12 research outputs found

    Intelligent Data Analytics using Deep Learning for Data Science

    Get PDF
    Nowadays, data science stimulates the interest of academics and practitioners because it can assist in the extraction of significant insights from massive amounts of data. From the years 2018 through 2025, the Global Datasphere is expected to rise from 33 Zettabytes to 175 Zettabytes, according to the International Data Corporation. This dissertation proposes an intelligent data analytics framework that uses deep learning to tackle several difficulties when implementing a data science application. These difficulties include dealing with high inter-class similarity, the availability and quality of hand-labeled data, and designing a feasible approach for modeling significant correlations in features gathered from various data sources. The proposed intelligent data analytics framework employs a novel strategy for improving data representation learning by incorporating supplemental data from various sources and structures. First, the research presents a multi-source fusion approach that utilizes confident learning techniques to improve the data quality from many noisy sources. Meta-learning methods based on advanced techniques such as the mixture of experts and differential evolution combine the predictive capacity of individual learners with a gating mechanism, ensuring that only the most trustworthy features or predictions are integrated to train the model. Then, a Multi-Level Convolutional Fusion is presented to train a model on the correspondence between local-global deep feature interactions to identify easily confused samples of different classes. The convolutional fusion is further enhanced with the power of Graph Transformers, aggregating the relevant neighboring features in graph-based input data structures and achieving state-of-the-art performance on a large-scale building damage dataset. Finally, weakly-supervised strategies, noise regularization, and label propagation are proposed to train a model on sparse input labeled data, ensuring the model\u27s robustness to errors and supporting the automatic expansion of the training set. The suggested approaches outperformed competing strategies in effectively training a model on a large-scale dataset of 500k photos, with just about 7% of the images annotated by a human. The proposed framework\u27s capabilities have benefited various data science applications, including fluid dynamics, geometric morphometrics, building damage classification from satellite pictures, disaster scene description, and storm-surge visualization

    Spatio-Temporal Multimedia Big Data Analytics Using Deep Neural Networks

    Get PDF
    With the proliferation of online services and mobile technologies, the world has stepped into a multimedia big data era, where new opportunities and challenges appear with the high diversity multimedia data together with the huge amount of social data. Nowadays, multimedia data consisting of audio, text, image, and video has grown tremendously. With such an increase in the amount of multimedia data, the main question raised is how one can analyze this high volume and variety of data in an efficient and effective way. A vast amount of research work has been done in the multimedia area, targeting different aspects of big data analytics, such as the capture, storage, indexing, mining, and retrieval of multimedia big data. However, there is insufficient research that provides a comprehensive framework for multimedia big data analytics and management. To address the major challenges in this area, a new framework is proposed based on deep neural networks for multimedia semantic concept detection with a focus on spatio-temporal information analysis and rare event detection. The proposed framework is able to discover the pattern and knowledge of multimedia data using both static deep data representation and temporal semantics. Specifically, it is designed to handle data with skewed distributions. The proposed framework includes the following components: (1) a synthetic data generation component based on simulation and adversarial networks for data augmentation and deep learning training, (2) an automatic sampling model to overcome the imbalanced data issue in multimedia data, (3) a deep representation learning model leveraging novel deep learning techniques to generate the most discriminative static features from multimedia data, (4) an automatic hyper-parameter learning component for faster training and convergence of the learning models, (5) a spatio-temporal deep learning model to analyze dynamic features from multimedia data, and finally (6) a multimodal deep learning fusion model to integrate different data modalities. The whole framework has been evaluated using various large-scale multimedia datasets that include the newly collected disaster-events video dataset and other public datasets

    Multimodal Data Analytics and Fusion for Data Science

    Get PDF
    Advances in technologies have rapidly accumulated a zettabyte of “new” data every two years. The huge amount of data have a powerful impact on various areas in science and engineering and generates enormous research opportunities, which calls for the design and development of advanced approaches in data analytics. Given such demands, data science has become an emerging hot topic in both industry and academia, ranging from basic business solutions, technological innovations, and multidisciplinary research to political decisions, urban planning, and policymaking. Within the scope of this dissertation, a multimodal data analytics and fusion framework is proposed for data-driven knowledge discovery and cross-modality semantic concept detection. The proposed framework can explore useful knowledge hidden in different formats of data and incorporate representation learning from data in multimodalities, especial for disaster information management. First, a Feature Affinity-based Multiple Correspondence Analysis (FA-MCA) method is presented to analyze the correlations between low-level features from different features, and an MCA-based Neural Network (MCA-NN) ispro- posedto capture the high-level features from individual FA-MCA models and seamlessly integrate the semantic data representations for video concept detection. Next, a genetic algorithm-based approach is presented for deep neural network selection. Furthermore, the improved genetic algorithm is integrated with deep neural networks to generate populations for producing optimal deep representation learning models. Then, the multimodal deep representation learning framework is proposed to incorporate the semantic representations from data in multiple modalities efficiently. At last, fusion strategies are applied to accommodate multiple modalities. In this framework, cross-modal mapping strategies are also proposed to organize the features in a better structure to improve the overall performance

    Audio Event Classification Using Deep Learning Methods

    Get PDF
    Whether crossing the road or enjoying a concert, sound carries important information about the world around us. Audio event classification refers to recognition tasks involving the assignment of one or several labels, such as ‘dog bark’ or ‘doorbell’, to a particular audio signal. Thus, teaching machines to conduct this classification task can help humans in many fields. Since deep learning has shown its great potential and usefulness in many AI applications, this thesis focuses on studying deep learning methods and building suitable neural networks for this audio event classification task. In order to evaluate the performance of different neural networks, we tested them on both Google AudioSet and the dataset for DCASE 2018 Task 2. Instead of providing original audio files, AudioSet offers compact 128-dimensional embeddings outputted by a modified VGG model for audio with a frame length of 960ms. For DCASE 2018 Task 2, we firstly preprocessed the soundtracks and then fine-tuned the VGG model that AudioSet used as a feature extractor. Thus, each soundtrack from both tasks is represented as a series of 128-dimensional features. We then compared the DNN, LSTM, and multi-level attention models with different hyper parameters. The results show that fine-tuning the feature generation model for the DCASE task greatly improved the evaluation score. In addition, the attention models were found to perform the best in our settings for both tasks. The results indicate that utilizing a CNN-like model as a feature extractor for the log-mel spectrograms and modeling the dynamics information using an attention model can achieve state-of-the-art results in the task of audio event classification. For future research, the thesis suggests training a better CNN model for feature extraction, utilizing multi-scale and multi-level features for better classification, and combining the audio features with other multimodal information for audiovisual data analysis

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field
    corecore