15,455 research outputs found

    Towards a Queueing-Based Framework for In-Network Function Computation

    Full text link
    We seek to develop network algorithms for function computation in sensor networks. Specifically, we want dynamic joint aggregation, routing, and scheduling algorithms that have analytically provable performance benefits due to in-network computation as compared to simple data forwarding. To this end, we define a class of functions, the Fully-Multiplexible functions, which includes several functions such as parity, MAX, and k th -order statistics. For such functions we exactly characterize the maximum achievable refresh rate of the network in terms of an underlying graph primitive, the min-mincut. In acyclic wireline networks, we show that the maximum refresh rate is achievable by a simple algorithm that is dynamic, distributed, and only dependent on local information. In the case of wireless networks, we provide a MaxWeight-like algorithm with dynamic flow splitting, which is shown to be throughput-optimal

    Endpoint-transparent Multipath Transport with Software-defined Networks

    Full text link
    Multipath forwarding consists of using multiple paths simultaneously to transport data over the network. While most such techniques require endpoint modifications, we investigate how multipath forwarding can be done inside the network, transparently to endpoint hosts. With such a network-centric approach, packet reordering becomes a critical issue as it may cause critical performance degradation. We present a Software Defined Network architecture which automatically sets up multipath forwarding, including solutions for reordering and performance improvement, both at the sending side through multipath scheduling algorithms, and the receiver side, by resequencing out-of-order packets in a dedicated in-network buffer. We implemented a prototype with commonly available technology and evaluated it in both emulated and real networks. Our results show consistent throughput improvements, thanks to the use of aggregated path capacity. We give comparisons to Multipath TCP, where we show our approach can achieve a similar performance while offering the advantage of endpoint transparency

    Real-life performance of protocol combinations for wireless sensor networks

    Get PDF
    Wireless sensor networks today are used for many and diverse applications like nature monitoring, or process and wireless building automation. However, due to the limited access to large testbeds and the lack of benchmarking standards, the real-life evaluation of network protocols and their combinations remains mostly unaddressed in current literature. To shed further light upon this matter, this paper presents a thorough experimental performance analysis of six protocol combinations for TinyOS. During these protocol assessments, our research showed that the real-life performance often differs substantially from the expectations. Moreover, we found that combining protocols is far from trivial, as individual network protocols may perform very different in combination with other protocols. The results of our research emphasize the necessity of a flexible generic benchmarking framework, powerful enough to evaluate and compare network protocols and their combinations in different use cases

    Supporting protocol-independent adaptive QoS in wireless sensor networks

    Get PDF
    Next-generation wireless sensor networks will be used for many diverse applications in time-varying network/environment conditions and on heterogeneous sensor nodes. Although Quality of Service (QoS) has been ignored for a long time in the research on wireless sensor networks, it becomes inevitably important when we want to deliver an adequate service with minimal efforts under challenging network conditions. Until now, there exist no general-purpose QoS architectures for wireless sensor networks and the main QoS efforts were done in terms of individual protocol optimizations. In this paper we present a novel layerless QoS architecture that supports protocol-independent QoS and that can adapt itself to time-varying application, network and node conditions. We have implemented this QoS architecture in TinyOS on TmoteSky sensor nodes and we have shown that the system is able to support protocol-independent QoS in a real life office environment

    Fluid flow queue models for fixed-mobile network evaluation

    Get PDF
    A methodology for fast and accurate end-to-end KPI, like throughput and delay, estimation is proposed based on the service-centric traffic flow analysis and the fluid flow queuing model named CURSA-SQ. Mobile network features, like shared medium and mobility, are considered defining the models to be taken into account such as the propagation models and the fluid flow scheduling model. The developed methodology provides accurate computation of these KPIs, while performing orders of magnitude faster than discrete event simulators like ns-3. Finally, this methodology combined to its capacity for performance estimation in MPLS networks enables its application for near real-time converged fixed-mobile networks operation as it is proven in three use case scenarios

    DiffServ resource management in IP-based radio access networks

    Get PDF
    The increasing popularity of the Internet, the flexibility of IP, and the wide deployment of IP technologies, as well as the growth of mobile communications have driven the development of IP-based solutions for wireless networking. The introduction of IP-based transport in Radio Access Networks (RANs) is one of these networking solutions. When compared to traditional IP networks, an IP-based RAN has specific characteristics, due to which, for satisfactory transport functionality, it imposes strict requirements on resource management schemes. In this paper we present the Resource Management in DiffServ (RMD) framework, which extends the DiffServ architecture with new admission control and resource reservation concepts, such that the resource management requirements of an IP-based RAN are met. This framework aims at simplicity, low-cost, and easy implementation, along with good scaling properties. The RMD framework defines two architectural concepts: the Per Hop Reservation (PHR) and the Per Domain Reservation (PDR). As part of the RMD framework a new protocol, the RMD On DemAnd (RODA) Per Hop Reservation (PHR) protocol will be introduced. A key characteristic of the RODA PHR is that it maintains only a single reservation state per PHB in the interior routers of a DiffServ domain, regardless of the number of flows passing through
    • 

    corecore