6,109 research outputs found

    Downstream Task Self-Supervised Learning for Object Recognition and Tracking

    Get PDF
    This dissertation addresses three limitations of deep learning methods in image and video understanding-based machine vision applications. Firstly, although deep convolutional neural networks (CNNs) are efficient for image recognition applications such as object detection and segmentation, they perform poorly under perspective distortions. In real-world applications, the camera perspective is a common problem that we can address by annotating large amounts of data, thus limiting the applicability of the deep learning models. Secondly, the typical approach for single-camera tracking problems is to use separate motion and appearance models, which are expensive in terms of computations and training data requirements. Finally, conventional multi-camera video understanding techniques use supervised learning algorithms to determine temporal relationships among objects. In large-scale applications, these methods are also limited by the requirement of extensive manually annotated data and computational resources.To address these limitations, we develop an uncertainty-aware self-supervised learning (SSL) technique that captures a model\u27s instance or semantic segmentation uncertainty from overhead images and guides the model to learn the impact of the new perspective on object appearance. The test-time data augmentation-based pseudo-label refinement technique continuously trains a model until convergence on new perspective images. The proposed method can be applied for both self-supervision and semi-supervision, thus increasing the effectiveness of a deep pre-trained model in new domains. Extensive experiments demonstrate the effectiveness of the SSL technique in both object detection and semantic segmentation problems. In video understanding applications, we introduce simultaneous segmentation and tracking as an unsupervised spatio-temporal latent feature clustering problem. The jointly learned multi-task features leverage the task-dependent uncertainty to generate discriminative features in multi-object videos. Experiments have shown that the proposed tracker outperforms several state-of-the-art supervised methods. Finally, we proposed an unsupervised multi-camera tracklet association (MCTA) algorithm to track multiple objects in real-time. MCTA leverages the self-supervised detector model for single-camera tracking and solves the multi-camera tracking problem using multiple pair-wise camera associations modeled as a connected graph. The graph optimization method generates a global solution for partially or fully overlapping camera networks

    Stochastic Methods for Fine-Grained Image Segmentation and Uncertainty Estimation in Computer Vision

    Get PDF
    In this dissertation, we exploit concepts of probability theory, stochastic methods and machine learning to address three existing limitations of deep learning-based models for image understanding. First, although convolutional neural networks (CNN) have substantially improved the state of the art in image understanding, conventional CNNs provide segmentation masks that poorly adhere to object boundaries, a critical limitation for many potential applications. Second, training deep learning models requires large amounts of carefully selected and annotated data, but large-scale annotation of image segmentation datasets is often prohibitively expensive. And third, conventional deep learning models also lack the capability of uncertainty estimation, which compromises both decision making and model interpretability. To address these limitations, we introduce the Region Growing Refinement (RGR) algorithm, an unsupervised post-processing algorithm that exploits Monte Carlo sampling and pixel similarities to propagate high-confidence labels into regions of low-confidence classification. The probabilistic Region Growing Refinement (pRGR) provides RGR with a rigorous mathematical foundation that exploits concepts of Bayesian estimation and variance reduction techniques. Experiments demonstrate both the effectiveness of (p)RGR for the refinement of segmentation predictions, as well as its suitability for uncertainty estimation, since its variance estimates obtained in the Monte Carlo iterations are highly correlated with segmentation accuracy. We also introduce FreeLabel, an intuitive open-source web interface that exploits RGR to allow users to obtain high-quality segmentation masks with just a few freehand scribbles, in a matter of seconds. Designed to benefit the computer vision community, FreeLabel can be used for both crowdsourced or private annotation and has a modular structure that can be easily adapted for any image dataset. The practical relevance of methods developed in this dissertation are illustrated through applications on agricultural and healthcare-related domains. We have combined RGR and modern CNNs for fine segmentation of fruit flowers, motivated by the importance of automated bloom intensity estimation for optimization of fruit orchard management and, possibly, automatizing procedures such as flower thinning and pollination. We also exploited an early version of FreeLabel to annotate novel datasets for segmentation of fruit flowers, which are currently publicly available. Finally, this dissertation also describes works on fine segmentation and gaze estimation for images collected from assisted living environments, with the ultimate goal of assisting geriatricians in evaluating health status of patients in such facilities

    Agricultural Object Detection with You Look Only Once (YOLO) Algorithm: A Bibliometric and Systematic Literature Review

    Full text link
    Vision is a major component in several digital technologies and tools used in agriculture. The object detector, You Look Only Once (YOLO), has gained popularity in agriculture in a relatively short span due to its state-of-the-art performance. YOLO offers real-time detection with good accuracy and is implemented in various agricultural tasks, including monitoring, surveillance, sensing, automation, and robotics. The research and application of YOLO in agriculture are accelerating rapidly but are fragmented and multidisciplinary. Moreover, the performance characteristics (i.e., accuracy, speed, computation) of the object detector influence the rate of technology implementation and adoption in agriculture. Thus, the study aims to collect extensive literature to document and critically evaluate the advances and application of YOLO for agricultural object recognition. First, we conducted a bibliometric review of 257 articles to understand the scholarly landscape of YOLO in agricultural domain. Secondly, we conducted a systematic review of 30 articles to identify current knowledge, gaps, and modifications in YOLO for specific agricultural tasks. The study critically assesses and summarizes the information on YOLO's end-to-end learning approach, including data acquisition, processing, network modification, integration, and deployment. We also discussed task-specific YOLO algorithm modification and integration to meet the agricultural object or environment-specific challenges. In general, YOLO-integrated digital tools and technologies show the potential for real-time, automated monitoring, surveillance, and object handling to reduce labor, production cost, and environmental impact while maximizing resource efficiency. The study provides detailed documentation and significantly advances the existing knowledge on applying YOLO in agriculture, which can greatly benefit the scientific community

    A Unifying Framework in Vector-valued Reproducing Kernel Hilbert Spaces for Manifold Regularization and Co-Regularized Multi-view Learning

    Get PDF
    This paper presents a general vector-valued reproducing kernel Hilbert spaces (RKHS) framework for the problem of learning an unknown functional dependency between a structured input space and a structured output space. Our formulation encompasses both Vector-valued Manifold Regularization and Co-regularized Multi-view Learning, providing in particular a unifying framework linking these two important learning approaches. In the case of the least square loss function, we provide a closed form solution, which is obtained by solving a system of linear equations. In the case of Support Vector Machine (SVM) classification, our formulation generalizes in particular both the binary Laplacian SVM to the multi-class, multi-view settings and the multi-class Simplex Cone SVM to the semi-supervised, multi-view settings. The solution is obtained by solving a single quadratic optimization problem, as in standard SVM, via the Sequential Minimal Optimization (SMO) approach. Empirical results obtained on the task of object recognition, using several challenging datasets, demonstrate the competitiveness of our algorithms compared with other state-of-the-art methods.Comment: 72 page
    corecore