139,950 research outputs found

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Teaching Fluid Mechanics for Undergraduate Students in Applied Industrial Biology: from Theory to Atypical Experiments

    Get PDF
    EBI is a further education establishment which provides education in applied industrial biology at level of MSc engineering degree. Fluid mechanics at EBI was considered by students as difficult who seemed somewhat unmotivated. In order to motivate them, we applied a new play-based pedagogy. Students were asked to draw inspiration from everyday life situations to find applications of fluid mechanics and to do experiments to verify and validate some theoretical results obtained in course. In this paper, we present an innovative teaching/learning pedagogy which includes the concept of learning through play and its implications in fluid mechanics for engineering. Examples of atypical experiments in fluid mechanics made by students are presented. Based on teaching evaluation by students, it is possible to know how students feel the course. The effectiveness of this approach to motivate students is presented through an analysis of students' teaching assessment. Learning through play proved a great success in fluid mechanics where course evaluations increased substantially. Fluid mechanics has been progressively perceived as interesting, useful, pleasant and easy to assimilate. It is shown that this pedagogy which includes educational gaming presents benefits for students. These experiments seem therefore to be a very effective tool for improving teaching/learning activities in higher education

    Relativistic viscoelastic fluid mechanics

    Get PDF
    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski spacetime become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.Comment: 52pages, 11figures; v2: minor corrections; v3: minor corrections, to appear in Physical Review E; v4: minor change
    corecore