3 research outputs found

    Evaluation of Eigenvalue and Block Diagonalization Beamforming Precoding Performance for 5G Technology over Rician Channel

    Get PDF
    In traditional wireless cellular, at the same cell, users can cause co-channel interference (CCI) between each other; CCI can deteriorate the channel’s capacity. A multiple-input multiple-output (MIMO) system with beamforming technology solves this CCI problem. Exploiting the channel state information (CSI) in a multi-user MIMO (MU-MIMO) system can improve the performance of the channel link by designing the precoding vectors for every user. A linear precoder has multiple methods, like Block diagonalization precoding (BDP) and Eigenvalue precoding (EP) that facilitate its use. This paper evaluates the symbol-detection performance for BDP and EP in MU-MIMO beamforming over a Rayleigh fading channel. Then, the channel matrix replaces the typical channel assumption with its correlated realistic Rician fading channel. Simulation results show that the Rician fading channel has performance improvement until with low Rician factor value, compared to a conventional channel. The high value of the Rician factor can reduce the error rate

    Hierarchical Beamforming: Resource Allocation, Fairness and Flow Level Performance

    Full text link
    We consider hierarchical beamforming in wireless networks. For a given population of flows, we propose computationally efficient algorithms for fair rate allocation including proportional fairness and max-min fairness. We next propose closed-form formulas for flow level performance, for both elastic (with either proportional fairness and max-min fairness) and streaming traffic. We further assess the performance of hierarchical beamforming using numerical experiments. Since the proposed solutions have low complexity compared to conventional beamforming, our work suggests that hierarchical beamforming is a promising candidate for the implementation of beamforming in future cellular networks.Comment: 34 page

    Flow-level modeling of multi-user beamforming in mobile networks

    No full text
    International audienceAmong the several features that are foreseen for increasing the capacity of cellular systems, Multi-user multiple-input multiple-output (MU-MIMO) is considered as a key en-abling technology. Particularly, MU-beamforming is a powerful means of increasing the system capacity and throughput by creating several spatial signals to different users on the same time/frequency resource. In this paper, we develop an analytical model for MU-beamforming based on queuing theory combined with network simulations. The proposed framework is used for evaluating the potential gains in terms of capacity and throughput in LTE-Advanced system. Several scenarios are studied, with and without beamforming. Results show an important gain of SU-beamforming over the classical system without beamforming and a further gain of MU-beamforming, especially at high loads
    corecore