28,918 research outputs found

    Flood River Water Level Forecasting using Ensemble Machine Learning for Early Warning Systems

    Get PDF
    Flood forecasting is crucial for early warning system and disaster risk reduction. Yet the flood river water levels are difficult and challenging task that it cannot be easily captured with classical time-series approaches. This study proposed a novel intelligence system utilised various machine learning techniques as individual models, including radial basis function neural network (RBF-NN), adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM), and long short-term memory network (LSTM) to establish intelligent committee machine learning flood forecasting (ICML-FF) framework. The combination of these individual models achieved through simple averaging method, and further optimised using weighted averaging by K-nearest neighbour (K-NN) and genetic algorithm (GA). The effectiveness of the proposed model was evaluated using real case study for Malaysia's Kelantan River. The results show that ANFIS outperforms as individual model, while ICML-FF-based model produced better accuracy and lowest error than any one of the individuals. In general, it is found that the proposed ICML-FF is capable of robust forecasting model for flood early warning systems

    The Community – Based Flood Disaster Risk Reduction (CBDRR) in Beringin Watershed in Semarang City

    Get PDF
    Population growth in Semarang city is certainly increasing land demand for settlement. Limited land and weak regulation enforcement of land control trigger the land use change including the watershed area. Semarang City Spatial Plan 2011-2031 has determined Beringin as a buffer area with limited physical development allocation but the citizens utilized the watershed area for settlement. Settlement developments in the area reduce the watershed ability to catch water and river capacity due to increased sedimentation. These two reasons are the main cause of the flash flood disaster (regularly in rainy season) in seven villages of Beringin watershed. The condition is exacerbated by the tidal flood occurred in two village lies in coastal. In 2012, Semarang City government developed Flood Forecasting and Warning System as one of Climate Change Adaptation Measures known as Flood Early Warning System (FEWS). One of important output of FEWS is community-based disaster risk reduction. Community participation process in the FEWS has made it possible for the community to identify disaster risk characteristics, to propose solution for reducing flood risk which is suitable to the local wisdom, to increase the community capacity and to organize one of themselves in a disaster preparedness group which run quite independently

    Surface water flood warnings in England: overview, Assessment and recommendations based on survey responses and workshops

    Get PDF
    Following extensive surface water flooding (SWF) in England in summer 2007, progress has been made in improving the management and prediction of this type of flooding. A rainfall threshold-based extreme rainfall alert (ERA) service was launched in 2009 and superseded in 2011 by the surface water flood risk assessment (SWFRA). Through survey responses from local authorities (LAs) and the outcome of workshops with a range of flood professionals, this paper examines the understanding, benefits, limitations and ways to improve the current SWF warning service. The current SWFRA alerts are perceived as useful by district and county LAs, although their understanding of them is limited. The majority of LAs take action upon receipt of SWFRA alerts, and their reactiveness to alerts appears to have increased over the years and as SWFRA superseded ERA. This is a positive development towards increased resilience to SWF. The main drawback of the current service is its broad spatial resolution. Alternatives for providing localised SWF forecast and warnings were analysed, and a two-tier national-local approach, with pre-simulated scenario-based local SWF forecasting and warning systems, was deemed most appropriate by flood professionals given current monetary, human and technological resources

    NON-PARAMETRIC STATISTICAL APPROACH TO CORRECT SATELLITE RAINFALL DATA IN NEAR-REAL-TIME FOR RAIN BASED FLOOD NOWCASTING

    Get PDF
    Floods resulting from intense rainfall are one of the most disastrous hazards in many regions of the world since they contribute greatly to personal injury and to property damage mainly as a result of their ability to strike with little warning. The possibility to give an alert about a flooding situation at least a few hours before helps greatly to reduce the damage. Therefore, scores of flood forecasting systems have been developed during the past few years mainly at country level and regional level. Flood forecasting systems based only on traditional methods such as return period of flooding situations or extreme rainfall events have failed on most occasions to forecast flooding situations accurately because of changes on territory in recent years by extensive infrastructure development, increased frequency of extreme rainfall events over recent decades, etc. Nowadays, flood nowcasting systems or early warning systems which run on real- time precipitation data are becoming more popular as they give reliable forecasts compared to traditional flood forecasting systems. However, these kinds of systems are often limited to developed countries as they need well distributed gauging station networks or sophisticated surface-based radar systems to collect real-time precipitation data. In most of the developing countries and in some developed countries also, precipitation data from available sparse gauging stations are inadequate for developing representative aerial samples needed by such systems. As satellites are able to provide a global coverage with a continuous temporal availability, currently the possibility of using satellite-based rainfall estimates in flood nowcasting systems is being highly investigated. To contribute to the world's requirement for flood early warning systems, ITHACA developed a global scale flood nowcasting system that runs on near-real-time satellite rainfall estimates. The system was developed in cooperation with United Nations World Food Programme (WFP), to support the preparedness phase of the WFP like humanitarian assistance agencies, mainly in less developed countries. The concept behind this early warning system is identifying critical rainfall events for each hydrological basin on the earth with past rainfall data and using them to identify floodable rainfall events with real time rainfall data. The individuation of critical rainfall events was done with a hydrological analysis using 3B42 rainfall data which is the most accurate product of Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) dataset. These critical events have been stored in a database and when a rainfall event is found in real-time which is similar or exceeds the event in the database an alert is issued for the basin area. The most accurate product of TMPA (3B42) is derived by applying bias adjustments to real time rainfall estimates using rain gauge data, thus it is available for end-users 10-15 days after each calendar month. The real time product of TMPA (3B42RT) is released approximately 9 hours after real-time and lacks of such kind of bias adjustments using rain gauge data as rain gauge data are not available in real time. Therefore, to have reliable alerts it is very important to reduce the uncertainty of 3B42RT product before using it in the early warning system. For this purpose, a statistical approach was proposed to make near real- time bias adjustments for the near real time product of TMPA (3B42RT). In this approach the relationship between the bias adjusted rainfall data product (3B42) and the real-time rainfall data product (3B42RT) was analyzed on the basis of drainage basins for the period from January 2003 to December 2007, and correction factors were developed for each basin worldwide to perform near real-time bias adjusted product estimation from the real-time rainfall data product (3B42RT). The accuracy of the product was analyzed by comparing with gauge rainfall data from Bangladesh and it was found that the uncertainty of the product is less even than the most accurate product of TMPA dataset (3B42

    On the use of global flood forecasts and satellite-derived inundation maps for flood monitoring in data-sparse regions

    Get PDF
    Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response decisions. Global-scale flood forecasting and satellite-based flood detection systems are currently operating, however their reliability for decision making applications needs to be assessed. In this study, we performed comparative evaluations of several operational global flood forecasting and flood detection systems, using 10 major flood events recorded over 2012-2014. Specifically, we evaluated the spatial extent and temporal characteristics of flood detections from the Global Flood Detection System (GFDS) and the Global Flood Awareness System (GloFAS). Furthermore, we compared the GFDS flood maps with those from NASA’s two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. Results reveal that: 1) general agreement was found between the GFDS and MODIS flood detection systems, 2) large differences exist in the spatio-temporal characteristics of the GFDS detections and GloFAS forecasts, and 3) the quantitative validation of global flood disasters in data-sparse regions is highly challenging. Overall, the satellite remote sensing provides useful near real-time flood information that can be useful for risk management. We highlight the known limitations of global flood detection and forecasting systems, and propose ways forward to improve the reliability of large scale flood monitoring tools.JRC.H.7-Climate Risk Managemen

    Natural risk warning: comparison of two methodologies

    No full text
    International audienceThe Italian network of "Centri Funzionali" is now reaching operational status both in hydro-meteorological risk forecasting and support to the decision making of administrations that issue natural risk warning. Each centre operates for its district of influence. In order to have a nationwide common standard the National Civil Protection Department proposed a quantitative warning methodology based on the definition of rainfall thresholds correlated to historical damages. In the first phase the thresholds have been defined using two studies that cover all Italy: the VAPI (statistics of extreme rainfall and discharges, see reference) and the AVI (database of historical flood and landslide events and reported damages, see reference). This work presents one year back analysis that compares the new methodology and the one that has been usied since 2000 by the Liguria Region Meteorological Centre with regard to flood warning, pinpointing the performance differences in terms of false and missed alerts

    GloFAS – global ensemble streamflow forecasting and flood early warning

    Get PDF
    Anticipation and preparedness for large-scale flood events have a key role in mitigating their impact and optimizing the strategic planning of water resources. Although several developed countries have well-established systems for river monitoring and flood early warning, figures of population affected every year by floods in developing countries are unsettling. This paper presents the Global Flood Awareness System, which has been set up to provide an overview on upcoming floods in large world river basins. The Global Flood Awareness System is based on distributed hydrological simulation of numerical ensemble weather predictions with global coverage. Streamflow forecasts are compared statistically to climatological simulations to detect probabilistic exceedance of warning thresholds. In this article, the system setup is described, together with an evaluation of its performance over a two-year test period and a qualitative analysis of a case study for the Pakistan flood, in summer 2010. It is shown that hazardous events in large river basins can be skilfully detected with a forecast horizon of up to 1 month. In addition, results suggest that an accurate simulation of initial model conditions and an improved parameterization of the hydrological model are key components to reproduce accurately the streamflow variability in the many different runoff regimes of the Earth.JRC.H.7-Climate Risk Managemen

    ReAFFIRM: Real-time Assessment of Flash Flood Impacts: a Regional high-resolution Method

    Get PDF
    Flash floods evolve rapidly in time, which poses particular challenges to emergency managers. One way to support decision-making is to complement models that estimate the flash flood hazard (e.g. discharge or return period) with tools that directly translate the hazard into the expected socio-economic impacts. This paper presents a method named ReAFFIRM that uses gridded rainfall estimates to assess in real time the flash flood hazard and translate it into the corresponding impacts. In contrast to other studies that mainly focus on in- dividual river catchments, the approach allows for monitoring entire regions at high resolution. The method consists of the following three components: (i) an already existing hazard module that processes the rainfall into values of exceeded return period in the drainage network, (ii) a flood map module that employs the flood maps created within the EU Floods Directive to convert the return periods into the expected flooded areas and flood depths, and (iii) an impact assessment module that combines the flood depths with several layers of socio- economic exposure and vulnerability. Impacts are estimated in three quantitative categories: population in the flooded area, economic losses, and affected critical infrastructures. The performance of ReAFFIRM is shown by applying it in the region of Catalonia (NE Spain) for three significant flash flood events. The results show that the method is capable of identifying areas where the flash floods caused the highest impacts, while some locations affected by less significant impacts were missed. In the locations where the flood extent corresponded to flood observations, the assessments of the population in the flooded area and affected critical infrastructures seemed to perform reasonably well, whereas the economic losses were systematically overestimated. The effects of different sources of uncertainty have been discussed: from the estimation of the hazard to its translation into impacts, which highly depends on the quality of the employed datasets, and in particular on the quality of the rainfall inputs and the comprehensiveness of the flood maps.Peer ReviewedPostprint (published version

    Natural Hazard Overview: Flooding

    Get PDF
    The National Centre for Resilience supported the Met Office and their partner organisations in the production of a set of Natural Hazard Overviews. This factsheet is one of the set commissioned to meet a requirement for Scotland-specific information on the types, scale, duration and impact of a range of natural hazards. It contains basic guidance on actions that can be taken to mitigate the impact of flooding. They include information previously produced by the Natural Hazards Partnership, adapted to a Scottish context and with the addition of case studies
    corecore