We can writeρ(r0) =
KM•/r3

h, where the constantK depends on the form ofρ(r)
at r > r0; assuming aρ ∼ r−2 power law forr > r0, as in
the Milky Way and many other low-luminosity spheroids, we
find K ≈ 4.0. The rate at which stars in the cusp are fed to the
black hole is approximately

Ṅcusp≈
4π
m⋆

∫ αrh

0

ρ
Tr ln(2/θlc)

r2dr (16)

(Lightman & Shapiro 1977; Syer & Ulmer 1999). Hereθlc ≈
√

rt/r is the angular size of the loss cone at radiusr andrt

is the tidal disruption radius,rt ≈ (M•/m⋆)
1/3r⋆. This ex-

pression assumes that the feeding rate is limited by diffusion,
i.e. that the loss cone is “empty”; an equivalent statement
is that rcrit , the radius above which a star can scatter in and
out of the loss cone in one orbital period, is greater thanαrh.
In the case of the Milky Way black hole, it can be shown
that 0.2rh < rcrit < rh. Taking the slowly-varying logarith-
mic terms out of the integral, we find a feeding rate for stars
in the cusp:

Ṅcusp≈ 1.6
lnΛ

ln(2/θlc)

(

GM•
r3
h

)1/2

. (17)

Evaluatingθlc at r = αrh and setting lnΛ = 15, this becomes

Ṅcusp≈ 7×10−5yr−1M1/2
•,MWr−3/2

h,MW (18)

whereM•,MW and rh,MW are in units of the values quoted
above for the Milky Way. Thus, the flaring rate due to stars
in the Milky Way cusp is∼ 10−4 yr−1. This is of course
a lower limit on the totalṄ since it ignores the contribution
from stars outside the cusp, atr > αr0 ≈ 0.7 pc. In fainter
spheroids, theM•−σ relation, combined with equation (18),
impliesṄ ∝ M−0.4

• and hence even higher flaring rates.
The Bahcall-Wolf solution will break down at radii where

the physical collision time is shorter than the diffusion time

ln(2/θlc)Tr . Adopting the standard expression for the colli-
sion time,

Tcoll =
[

16
√

πnσr2
⋆(1+ Θ)

]−1
(19)

with Θ ≡ Gm⋆/(2σ2r⋆) andn the number density of stars, we
find that physical collisions begin to affect the stellar distri-
bution atr ∼< 0.08 pc ∼< 0.023rh for Solar-type stars in the
Galactic nucleus.

5.4. Gravitational Lensing

The central parts of galaxies can act as strong gravita-
tional lenses; the lack of a “core” image in observed lens sys-
tems implies a lower limit on the stellar density of the lens-
ing galaxy within the central∼ 102 pc (Rusin & Ma 2001;
Keeton 2003). Broken power-law density profiles like those
in equation (8) have been used to model lensing galaxies
(Muñoz et al. 2001; Bowman et al. 2004), although the break
radii in these studies were chosen to be much larger than the
valuer0 ≈ 0.2rh that describes the Bahcall-Wolf cusps (Fig-
ure 6). However the presence or absence of the cusps should
have little effect on the lensing properties of galaxies, because
the mass contained within the cusp is small compared with
M•, and because even the supermassive black holes contribute
only slightly to the lensing signal (Rusin et al. 2005). The
low-luminosity galaxies that are likely to contain cusps (Fig-
ure 8) are also unlikely to act as lenses.

5.5. Dark Matter

The distribution ofdark matteron sub-parsec scales near
the center of the Milky Way and other galaxies is relevant
to the so-called “indirect detection” problem, in which infer-
ences are drawn about the properties of particle dark matter
based on measurements of its self-annihililation by-products
(Bertone & Merritt 2005). A recent detection of TeV ra-
diation from the Galactic center by the HESS consortium
(Aharonian et al. 2004) is consistent with a particle annihila-
tion signal, but only if the dark matter density in the inner few
parsecs is much higher than predicted by an inward extrapola-
tion of the standard,ΛCDM halo models (Hooper et al. 2004).
One possibility is that the dark matter forms a steep “spike”
around the black hole (Gondolo & Silk 1999). Particle dark
matter would not spontaneously form a Bahcall-Wolf cusp
since its relaxation time is extremely long. However, once a
cusp forms in thestars, scattering of dark matter particles off
of stars would redistribute the dark matter in phase space ona
time scale of orderTr(rh), the star-star relaxation time (Merritt
2004). The ultimate result is aρ ∼ r−3/2 density cusp in
the dark matter (Gnedin & Primack 2004), but with possibly
low normalization, particularly if the dark matter distribution
was previously modified by a binary black hole (Merritt et al.
2002). TheN-body techniques applied here would be an ef-
fective way to address this problem.
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