
Continental and global scale flood 
forecasting systems 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CCBY) 

Open access 

Emerton, R. E., Stephens, E. M., Pappenberger, F., Pagano, 
T. C., Weerts, A. H., Wood, A. W., Salamon, P., Brown, J. D., 
Hjerdt, N., Donnelly, C., Baugh, C. and Cloke, H. L. (2016) 
Continental and global scale flood forecasting systems. Wiley 
Interdisciplinary Reviews: Water, 3 (3). pp. 391418. ISSN 
20491948 doi: https://doi.org/10.1002/wat2.1137 Available at 
http://centaur.reading.ac.uk/53948/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work. 

To link to this article DOI: http://dx.doi.org/10.1002/wat2.1137 

Publisher: Wiley 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/licence
http://www.reading.ac.uk/centaur


CentAUR 

Central Archive at the University of Reading 

Reading’s research outputs online



Overview

Continental and global scale flood
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Floods are the most frequent of natural disasters, affecting millions of people
across the globe every year. The anticipation and forecasting of floods at the
global scale is crucial to preparing for severe events and providing early aware-
ness where local flood models and warning services may not exist. As numerical
weather prediction models continue to improve, operational centers are increas-
ingly using their meteorological output to drive hydrological models, creating
hydrometeorological systems capable of forecasting river flow and flood events
at much longer lead times than has previously been possible. Furthermore,
developments in, for example, modelling capabilities, data, and resources in
recent years have made it possible to produce global scale flood forecasting sys-
tems. In this paper, the current state of operational large-scale flood forecasting
is discussed, including probabilistic forecasting of floods using ensemble predic-
tion systems. Six state-of-the-art operational large-scale flood forecasting systems
are reviewed, describing similarities and differences in their approaches to fore-
casting floods at the global and continental scale. Operational systems currently
have the capability to produce coarse-scale discharge forecasts in the medium-
range and disseminate forecasts and, in some cases, early warning products in
real time across the globe, in support of national forecasting capabilities. With
improvements in seasonal weather forecasting, future advances may include
more seamless hydrological forecasting at the global scale alongside a move
towards multi-model forecasts and grand ensemble techniques, responding to
the requirement of developing multi-hazard early warning systems for disaster
risk reduction. © 2016 The Authors. WIREs Water published by Wiley Periodicals, Inc.
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INTRODUCTION

Flooding has the highest frequency of occurrence
of all types of natural disasters across the globe,

accounting for 39% of all natural disasters since
2000, with >94 million people affected by floods
each year worldwide1 through displacement from
homes, unsafe drinking water, destruction of infra-
structure, injury, and loss of life. With an increasing
population living in flood-prone areas, the forecast-
ing of floods is key to managing and preparing for
imminent disaster.

Investment in building resilience is prioritized in
the Sendai Framework for Disaster Risk Reduction
(DRR) 2015–2030,2 with one component of this
being the development and use of multi-hazard warn-
ing systems.3 The World Meteorological Organiza-
tion (WMO) states that economic losses due to
severe hydrometeorological events have increased by
nearly 50 times over the past 50 years. However, the
global loss of life has decreased by a factor of 103.
This significant decrease in loss of life is attributed to
improved monitoring and forecasting of hydrome-
teorological events alongside more effective prepara-
tion and planning. Four components are suggested
by the WMO3 for effective early warning systems:
detection, monitoring, and forecasting hazards; ana-
lyses of risks involved; dissemination of timely warn-
ings; and activation of emergency plans to prepare
and respond.

The development of forecasting systems pro-
ducing forecasts and warnings of severe hazards
such as floods, droughts, storms, fires, and tropical
cyclones on a global scale are critical for disaster
risk reduction and further decreases in loss of life.
The Sendai Framework for DRR 2015–20302 states
that at global and regional levels, it is important to
‘promote co-operation between academic, scientific
and research entities and networks and the private
sector to develop new products and services to help
reduce disaster risk, in particular those that would
assist developing countries and their specific
challenges’,2 and forecasting systems such as those
discussed here are essential in achieving this, partic-
ularly in providing forecasts for countries and
regions where no other forecasts and early warnings
are available.

The need for large-scale flood forecasting sys-
tems can be broken down into three key factors:

(i) to provide information on floodiness4 across
areas larger than a catchment, for example, to
indicate where flooding during the rainy season
will be worse than normal; information that is

of high importance to humanitarian
organizations5;

(ii) to provide forecasts in basins across the globe
where there are currently no forecasts availa-
ble, which is not a massive scale-up of
resources; large-scale forecasting is therefore
cost-effective compared to focusing on devel-
oping and providing hydrometeorological
forecasts for single catchments and greatly
aids disaster risk reduction and flood early
warning efforts globally;

(iii) to support existing capabilities, for example,
by using ensemble forecasting techniques to
enable probabilistic flood forecasts, or at
longer lead times for earlier warnings; proba-
bilistic and extended-range forecasting is com-
putationally expensive, and in addition, many
countries do not currently pay for access to
these distributed meteorological forecast pro-
ducts and therefore are unable to produce
any form of hydrometeorological forecast.

This review outlines the developments that have led
to forecasting floods on the global scale, the current
state-of-the-art technology in operational large-scale
(continental and global) flood forecasting, and future
developments in global-scale flood forecasting and
early warning.

ADVANCES IN THE SCIENCE AND
TECHNIQUES OF GLOBAL
FORECASTING

Producing forecasts at the global scale has only
become possible in recent years due to the integration
of meteorological and hydrological modeling capabil-
ities, improvements in data, satellite observations and
land-surface hydrology modeling, and increased
resources and computer power.6–10 While several
meteorological and hydrological forecasting centers
now run operational flood forecasting models, many
of these are for specific locations, river basins, or
countries.8

Global hydrological modeling is complex due
to the geographical variation of rainfall-runoff pro-
cesses and river regimes,11 but large-scale flood fore-
casting systems are now emerging with recent
scientific and technological advances and increasing
integration of hydrological and meteorological com-
munities, allowing for uncertainty to be cascaded
from the meteorological input to the river flow
forecasts.12
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In this section, we analyze the key advances
that have enabled the forecasting of floods at the
global scale.

The Increasing Skill of Precipitation
Forecasts
The skill of precipitation forecasts in global numeri-
cal weather prediction (NWP) models has increased
significantly in recent years13–15 (e.g., gaining ~2 days
precipitation skill since 200016). With skilful
medium-range quantitative precipitation forecasts
(QPFs) being produced by NWP models across the
globe, it has become possible to produce skilful fore-
casts of river flow and flooding at large scales for the
purpose of early warning.17 Table 1 outlines the
resolutions and forecast ranges of some of the main
QPF products used in operational large-scale flood
forecasting systems.8

Precipitation is challenging to forecast due to
the chaotic nature of the atmosphere,18 where a small
change in the initial conditions of the system can
result in an unpredictable outcome. The underlying
physical processes of precipitation generation are
complex to model, and modeling deficiencies can lead
to forecast inaccuracies, particularly at longer lead
times.19 In general, due to the lack of observations,
precipitation predictions are less skilful in the south-
ern hemisphere, although the difference in the skill of
forecasts between the hemispheres has reduced signif-
icantly since the introduction of satellite observations
and data assimilation.19,20 Limited data are also an
issue in much of the tropics alongside difficulties
associated with the simulation of convective precipi-
tation.21 While QPF skill depends heavily on the
region, season, intensity, and storm type,19 precipita-
tion skill is generally good for rainfall generated by
synoptic-scale frontal weather systems.22 The inten-
sity of precipitation tends to be one of the major pro-
blems in QPFs, with convective21 and orographic
enhancement23 processes tending to result in an

under-prediction of intensity alongside the tendency
of most global models to over-predict the intensity of
light precipitation.24 Many NWP models struggle
with displacement;19,25 while the areal extent, timing,
and intensity of precipitation may be correct, precipi-
tation displacement can be extremely detrimental to
forecasts of river flow and flooding.

With ongoing improvements to NWP mod-
els13,14,16,26 (resolution increases, new methods of
simulating the physical processes, and increasing
computer power), precipitation forecasts have
become more useful to hydrological applications.

Ensemble Flood Forecasting—
Representing Uncertainty
Over the past 2 decades, NWP has moved from
single-solution forecasts of the future state of the
atmosphere to probabilistic forecasts using ensemble
prediction systems (EPS).27 Probabilistic forecasts
allow the inherent uncertainties in NWP to be repre-
sented.15,28 In hydrological modeling, the four main
sources of uncertainty are input data, evaluation
data, model structure, and model parameters.29–32

The relative importance of these uncertainties tends
to vary according to catchment characteristics, event
magnitude, and lead time of the forecast,12,27 but it is
generally accepted that the greatest uncertainty in
flood forecasting beyond 2–3 days lead time stems
from the meteorological input.27,29

The standard approach in NWP is to produce a
single (deterministic) forecast from the initial state,
whereas EPS recognise and represent the uncertainty
in the initial conditions by perturbing them to pro-
duce several initial states.33,34 The forecast model is
run from each of the perturbed initial states, produ-
cing many varying, but valid and equally probable,
forecast scenarios. In addition to sampling the error
in the initial state, many centers also incorporate sto-
chastic physics, which involves applying random per-
turbations of the parameterized physical processes.35

TABLE 1 | Technical details of quantitative precipitation forecasts used in large-scale flood forecasting8

Product Type Spatial Extent Spatial Resolution Temporal Resolution Forecast Range Uncertainty

Radar nowcasting ~10,000–50,000km2 1–4 km 5–60 min 1–6 h Low

#
High

Ensemble radar nowcasting ~10,000–50,000 km2 1–4 km 5–60 min 1–6 h

Radar-NWP blending Regional ~2 km 15–60 min ~6 h

Limited-area NWP Regional–Continental 2–25 km 1–6 h 1–3 days

Ensemble limited-area NWP Regional–Continental 2–25 km 3–6 h ~5–30 days

Global NWP Global ~15–100 km ~3–6 h ~5–30 days

Seasonal forecasts Global ~15–100 km ~6–24 h Months

WIREs Water Continental and global scale flood forecasting systems
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Predictions of river discharge are usually pro-
duced by providing the EPS as input to a hydrologi-
cal model.27,32,36,37 Prior to this, some pre-processing
may be required32,37; scale corrections (downscaling
or disaggregating) are made as the scale (temporal
and spatial) does not usually correspond between the
EPS and the hydrological model due to the irregular
shape of catchments.15 Bias or spread corrections
may also need to be made.27

The use of EPS in flood forecasting allows
probabilistic forecasts of flood events at much longer
lead times than has previously been possible and is
useful in producing forecasts in catchments where no
other input data is available.27 Cloke and Pappenber-
ger27 give a detailed review of the benefits of ensem-
ble over deterministic flood forecasts, particularly
looking at advantages for issuing flood alerts and
warnings. Probabilistic forecasts of upcoming events
have been shown to provide greater skill than deter-
ministic forecasts38 and provide key information
about the possibility of occurrence of an extreme
event.

Operational Large-Scale Flood
Forecasting
There exist various large-scale hydrological models
run by communities around the globe; Bierkens
et al.39 give a detailed overview of the properties of
14 global scale and 4 continental scale models. Not
all of these models are used operationally for the pur-
pose of flood forecasting, and as such, a list of opera-
tional continental and global scale flood forecasting
models, alongside key system information, is pro-
vided in Table 2.

Figure 1 shows a simplified conceptual model
for a large-scale flood forecasting system, the compo-
nents required and the output generated within each
component. The operational systems outlined in
Table 2 are the focus of this review, and each takes a
different approach to the components of the concep-
tual model. In the following sections, we benchmark
the state of current science and technology in under-
taking operational continental- and global-scale flood
forecasting and early warning.

CONTINENTAL-SCALE FLOOD
FORECASTING SYSTEMS

There are currently four operational continental-
scale flood forecasting systems, two for Europe:
the European Flood Awareness System (EFAS)
of the European Commission (EC) and the European
HYdrological Predictions for the Environment

(E-HYPE) model of the Swedish Meteorological
and Hydrological Institute (SMHI). The Bureau of
Meteorology (BoM) runs the Flood Forecasting
and Warning Service (FFWS) for Australia, and the
U.S. National Weather Service (NWS) run a model
covering the continental USA, the Hydrologic Ensem-
ble Forecasting Service (HEFS). This section outlines
the components of, and the forecast products pro-
duced by, each system.

The European Flood Awareness System
EFAS is an EC initiative developed by the Joint
Research Centre (JRC) to increase preparedness for
riverine floods across Europe. It was in development
from 2002, tested from 2005 to 2010, and has been
operational since 2012. After devastating, wide-
spread flooding on the Elbe and Danube rivers in
2002, the EC began development of EFAS, with the
aim of providing transnational, harmonized early
warnings of flood events and hydrological informa-
tion to national agencies, complementing local ser-
vices.42 Various consortia execute different aspects
(e.g., computation and dissemination) of the EFAS
operational suite.43

Model Components
Rather than using just one meteorological NWP fore-
cast as input, EFAS uses four different forecasts, two
ensemble forecasts and two deterministic. Figure 2
details the various components of the EFAS suite,
including key information regarding the NWP mod-
els. The precipitation, temperature, and evaporation
from each of the four forecasts are used as input to
the Lisflood hydrological model, which is used as
both the rainfall-runoff and the routing components
shown in Figure 1 and simulates canopy, surface,
and sub-surface processes such as snowmelt (includ-
ing accounting for accelerated snowmelt during rain-
fall) and preferential (macropore) flow, soil, and
groundwater processes.42

Simulated ensemble hydrographs are produced
by Lisflood; however, these alone do not constitute a
flood forecast. A decision-making element needs to
be incorporated.42 Due to the often limited number
of discharge observations in many areas of the globe,
these critical thresholds cannot be derived directly
from observations. Meteorological data are run
through Lisflood to calculate 22-year time series of
discharge, to provide a reference threshold for minor
or major flooding at each grid cell.
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Statistical processing of
output between components

NWP model
Precipitation and

meteorological variables

Rainfall-runoff
component

Discharge/runoff

Input observations
e.g. precipitation, discharge
evaporation, meteorological

variables

Input datasets
e.g. river network, topography,

land cover, land use

Threshold warning
calculations

e.g. return periods
input: e.g. climatology

Runoff routing
component

Storm hydrograph

Interface
Flood warnings and

forecast communication

FIGURE 1 | A conceptual large-scale hydrometeorological flood forecasting system.

ECMWF IFS
(European centre for medium-range

weather forecasts integrated

forecast system)

Deterministic system

10 days, global

16 km horizontal resolution

Input and calibration datasets
Topography, river network,

soil type, soil texture,

land use, lakes and reservoirs,

irrigation

Observed data
(Meteorological)

forced through lisflood to calculate
long discharge time series

Lisflood
Rainfall-runoff and runoff routing

kinematic wave model
regular grid, 5 km resolution

EFAS web interface

Threshold

warning
values

ECMWF IFS
(European centre for medium-range

weather forecasts integrated

forecast system)

Ensemble prediction system

51 ensemble members

10 days, 32 km resolution, global

COSMO-LEPS
(Consortium for small-scale

modelling limited-area ensemble

prediction system)

16 ensemble members

5 days, 7 km resolution

regional (europe)

DWD
(Deutshcer wetterdienst)

Deterministic system

1–3 days, 7 km resolution

regional (europe)

4–7 days, 10 km resolution, global

FIGURE 2 | Components of the European Flood Awareness System (EFAS).
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Forecast Visualisation
Alongside warnings for each forecast point, the EFAS
interface (e.g. Figure 3) provides ensemble hydro-
graphs, which allow the interpretation of the spread
of the ensemble and the uncertainty in the forecast.
Persistence diagrams showing information about the
previous four forecasts also give the user additional
information on the forecast uncertainty as NWP
models should be able to pick up large-scale synoptic
weather systems that typically produce severe events
in advance, therefore showing a flood risk consist-
ently in each forecast run.42 The EFAS interface pro-
vides a map of Europe, with all points forecasting a
flood event designated by a color responding to the
warning threshold; this allows an overview of fore-
cast flood events across the continent. The informa-
tion and visualization within EFAS are designed to
give clear, concise, and unambiguous early warning
results.42

Warning Dissemination
Copernicus is the European Emergency Management
Service, and EFAS is the operational flood early
warning system designed to disseminate warnings for
Europe under the Copernicus initiative. According to
the WMO Executive Council (EC-LVII-Annex VII),43

National Meteorological and Hydrological Services

(NMHS) constitute the single authoritative voice on
weather warnings in their respective countries. There-
fore, in order to respect the single voice principle
with regard to floods, EFAS real-time information is
provided only to hydro-meteorological authorities
signing a ‘Condition of Access’ document. EFAS
sends warning emails to these national authorities
responsible for flood forecasting, designed to bring
awareness of an upcoming flood event, with further
details accessed through the interface. There are four
types of warning emails provided. Flood Alerts are
issued when a river basin has a probability of exceed-
ing critical flood thresholds more than 2 days ahead;
Flood Watches are issued when there is a probability
of a river basin exceeding critical thresholds, but the
event does not satisfy the conditions for a Flood Alert
(such as river basin size or warning lead time); and
Flash Flood Watches are issued when there is a
>60% probability of exceeding the flash flood high
alert threshold. An example of an EFAS Flood Alert
is given in Box 1. The 2-day lead time criteria is spe-
cified as the forecasting systems used by the national
authorities have usually issued a national warning
with a lead time of up to 2 days. Additionally, daily
overviews are sent to the Emergency Response Coor-
dination Centre (ERCC) of the EC, containing infor-
mation on ongoing floods in Europe, as reported by
the national services and EFAS warnings.
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Forecast Verification
EFAS also undergoes forecast verification, with two
methods used for this system. First, the hits, false
alarms, and misses are assessed for each flood event,
with events evaluated through feedback reports and
news media. Secondly, skill scores are calculated and
reported regularly through EFAS bulletins, available
via the website (see Table 2).

Operational Applications
EFAS is integrated in the daily forecasting procedures
of many national hydrological services across Europe,
providing operational early warnings and additional
information that is used for decision-making purposes
at national and local scales. Additionally, EFAS is
used by the ERCC to compile reports on the flood sit-
uation and outlook and for the coordination of emer-
gency response at the continental scale.

The European HYdrological Predictions
for the Environment Model
E-HYPE is a multipurpose model based on open data
(Table 3), which is used for various applications such
as water management, research experiments, and
flood forecasting.45 The E-HYPE Water in Europe

Today (WET) tool (Figure 4) compares the current
hydrological situation with climatological data and
past modeled events. The tool was originally designed
to alert water managers to flow that is predicted to be
outside the normal range (based on the 75th and
25th percentiles) and has evolved to provide informa-
tion to many end users. Another setup of the HYPE
model, EFAS-HYPE, uses further restricted datasets
and is currently being tested as an additional model
within EFAS. This section focuses on the river flow
forecasts produced by the WET tool.

Model Components
In contrast to other systems, E-HYPE currently uses
only deterministic NWP input to drive the hydrologi-
cal model component, although ensemble forecasting
is intended for future system developments. The
HYPE model45,46 is a distributed rainfall-runoff
model developed at SMHI, which divides catchments
into sub-basins rather than a regular grid. Each sub-
basin is further divided into classes based on land
use, soil type, and elevation.44 Alongside processes
such as snow accumulation and melting, evapotran-
spiration, and groundwater recharge,46 HYPE also
takes into account anthropogenic influences including
irrigation and hydropower.44

Forecast Visualization
Within the WET tool, forecasts of river flow are com-
pared to climatology based on the ECMWF ERA-
Interim reanalysis and evaluation datasets (Figure 5)
in order to produce an overview of river flow that is
under or above the normal range. This information is
displayed on a color-coded map of the sub-basins
within the E-HYPE model (Figure 4).

Forecast Verification
Through the E-HYPE and WET interface, various
model performance statistics are available. The model
is verified against observed discharge from river
gauges and allows the user to quickly evaluate the
performance of the model with regard to timing, vari-
ability, and volume error for the point of interest or
across a larger region. The overall model performance
in terms of mean annual discharge is also presented.
Donnelly et al.45 present a new method for evaluating
the performance of a multi-basin model, and results
from this evaluation of the historical model indicated
that the model is suitable for predictions in ungauged
basins as it captures the spatial variability of flow.
While the model performs well in terms of long-term
means and seasonality, the performance is less effec-
tive in terms of daily variability, particularly in

BOX 1

EXAMPLE OF AN EFAS FLOOD ALERT,
SENT TO EFAS PARTNERS AND
NATIONAL AND REGIONAL SERVICES

EFAS FLOOD ALERT REPORT
Dear Partner,
EFAS predicts a high probability of flooding

for Norway—Otta and Lagen-Mjosa tributaries
(Glomma basin) from Monday June
29 onwards.

According to the latest forecasts (2015-06-25
12 UTC), up to 100% EPS (VAREPS) are exceed-
ing the high threshold (>5 year simulated
return period) and up to 86% EPS (VAREPS)
exceeding the severe threshold (>20-year simu-
lated return period).

Compared to the VAREPS mean, the ECMWF
deterministic forecast is comparable and the
DWD deterministic forecast is lower.

The earliest flood peak is expected for
Saturday, July 4, 2015.

Please monitor the event on the EFAS-IS
interface (http://www.efas.eu)

Overview wires.wiley.com/water

© 2016 The Authors. WIREs Water published by Wiley Periodicals, Inc.

http://creativecommons.org/licenses/by/4.0/


TA
B
LE

3
|
Da

ta
ba
se
s
us
ed

w
ith
in
th
e
fl
oo
d
fo
re
ca
st
in
g
sy
st
em

s.
Du

e
to

th
e
al
te
rn
at
iv
e
se
t-u

p
of

th
e
Bo
M

FF
W
S,
th
is
in
fo
rm

at
io
n
w
as

no
ta

va
ila
bl
e

Da
ta

Ty
pe

Da
ta

So
ur
ce EF

AS
E-
HY

PE
44

HE
FS

G
lo
FA
S

G
LO

FF
IS

PC
RG

LO
B-
W
B

W
3R
A

To
po
gr
ap
hy
/

ro
ut
in
g

SR
TM

/C
CM

2
Hy
dr
oS
HE

DS
&
HY

DR
O
1K

N
ED

&
N
HD

Pl
us

Hy
dr
oS
HE

DS
&

HY
DR

O
1K

Hy
dr
oS
HE

DS
,H

YD
RO

1K
&

N
AS

A
SR
TM

Hy
dr
oS
HE

DS
,

HY
DR

O
1K

&
N
AS

A
SR
TM

La
nd

co
ve
r

CO
RI
N
E

CO
RI
N
E
an
d
G
lo
bc
ov
er

20
00

N
LC
D,

M
O
DI
S,
AV

HR
R

CO
RI
N
E
an
d
G
lo
bc
ov
er

20
00

G
LC
C,

M
IR
CA

M
O
DI
S

Ur
ba
n
ar
ea
s

Eu
ro
pe
an

So
il
Da

ta
Ce
nt
re

(E
SD

AC
)

Eu
ro
la
nd

So
ilS
ea
lin
g
20
09

N
A

Ha
rm

on
iz
ed

W
or
ld
So
il

Da
ta
ba
se

G
LC
C

N
A

La
ke

ar
ea

an
d

sp
at
ia
l

di
st
rib
ut
io
n

G
LW

D
(G
lo
ba
lL
ak
e
an
d

W
et
la
nd

Da
ta
ba
se
)

G
LW

D
(G
lo
ba
lL
ak
e
an
d

W
et
la
nd

Da
ta
ba
se
)

N
HD

Pl
us

G
LW

D
(G
lo
ba
lL
ak
e
an
d

W
et
la
nd

Da
ta
ba
se
)

G
LW

D,
G
Ra
N
D
(G
lo
ba
l

Re
se
rv
oi
ra

nd
Da

m
s

Da
ta
ba
se
)

N
A

La
ke
s
an
d

re
se
rv
oi
rs

G
LW

D,
G
Ra
N
D
(G
lo
ba
l

Re
se
rv
oi
ra

nd
Da

m
s

Da
ta
ba
se
)

G
LW

D,
ER
M
O
BS
T,
FL
AK

E-
G
lo
ba
l,
In
te
rn
at
io
na
l

W
at
er

Po
w
er

&
Da

m
,

IL
EC

W
or
ld
La
ke

Da
ta
ba
se
,L
EG

O
S,
SM

HI

US
G
S
&
Fe
de
ra
ls
ta
te

an
d

lo
ca
lw

at
er

m
an
ag
em

en
ta

ut
ho
rit
ie
s

(e
.g
.U

SA
CE
,

Re
cl
am

at
io
n)

G
LW

D,
G
lo
ba
lR

es
er
vo
ir

an
d
Da

m
s
Da

ta
ba
se

G
RA

N
D

G
LW

D,
FL
AK

E-
G
lo
ba
l,

G
Ra
N
D
(G
lo
ba
l

Re
se
rv
oi
ra

nd
Da

m
s

Da
ta
ba
se
)

N
A

So
il
Ty
pe

Eu
ro
pe
an

So
il
Da

ta
Ce
nt
re

(E
SD

AC
)

Ba
se
d
on

La
nd

Us
e
an
d

El
ev
at
io
n

SS
UR

G
O

Ha
rm

on
iz
ed

W
or
ld
So
il

Da
ta
ba
se

FA
O
DS

W
N
A

Cr
op

Ty
pe
s

N
A

CA
PR
I,
M
IR
CA

-2
00
0

N
A

N
A

M
IR
CA

N
A

Irr
ig
at
io
n

EI
M

(E
ur
op
ea
n
Irr
ig
at
io
n

M
ap
),
G
M
IA

(G
lo
ba
l

M
ap

of
Irr
ig
at
io
n
Ar
ea
s)

EI
M

(E
ur
op
ea
n
Irr
ig
at
io
n

M
ap
),
G
M
IA

(G
lo
ba
l

M
ap

of
Irr
ig
at
io
n
Ar
ea
s)

N
HD

Pl
us
,L
oc
al
w
at
er

au
th
or
iti
es

G
M
IA

(G
lo
ba
lm

ap
of

Irr
ig
at
io
n
Ar
ea
s)

M
IR
CA

N
A

E
-H

Y
PE

,
E
ur
op

ea
n
H
Y
dr
ol
og

ic
al

Pr
ed
ic
ti
on

s
fo
r
th
e
E
nv

ir
on

m
en
t;
G
lo
FA

S,
G
lo
ba

l
Fl
oo

d
A
w
ar
en
es
s
Sy
st
em

;G
L
O
FF

IS
,
G
lo
ba

l
Fl
oo

d
Fo

re
ca
st
in
g
an

d
In
fo
rm

at
io
n
Sy
st
em

;
H
E
FS

,
H
yd

ro
lo
gi
c
E
ns
em

bl
e
Fo

re
ca
st
in
g

Se
rv
ic
e;

N
A
,n

ot
ap

pl
ic
ab

le
.

WIREs Water Continental and global scale flood forecasting systems

© 2016 The Authors. WIREs Water published by Wiley Periodicals, Inc.



Mediterranean and mountainous areas, and in
regions of the most anthropogenic influence.

Operational Applications
E-HYPE is currently being used in several applications
across Europe, such as seasonal flow forecasting for the
EU European Provision Of Regional Impacts Assess-
ments on Seasonal and Decadal Timescales (EUPORIAS)
project, which aims to help societies deal with climate
variability, and providing data for use in oceanography
models and as part of the Sharing Water-related Infor-
mation to Tackle Changes in the Hydrosphere - for
Operational Needs (SWITCH-ON) EU project. The
WET tool is also used by various other smaller compa-
nies around Europe to provide water forecasts, for exam-
ple, soil-water forecasts for gardening companies.

The Australian Flood Forecasting and
Warning Service
The Australian BoM has been producing flood fore-
casts operationally for several decades, with the tech-
nology and systems used to produce these forecasts
continually evolving. More recently, the BoM has

introduced short-term (up to 7 days ahead) continuous
streamflow forecasting using deterministic NWP mod-
els within the Hydrological Forecasting System (HyFS)
production environment [based on the Deltares Flood
Early Warning System (FEWS) forecasting framework]
alongside event-based hydrological modeling and now-
casting using radar rainfall estimates. The BoM ser-
vices also rely on forecasters for the dissemination and
communication of flood warnings and local informa-
tion regarding river conditions.

Model Components
The NWP forecasts used to force the rainfall-runoff
models are produced by the BoM’s Australian
Community Climate and Earth-System Simulator
(ACCESS) NWP model. ACCESS has four compo-
nents running at different spatial scales and resolu-
tions (Figure 6). In addition to the NWP model
output, forecasters and hydrologists at the BoM can
produce ‘What If’ precipitation scenarios, which can
force the hydrological models.

Alongside the semi-distributed GR (�Genie Rural
á 4 Paramétres) hydrological models, event-based

FIGURE 4 | The Water in Europe Today (WET) tool interface with example forecast (inset) showing above-normal (blue shading) and below-
normal (red shading) forecast river flow. The hydrograph shows current conditions and forecast river flow (black line) compared to climatology
(blue shading). Forecasts are available at hypeweb.smhi.se/europehype/forecasts.

Overview wires.wiley.com/water
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forecasting is used extensively; for this, local models
are used in support of the continental scale system.
The resulting river discharge estimations from both
model versions are used, alongside observed data
and statistical models, to produce automated graphi-
cal products such as maps, bulletins, warnings, and
alerts.

Role of the Forecaster
Whilst the other systems presented in this paper are
almost entirely automated and model-based, the

BoM system also relies on the input of expert meteor-
ologists and hydrologists. In addition to producing
‘What If’ scenarios to feed into the hydrological mod-
els, the forecasters are able to manually post-process
the forecasts and observed data to produce further
products and visualizations and assess the quality of
the data and forecasts in real time. The forecasters
are also able to produce additional warnings on the
fly, for example, if a reservoir is seen to fill or their
experience alerts them to an alternative possible sce-
nario to those produced by the hydrological models.
The hydrologists at the BoM are also responsible for

Input and calibration datasets
Topography, soil type, land use, lakes
and wetland, irrigation, crop type and

water demand, discharge, glacier
areas, snow, evapotranspitation,

WFDEI forcing data

Post-processing
Comparison of river flow forecasts

to climatology

Water in Europe today
(WET) web interface

ECMWFIFS
(European centre for medium-range

weather forecasts integrated
forecast system)

Deterministic system
10 days, global

16 km horizontal resolution

E-HYPE
(European hydrological predictions

for the environment)

Hydrological model of the SMHI
rainfall-runoff and runoff routing

Evaluation datasets
Historical discharge data from the
global run off data centre (GRDC),

European water archive(EWA),
Baltex hydrological data centre

(BHDC)

FIGURE 5 | Components of the European Hydrological Predictions for the Environment (E-HYPE) Water in Europe Today (WET) tool.

ACCESS-G
BoM ACCESS global NWP forecasts

10 days, ~40 km resolution

ACCESS-R
BoM ACCESS regional NWP forecasts

3 days, ~12 km resolution

ACCESS-C
BoM ACCESS city-scale NWP forecasts

1.5 days, ~4 km resolution

ACCESS-TC
BoM ACCESS relocatable NWP forecasts

12 km resolution

“What-If” scenarios
Forecaster-driven

Observed data
and radar

Statistical models
Based on past observed events

Internal interface
Automated products

Hydrological models

Genie rural a 4 parameters (GR4J and GR4H)
Sémi-distributed rainfall-runoff models of the institut

national de recherche en sciences et technologies pour
l’Environnement et l’ Agriculture (IRSTEA, France) with

muskingum channal routing

Unified river basin simulator (URBS)
Event-based semi-distributed htdrological model of the
BoM with non-linear reservoir catchment routing and/or

muskingum channal routing

BoM web interface
Public products and warnings

Manual processing
Forecasters/hydrologists

Pre-processing

HyFS production environment

FIGURE 6 | Components of the Australian Flood Forecasting and Warning Service (FFWS).
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dissemination and communication of the forecasts
and warnings.

A further reason for the input of forecasters is
due to the challenges of producing operational flood
forecasts for a large continent with an unevenly dis-
tributed population. Metropolitan areas have a dense
observation network for both rainfall and river dis-
charge; however, there are large areas of Australia
that have no flowing rivers, such as in the Northern
Territory where there is an average of one river
gauge every 13,360 km2.

Warning Dissemination
The final products delivered to the end users include
flood watches and warnings and information on cur-
rent river levels and precipitation, which are dissemi-
nated to various users at specified stages in the
evolution of a flood event through a dedicated web
interface, email, fax, and telephone. These are usually
text forecasts, an example of which is given in Box 2
for a minor flood event, written by the hydrologists
based on the output of the HyFS but can also
include automated alerts and bulletins for certain
users. Figure 7 shows the corresponding publicly
available graphics for this flood event, while the BoM
hydrologists also have access to more sophisticated
graphical products produced by the automated com-
ponent of the HyFS, such as ensemble hydrographs.

Forecast Verification
Currently, the BoM uses a manual verification
approach, sampling 10% of the warnings issued,
based on specifications set out for each forecast point
such as a minimum lead time of 6 h or a peak fore-
cast accuracy of �0.5 m. With updates to the Flood
Forecasting and Warning Service (FFWS), verification
software will be introduced, which will automatically
compute statistics analyzing the accuracy of the fore-
cast river levels, peak, and timing based on a com-
parison with observed river levels. The lead time
provided for warnings will also be analyzed and
compared to the accuracy specifications, providing a
measure of performance for a much greater sample
of events, which will, in turn, drive further system
improvement. Additionally, the HyFS continuous
short-term forecasts are verified using a 15-day mov-
ing average climatology to calculate the mean abso-
lute error skill score.

Operational Applications
At the BoM, the continuous short-term streamflow
forecasts are used across Australia to provide an
early indication of an upcoming flood event in order

to start making arrangements and decisions. These
forecasts are then used as a ‘heads-up’ to start run-
ning event-based models at the local scale to provide
official, public flood warnings. This is an excellent
example of the use of large-scale flood forecasting
systems to enhance and supplement existing, local-
scale forecasting capabilities.

BOX 2

EXAMPLE OF A FLOOD WARNING
WRITTEN BY HYDROLOGISTS AT THE
BUREAU OF METEOROLOGY

MINOR FLOOD WARNING FOR THE SNOWY
RIVER Issued at 9:58 am EST on Wednesday, July
15, 2015

River levels at Orbost are currently around
the Minor Flood Level (4.2 m) and rising.
A peak of around 4.3–4.4 m is expected during
Wednesday afternoon [15/07/2015].

In the interests of community safety, the SES
suggests the following precautions:
Don’t walk, ride or drive through floodwater,
Don’t allow children to play in floodwater, Stay
away from waterways and stormwater drains,
and Keep well clear of fallen power lines

Current Emergency Information is available
at http://www.ses.vic.gov.au For emergency
assistance, call the SES on telephone number
132 500. For life threatening emergencies, call
000 immediately.

The SES advises that rainfall run-off into
waterways in recent fire-affected areas may
contain debris such as soil, ash, trees and rocks.
People in fire-affected areas should be alert to
the potential for landslide and debris on roads.

Weather Forecast:
For the latest weather forecast see www.bom.
gov.au/nsw/forecasts/

Next Issue:
The next warning will be issued by 10:00 am
Thursday [16/07/2015].

Latest River Heights:
Snowy R. at Basin Creek 4.33 m falling 09:16
AM WED 15/07/15 Buchan R. at Buchan 1.65m
falling 08:45 AM WED 15/07/15 Snowy R. at Jar-
rahmond 4.35 m rising 09:00 AM WED 15/07/15
Snowy R. at Orbost 4.18 m rising 09:00 AM
WED 15/07/15

For latest rainfall and river level information
see www.bom/gov.au/nsw/flood/

Overview wires.wiley.com/water
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The U.S. Hydrologic Ensemble Forecast
Service
The HEFS is run by the NWS and, for river basins
across the U.S., provides ‘uncertainty- quantified fore-
cast and verification products’.40 From the late
1990s, NWS service assessments, alongside feedback
from end users and the US National Academies,47

began to confirm the need for probabilistic river fore-
casts for flood forecasting and water resources. In
2012, the HEFS began to run experimentally at sev-
eral regional River Forecast Centres (RFCs), each of
which forecasts streamflow for hundreds of river loca-
tions, and is currently being rolled out operationally
at all 13 RFCs. The HEFS aims to produce ensemble
streamflow forecasts that seamlessly span lead times
from less than 1 h up to several years and that are
spatially and temporally consistent, calibrated (i.e.,
unbiased with an accurate spread), and verified.

Model Components
The HEFS consists of five main components,40

detailed in Figure 8, and has been implemented to
run as part of each RFC’s configuration of the Flood
Early Warning System (FEWS)-based Community
Hydrologic Prediction System (CHPS), which has
been the software platform used to run the tradi-
tional deterministic flood forecasts and long-range
ESP forecasts since 2010. The system is designed to
be driven with four meteorological forecast inputs,
two of which (GEFS and CFSv2) are the output of
NWP models, while the RFC forecasts and climatolo-
gies are created by meteorologists for the spatial units
of the RFCs’ watershed models using predictions
from the NCEP Weather Prediction Center (WPC),
local NWS Weather Forecast Offices (WFOs), and
other sources.48

Each RFC may use different combinations of
the 19 components within the Hydrological Proces-
sor (HP) suite, but the majority of RFC operations
center on a lumped implementation of the SAC-
SMA49 and SNOW-1750 models. The pre-processing
step within the HEFS (MEFP, Figure 8) creates an
ensemble of seamless hours-to-seasons, calibrated
weather and climate forcings, which are fed into the
HP. Notably, through use of the MEFP and EnsPost
pre- and post-processing components, both the
uncertainties in the meteorological input and the
hydrology are taken into account.

Forecast Visualization
The graphics generator (Figure 8) uses the resulting
ensemble hydrographs to produce visualizations of
the forecasts that can be communicated to a range of
end users for the purpose of decision making and
warning dissemination. These final forecast products
include spaghetti plots, exceedance probabilities in
the form of bar graphs and probability distribution
plots using comparisons with historical simulations
(reanalysis datasets), and an expected value chart
describing the ensemble distribution. Graphics from
the HEFS are currently operational at only a handful
of RFCs and are currently being rolled out at the
remaining RFCs. An example of an HEFS hydro-
graph for one river location, alongside the public
web interface, is shown in Figure 9. The forecast data
associated with the graphical products are also typi-
cally available from the RFCs, and many users can
access the data directly to drive local decision sup-
port models.

Warning Dissemination
NWS product requirements are codified through
NWS Directives,41 and the RFCs generally issue

River forecast centers and

weather prediction centre
Deterministic forecasts

7 days

Observed data
River discharge/flow

EnsPost
Postprocessing of streamflow forecast ensembles using

autoregressive statistical model

Correction of residual systematic bias and spread errors
remaining after prior steps to reduce input and modelling

errors (MEFP)

Graphics generator
and interface

Ensemble verification
service

Global ensemble forecast

system
NCEP GEFS ensemble forecasts

21 ensemble members

1–7 days, 55 km resolution

8–16 days, 70 km resolution

Meteorological ensemble forecast

processor
Pre-processing of weather and climate forecasts-

statistical generation of ensemble fields from single-

value predictions (deterministic forecasts or

ensemble forecast averages)

Matching of spatial and temporal scales
bias correction

Hydrologic processor

Hydrologic, hydraulic, reservoir and routing models:
BASEFLOW simulation model, channel loss, consumptive use,
continuous incremental api, glacier routing, gridded snow-17,
joint reservoir regulation, lag and k routing, layered coefficient
routing, muskingum routing, rain-snow elevation, sacramento

soil moisture accounting, sacramento with heat transfer, single

reservoir regulation, snow-17, ssarr reservoir regulation,
SSAR channel routing, tatum coefficient routing, unit

hydrograph

Climate forecast system
NCEP CFS deterministic forecasts

9 months, 100 km resolution

Historical observations
Climatological forcing

FIGURE 8 | Components of the U.S. Hydrologic Ensemble Forecast System (HEFS).40,41
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products based on hydrometeorological analyzes and
long-range predictions that are not time critical and
inform non-hazard-related user activities and deci-
sions, such as the Streamflow Guidance. The NWS
Weather Forecast Offices (WFOs), in contrast, issue
the primary hazard-centered alerts related to flood-
ing, including products such as a Hydrologic Out-
look (‘hydrometeorological conditions that could
cause flooding or impact water supply’), Flood
Watch (flooding is likely), or Flood Warning (flood-
ing is imminent or occurring). The WFO hydrologi-
cal products are based primarily on RFC analyzes
and predictions; for instance, an RFC forecast
exceeding a flood threshold triggers a recommenda-
tion to the WFO to release a flood warning that is
reviewed by the WFO forecaster. Protocols for link-
ing the newer HEFS ensemble forecasts to alerts are
still in development.

Forecast Verification
An additional component of the HEFS shown in
Figure 8 is the Ensemble Verification System (EVS),
which produces statistics such as the bias in the fore-
cast probabilities, the skill relative to a ‘baseline’
forecasting system, and the ability to discriminate
between events.46 EVS runs within HEFS and is also
freely available as a stand-alone application. The ver-
ification statistics are provided as graphical and

textual products. They are used to guide research
and development of the HEFS and to improve the
configuration of the HEFS for operational forecast-
ing. Studies by Brown et al.51,52 found that the skill
of the precipitation forecasts used for the HEFS are
the greatest at lead times of up to 1 week for moder-
ate precipitation and in the wet season (December to
March), with limitations in the summer season due
to difficulties in forecasting convection. The studies
also showed that the skill of the streamflow forecasts,
for both the HEFS and traditional RFC deterministic
forecasts, is substantially increased through the use
of the EnsPost component.

Operational Applications
The HEFS is currently being implemented by all
13 NWS RFCs, with existing or proposed applica-
tions ranging from flood forecasting to river naviga-
tion, reservoir operation, and long-term planning
and management of water resources. For example,
reforecasts and operational forecasts from the HEFS
are being used by the New York City Department of
Environmental Protection (NYCDEP) to improve the
management of water supply to NYC by optimizing
the quantity and quality of water stored in the NYC
reservoirs while avoiding unnecessary infrastructure
costs.

Short-term probabilistic guidance (experimental)
Hudson (NY)

Data as of 09:00 AM EDT Mar 11
For official forecast, go to http://weather.water.gov/ahps
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GLOBAL-SCALE FLOOD
FORECASTING SYSTEMS

At present, there are just two flood forecasting sys-
tems that are operational at the global scale, the
Global Flood Awareness System (GloFAS) of the
ECMWF and EC and the Global Flood Forecasting
and Information System (GLOFFIS) run by Deltares.
There also exists a Global Flood Monitoring Sys-
tem53,54 (GFMS) developed by the National Aero-
nautics and Space Administration (NASA) and the
University of Maryland, which uses satellite precipi-
tation as input to a hydrological model to produce
real-time global maps of flood events. Global flood
monitoring is an important aspect of disaster risk
reduction and has many potential applications across
the globe; however, the GFMS is not an operational
hydrometeorological flood forecasting system and, as
such, is not discussed in detail in this review. The
reader is referred to the GFMS website55 and publi-
cations53,54 for further information on the GFMS.
This section discusses the components of GloFAS
and GLOFFIS along with the products and warnings
provided to end users and verification techniques
used to assess the performance of these systems.

The Global Flood Awareness System
GloFAS has been producing probabilistic flood
forecasts with up to 2 weeks lead time in a
pre-operational environment since 20119; this envi-
ronment enables continuous research, development,
and testing in order to produce an operational tool
that is independent of administrative and political
boundaries. GloFAS can provide downstream coun-
tries with early warnings and information on

upstream river conditions alongside global overviews
of upcoming flood events in large river basins for
decision makers ranging from water authorities and
hydropower companies to civil protection and inter-
national humanitarian aid organizations.

Model Components
In contrast to the other systems presented in this
paper, GloFAS uses surface and sub-surface runoff
forecasts produced by the NWP model rather than a
separate rainfall-runoff component (Figure 1). The
Hydrology Tiled ECMWF Scheme for Surface
Exchange over Land (HTESSEL) is contained within
the IFS and is used as forcing for the Lisflood river
routing model. Figure 10 details the components of
GloFAS. Although Lisflood global55 is also a rainfall-
runoff model, it is used here to simulate the routing
processes and the groundwater processes after re-
sampling the runoff forecasts from the IFS to the 0.1o

resolution of Lisflood. Additionally, GloFAS contains
a loss function to account for water loss within the
channel reaches in arid areas, which also simulates
the river–aquifer and river–floodplain interaction and
the influence of evaporation from large rivers.

Runoff from the ECMWF ERA-Interim reana-
lysis archive has also been run through Lisflood off-
line, producing a deterministic climatology of river
flow that is used to compute return periods for the
global river network.

Forecast Visualization
Forecasts and warnings produced by GloFAS are
provided through a password-protected interface
(Figure 11) where users can register to see a global
overview of warning points, forecast precipitation
accumulations, ensemble hydrographs including

Input & calibration datasets
Topography, river network,

soil type, soil texture,
land use, lakes and reservoirs, irrigation

Lisflood
(Routing)

dynamic wave model,
regular grid,

0.1° resolution, global

GloFAS IS
(Interface)

Lisflood
(Routing)

ERA-Interim
Approximately 30 year reanalysis dataset

ECMWF IFS
(European centre for medium-range

weather forecasts integrated
forecast system)

Ensemble prediction system (ENS)
+ HTESSEL (Hydrology tiled ECMWF

scheme for surface exchange over
land)

51 ensemble members
1–10 days, 32 km resolution
11–15 days, 65 km resolution

Runoff (surface &
subsurface flows)

Return
periods

FIGURE 10 | Components of the Global Flood Awareness System (GloFAS).
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return period threshold exceedances and warnings,
and persistence diagrams. The ECMWF and JRC do
not directly disseminate flood warnings as each coun-
try has national procedures to follow, but anyone is
able to access and analyze the forecasts for decision-
making purposes and research. It is noted that due to
the forecast and warning responsibilities within
Europe, all countries for which EFAS produces fore-
casts are removed from the GloFAS interface as these
are not publicly available.

Forecast Verification
Alfieri et al.9 analyzed the performance of GloFAS
and found that forecasts were skilful at 58% of sta-
tions, which increased to 71% when model bias was
removed. Evaluation of the early warning system9

found that the longest lead times, exceeding 25 days
in some regions, are found in large river basins in
South America, Africa, and South Asia, while smaller
basins have a maximum lead time of 20 days and, in
some cases, 10 days. The least skilful forecasts were

June

C
a
lc

u
la

te
d

 r
e

tu
rn

 p
e

ri
o

d
 (

in
 y

e
a

rs
)

25 27 29 01 03 05 07 09 11 13 15 17 19 21 23 25

0

5

10

20

30

50

75

(c)

(a)

(b)

500

1000

D
is

c
h
a
rg

e
 (

m
3
/s

)

1500

2000

2500

3000

EPS mean
25% – 75%

July

FIGURE 11 | The Global Flood Awareness System (GloFAS) interface showing (a) a global overview of severe (purple), high (red), and
medium (yellow) reporting points; (b) a more detailed view of warning points in the U.S.A.; (c) the return period hydrograph with return period
thresholds (1.5, green; 2, yellow; 5, red; and 20 years, purple) for one point in the U.S.A. Forecasts are available at www.globalfloods.eu.

WIREs Water Continental and global scale flood forecasting systems

© 2016 The Authors. WIREs Water published by Wiley Periodicals, Inc.

http://www.globalfloods.eu


for stations in arid and semi-arid regions, such as
Australia, Mexico, and the Sahel. Other discrepancies
were found in relation to the modeling of snow accu-
mulation and melting processes in HTESSEL and
therefore the timing of the peak discharge during
spring in snowmelt regions. Evaluation of GloFAS is
updated regularly to reflect its continued and ongo-
ing development.

Operational Applications
As of the September 14, 2015, GloFAS has 177 regis-
tered users from governmental or other public autho-
rities (�28%), non-governmental organizations
(NGOs, �7%), the private sector (�10%), and from
academic/training and/or research institutions
(�55%). As with EFAS, GloFAS is used by national
services to provide additional early flood information
and is used by, for example, civil protection and
humanitarian aid organizations who benefit from a
global overview of flood events and may have no
other source of information for the region of interest.
GloFAS is also used by the ERCC for the purpose of
compiling reports on natural hazards and flood risk
across the globe.

The Global Flood Forecasting
Information System
The Global Flood Forecasting Information System
(GLOFFIS) is a research-oriented operational system
based on Delft-FEWS.56 GLOFFIS is one of three
global systems run by Deltares in the Netherlands;
also operational are a storm surge model,
GLOSSIS,57 and a water scarcity system, GLOWA-
SIS. These three systems belong to an open, experi-
mental information and communications technology
facility, IdLab, and are being used to test new ideas
around interoperability, hydrological predictability,
big data, and visualization.

Model Components
Similar to the approaches taken by many of the
continental-scale flood forecasting systems, GLOFFIS
uses several meteorological inputs to drive the hydro-
logical component of the system. The idea behind
this is to validate, verify, and inter-compare real-time
rainfall (alongside temperature and potential evapo-
ration) products as they become available. The initial
conditions are derived from historical forcings based
on both the GFS and the ECMWF control forecast
(also extracted from the TIGGE archives) and a

FIGURE 12 | Components of the Global Flood Forecasting Information System (GLOFFIS).

Overview wires.wiley.com/water

© 2016 The Authors. WIREs Water published by Wiley Periodicals, Inc.



combination of FEWSNET (Africa) and Climate Pre-
diction Center (CPC) Unified Gauge-Based Analysis
of Global Daily Precipitation, complimented by GFS
temperature and potential evaporation. Each of the
NWP inputs are fed into two hydrological models
(with multiple initial conditions), PCR-GLOBWB
and W3RA, which also incorporate the HBV-96
snow module,58 to account for snow processes.

The current components and resolution of
GLOFFIS are detailed in Figure 12, with plans to
update the resolution of the W3RA component to
0.05� (~5km) and implement an improved river net-
work. In the future, the Japan Aerospace Exploration
Agency (JAXA) Global Satellite Mapping of Precipita-
tion (GSMaP) and the Global Precipitation Measure-
ment (GPM) Integrated Multi-satellitE Retrievals for
GPM (IMERG) products will also be added as addi-
tional datasets from which to derive initial conditions.

Forecast Visualization
As the GLOFFIS and interoperability experiment is a
very recent development, many aspects have yet to be
implemented. The IdLab is also intended to investi-
gate visualization and data exchange, and for GLOF-
FIS, multiple visualization and data access and
exchange methods will be tested/validated. An exam-
ple of the Delft-FEWS interface for GLOFFIS is
shown in Figure 13. The two forthcoming

visualization platforms for GLOFFIS are not yet
available, but there is a plan to offer access via a
platform similar to the system developed for Guana-
bara bay59 and via the Deltares adaguc portal,60

originally developed by KNMI.61

Forecast Verification
Thorough statistical verification of GLOFFIS is
underway using available open discharge and mete-
orological forecast data alongside (real-time) eyeball
verification. Real-time discharge data is being col-
lected and can be accessed and compared with the
simulated discharge within the Delft-FEWS GLOFFIS
platform and reports generated by the system. The
verification threshold levels are derived from long
historical discharge records and historical simula-
tions, similar to the methods used in other
continental- and global-scale forecasting systems.9

Operational Applications
Although GLOFFIS is not yet fully implemented, it is
being used internally at Deltares and by their custo-
mers, with discussions already underway between
Deltares and other potential end users of the system.
GLOFFIS is intended to be a research tool on predict-
ability and interoperability first and foremost but will
be suitable for a variety of applications once fully
operational.

FIGURE 13 | Runoff output of the Global Flood Forecasting Information System (GLOFFIS) W3RA model in the Delft-FEWS forecast platform
interface.

WIREs Water Continental and global scale flood forecasting systems

© 2016 The Authors. WIREs Water published by Wiley Periodicals, Inc.



THE GRAND CHALLENGES OF
GLOBAL-SCALE FLOOD
FORECASTING

There are many challenges associated with global-
scale flood forecasting. These range from insufficient
data and difficulties combining models and computer
resource requirements to the cost of running these
models and methods of communicating forecasts effi-
ciently. The challenges faced in operational flood
forecasting are discussed in detail by Cloke and
Pappenberger,27 Hannah et al.,62 Wood et al.,63 Liu
et al.,64 Pappenberger et al.,65,66 Kauffeldt,29 Pagano
et al.67 and Bierkens10; this section focuses on the
current capabilities of the systems reviewed here and
discusses some of the grand challenges of global-scale
flood forecasting based on the current system’s lim-
itations alongside experiences and lessons learned
from the development of these systems.

Current Capabilities
Large-scale flood forecasting has only become possi-
ble in recent years, and systems such as those out-
lined in this review are able to produce coarse-scale
discharge forecasts at spatial scales covering entire
continents or the globe using NWP products and
other expertise, comparing these to observed and
modeled historic events in order to produce forecasts
of flood events in the medium range, typically 7–15
days. Results from EFAS suggest that river flow and
flood forecasts driven by meteorological forecasts are
able to provide significant added value to the moni-
toring of European rivers,68 whilst for GloFAS,
results show that the maximum added value is shown
‘(i) in medium-size river basins, (ii) in those with rela-
tively fast response and (iii) in basins with no definite
trend in the seasonal runoff’,9 with lead times of up
to 1 month possible in some large river basins.9

These systems are also capable of producing and dis-
seminating basic forecast, and in some cases, early
warning, products in real time and are key in supple-
menting national and local flood forecasting capabil-
ities while supporting global-scale activities.

A recent study by Pappenberger et al.66 pro-
vides evidence of the economic benefits of large-scale
flood early warning systems in addition to the clear
benefits of forecasts and early warnings to popula-
tions at risk of flooding. The study demonstrates that
the monetary benefit of EFAS is �€400 for every €1
invested, indicating that large-scale flood forecasting
systems not only have the capability to provide early
awareness of potential severe events but also provide

economic benefits through potential avoidance of
flood damages.

Improving Data Availability
Grand Challenge: to access data of sufficient quality
and length, assimilate new types of observations, and
meaningfully incorporate data of inhomogeneous
quality.

One of the major challenges in large-scale fore-
casting lies in the availability of input data of the
quality that is required,62 such as data required for
estimation of the initial hydrological state, geographi-
cal boundaries of river basins, and large-/global-scale
datasets of land use, soil data etc. For example,
smaller-scale national flood forecasting systems are
often able to assimilate or update discharge informa-
tion in real time, while continental- and global-scale
models are limited by the lack of availability of real-
time, open data for this purpose.

Along with the technical challenges associated
with accessing and assimilating the data, non-technical
data challenges also exist. For example, there are diffi-
culties with retrieving, quality controlling, formatting,
archiving, and redistributing the data collected67 at
centers across the globe. This often requires special-
ized training and staff, for example, at the U.-
S. National Weather Service, much of the
hydrologists’ time is spent processing data and main-
taining the infrastructure used to archive and distrib-
ute the data, and the stream measurements used in the
BoM system are collected by several hundred entities
and must be collated before processing.67

More international and interdisciplinary data
sharing,62 through institutions such as the Global
Runoff Data Centre (GRDC), and cooperation is
essential in moving forward with global-scale fore-
casting efforts and would greatly increase the data
available to forecasting centers not just for use in
forcing these models but for verification of the fore-
casts and continuous improvement of forecast accu-
racy. In order to work towards overcoming this
challenge, it is important to contribute to open data
policies and ensure that data availability is at the
core of all related activities.

Model Parameterization
Grand Challenge: to find regionalization methods
and ways to represent sub-grid scale uncertainty on
the global scale.

Alongside the problems associated with the
data required for forecasting flood events, there are
further challenges involved in the parameterization of
models and the use of a single model for all catch-
ments across a continent or the globe. Wood et al.63
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discuss the possibility that much higher resolution
forecasting systems will soon be feasible, which
would further provide detailed information regarding
the storage, movement, and quality of water. In order
to implement models of higher resolutions, there are
other challenges that must also be addressed; these
challenges lie in the parameterization of processes at
both current and future spatial resolutions and the
‘lack of knowledge involved in evaluating and con-
straining the uncertainty in those parameters given
current and future data availability’.69

This challenge could be addressed, for example,
by developing scaling theories to represent effective
parameterization and associated uncertainties rele-
vant to a global forecasting chain and methods that
can incorporate largely varying data and information
availability.

Improving Precipitation and Evaporation
Forecasts
Grand Challenge: to translate improved precipitation
and evaporation forecasts into improved discharge
forecasts.

There have been many improvements in NWP
and precipitation forecasting thus far, which have
enabled global flood forecasting, as discussed earlier
in this review. Despite these improvements, there are
still limitations in the NWP forecasts that affect the
discharge and therefore flood forecasts. Some of these
have been discussed, such as difficulties predicting
convection21 and orographic enhancement pro-
cesses.23 It is not only precipitation forecasts that
need to be further improved but other NWP vari-
ables used in hydrometeorological forecasting sys-
tems, such as evaporation. The challenge then lies in
translating the continuous improvements made to the
NWP forecasts into improved discharge forecasts.

Moving forward, it will be important to
develop tools and methods, such as satellite measure-
ments, to measure potential evaporation and precipi-
tation on a global level with acceptable accuracy.

Incorporating Anthropogenic Influences
Grand Challenge: to understand which of the anthro-
pogenic influences have a significant impact on
hydrological forecasting and therefore need to be
included in global forecasting models.

The lack of knowledge of anthropogenic influ-
ences on runoff is a major challenge for large-scale
flood forecasting.70 These influences, for which there
is currently no global database, include dams and
their regulation, reservoirs, weirs, water extraction,
irrigation, and river re-routing; some of this activity
also goes unreported and unregulated, creating

additional barriers to incorporating information on
water management. One of the specific challenges
noted by SMHI for Europe is the changes in pro-
cesses modeled within these systems due to depleted
aquifers.

It is also important for these systems to incor-
porate aspects of anthropogenic influence such as
land use and urban areas. Many of the users of these
systems require information on potential impacts of
the forecast flood events, for example, the number of
people likely to be affected and how much agricul-
tural land is threatened. The inclusion of more
impact information is one of the current limitations
and focuses for the development of EFAS and Glo-
FAS. A further challenge exists in terms of the une-
venly distributed global population, which results in
sparse data networks in large, unpopulated regions
and difficulties in the dissemination and communica-
tion of forecasts and warnings; this challenge is spe-
cifically mentioned by the BoM for Australia but also
exists at the global scale.

In order to account for anthropogenic influ-
ences in global flood forecasting systems, one solu-
tion would be to map all of these influences and
perform a sensitivity analysis to determine which are
impacting the forecasts, so that the key anthropo-
genic influences can be incorporated into the models.

Resources and Costs
Grand Challenge: to quantify, understand, and com-
municate the values and benefits derived from a
global forecast whilst establishing a cost-effective
execution of these forecasts.

Thus far, the spatial resolution of global-scale
land surface models has largely been constrained by
the computational resources required to run global
weather models, currently, at best, ~20 km. The
monetary costs of producing forecasts using large-
scale prediction systems must also be taken into
account. While the costs of running these systems are
not generally published, the aforementioned study by
Pappenberger et al.66 states that the estimated cost of
EFAS (across the four EFAS operational centres, see
section The European Flood Awareness System) is
€1.8 million per year, with an estimated €20 million
in development costs over 10 years. In addition, with
each improvement and update to a forecasting sys-
tem, it also becomes necessary to re-run model cli-
matologies, re-calculate thresholds, and revise
decision-making criteria, all of which can be techno-
logically challenging and require significant computa-
tional time and resources.11,20
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As these systems develop, the resources
required to run global flood forecasting systems will
be reduced, whilst the technology used continues to
improve. This will enable more centers to run global
models at lower costs and with fewer time con-
straints in the future.

Effective Communication of Forecasts
Grand Challenge: to communicate uncertainties to a
large range of user groups in countries across the
globe, some of whom will not be known, and to
embed these systems into national warning chains,
whilst respecting sensitivities associated with the sin-
gle voice principle.43

A key challenge associated with global-scale
flood forecasting stems from the understanding and
communication of flood forecasts. For instance, with
the move towards ensemble flood forecasting, there
is also a need for improved understanding of proba-
bilistic forecasts. Ensemble forecasts produce large
amounts of information, and it is vital that the most
important information is conveyed appropriately for
ease of use and correct interpretation of the forecasts,
allowing for well-informed decisions and promoting
a common understanding between end users.

One of the current key challenges for EFAS is
ensuring that the flood forecast and warning infor-
mation is easily accessible to a broad range of users
from countries across Europe, who interpret the fore-
casts very differently. This challenge is amplified fur-
ther when producing forecasts, as with GloFAS and
GLOFFIS, for the entire globe and a spectrum of
users ranging from experts in the fields of hydrology
and meteorology to those with no experience in using
these types of products. GloFAS already has a range
of partners and end users, from those who are inter-
ested in discharge forecasts for specific stations to
those who are interested purely in the impact of the
floods. An additional consideration is that of the sin-
gle voice43 principle, which states that national ser-
vices constitute the single authoritative voice on
weather warnings in their respective countries. As
more systems are introduced with the capability of
producing forecasts and warnings, the more difficult
this principle becomes; in future, it may be that many
institutions are able to disseminate warnings and
benefit from the wealth of available forecasts and
information, and a new challenge of the systems will
be to become the trusted source of information.

In order to effectively communicate forecasts
and warnings, it is important to co-develop the fore-
cast visualizations and warnings with a large range
of users and enable some flexibility for users to

customize the interface. International and interdisci-
plinary cooperation is also key in moving forward
with this challenge as issuing forecasts and warnings
can be challenging without the existence of a political
agreement between upstream and downstream coun-
tries for the sharing of information related to
floods.71

Forecast Evaluation and Intercomparison
Grand Challenge: to find new and novel methods to
verify extremes, which are suitable for hydrological
forecasting.

Many forecasting systems, including large-scale
flood forecasting systems, are moving towards
ensemble forecasting methods. While there are many
benefits to using a probabilistic approach, a key chal-
lenge associated with ensemble flood forecasting is
the evaluation of flood forecasts due to the low fre-
quency of occurrence of extreme floods alongside the
lack of data from different flood events.27 The analy-
sis of an ensemble’s ability to fully represent the
uncertainty is also complex and uncertain in itself.

This relates to a further grand challenge, that of
implementing a Flood Forecasting Intercomparison
Project to compare various aspects of these large-
scale operational flood forecasting systems. This will
be a valuable and important project moving forward
as these systems become more advanced and widely
used for many applications but is currently not
undertaken due to the difficulties involved in compar-
ing models of a variety of different scales, with vary-
ing system set-ups and interfaces and different
objectives and end users. The computational
resources required for such a project are also
extensive.

To have effective forecast evaluation measures
in place, it is important for institutions running these
systems to facilitate access to the forecasts so that the
forecasts can be evaluated by an unbiased, external
entity.

THE FUTURE OF GLOBAL-SCALE
FLOOD FORECASTING

Flood forecasting at the large (continental and
global) scale is key to providing overviews and early
warnings of flood events across the globe, including
regions where no alternative local-scale flood fore-
casts are available. This section outlines aspects of
the future of global-scale flood forecasting as we con-
tinue to work towards overcoming the grand chal-
lenges and move towards ever more valuable multi-
hazard forecast and early warning systems.
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Adaptive Modeling Strategies
Adaptive modeling strategies involve the idea of
adjusting model predictions in real time if discrepan-
cies are observed between the forecast and observa-
tions, where discharge measurements are available in
real time. This allows the uncertainty in the forecasts
to be further constrained. In meteorological applica-
tions, this is referred to as data assimilation and is
used routinely in weather forecasts and NWP; how-
ever, it is often referred to as updating in hydrology
and is not widely used at present in applications such
as those discussed here.30 Simple applications of
updating require starting new forecasts using availa-
ble observations (sequential data assimilation72),
whereas more complex updating involves the adjust-
ment of current predictions to the observations when
discrepancies occur, assimilating the new observed
data into the model in real time (variational data
assimilation72). While data assimilation is not used
extensively in flood forecasting systems to incorpo-
rate observations into the forecasts, this is likely to
be increasingly incorporated in future to further
improve the accuracy and lead time of large-scale
flood forecasts.63

An area of research that will be important in
moving towards the incorporation of adaptive mod-
eling strategies is the development of data assimila-
tion toolboxes, allowing institutions to use and
benefit from data assimilation tools that are other-
wise incredibly complex. One example of this is
OpenDA, ‘an open interface standard for a set of
tools to quickly implement data assimilation and cali-
bration for arbitrary numerical models’.73

Extended-Range Forecasting
Future advances in global-scale operational flood
forecasting are likely to include more long- range
forecasting. There already exists an element of river-
specific predictability in some large rivers where the
movement of a flood wave downstream can take
days or weeks, and a flood event is a relatively cer-
tain outcome once large amounts of precipitation are
recorded upstream. Realistic initial conditions can be
beneficial to seasonal prediction; for example, rela-
tively large soil storage capacity leads to long mem-
ory of soil moisture, and the accuracy of soil
moisture initial conditions may be key in long-range
forecasting.74 The same is true of snow cover and
snow pack, particularly in climate zones where snow
is the major water resource.75

Seasonal forecasts are currently used across a
wide range of weather-sensitive sectors, with many
operational weather forecasting centers producing

seasonal forecasts, which provide ‘seasonal-mean
estimates’ of weather, such as whether the coming
season will be wetter or drier than usual.76 Such fore-
casts have the potential to aid the forecasting of
floods on seasonal time scales, providing crucial
information for flood preparedness and mitigation.77

Seasonal hydrological forecasting has begun to
emerge across the globe over the past decade due to
the ongoing development of coupled atmosphere–
ocean–land general circulation models,77 while the
seasonal water supply forecasts have been used in the
U.S. since the 1930s based on snow survey measure-
ments and, later, precipitation data. 78 Yuan et al.77

highlight several questions related to the future of
seasonal hydrological forecasting, from how to com-
bine weather and climate models toward seamless
hydrological forecasting to how to improve the pre-
diction of inter-annual variability of variables rele-
vant to hydrological forecasting applications. There
also exists the challenge of the effective communica-
tion of seasonal flood forecasts and transfer of these
forecasts into warnings and actions.77 The WMO
S2S (Sub-seasonal to Seasonal) prediction project79

aims to improve the understanding and forecast skill
of the sub-seasonal and seasonal time scales, with a
focus on extreme weather including floods, and will
be key in moving towards extended-range flood
forecasts.

Flash Flood Forecasting
Flash floods are associated with spatially and/or tem-
porally intense precipitation and can have high socie-
tal impacts. For example, 105 out of 139 countries
list flash floods as being in the top two of their most
important hazards.80 Despite this, there is currently
no global flash flood forecasting system, but conti-
nental systems exist in Europe (as part of EFAS),42,81

northern America,82 southern Africa,83 and Australia
alongside other national- and basin-scale systems
around the globe.84 These systems often take the
form of one or a combination of empirical correla-
tions, unit hydrographs, and hydrological modeling
driven by limited area models.85

The challenge of creating a global flash flood
forecasting system is that global NWP systems typi-
cally have a limited resolution of many of the fine
spatial scale processes, such as convection, which are
responsible for intense precipitation. Increasing the
spatial resolution of global NWP systems may reduce
this issue and allow for the implementation of a
methodology such as that of,86 which utilizes the sur-
face runoff estimated from HTESSEL to forecast
extreme runoff risk. An alternative could be to use

WIREs Water Continental and global scale flood forecasting systems

© 2016 The Authors. WIREs Water published by Wiley Periodicals, Inc.



forecasts of parameters that can be used to estimate
the likelihood of intense sub-grid scale precipitation
arising. For example, the ECMWF NWP model fore-
casts the convective available potential energy
(CAPE) and CAPE-SHEAR parameters that show the
atmospheric instability and the ability of supercell
formation in the event of deep moisture convection,
respectively87.

With continuous improvements to NWP sys-
tems, new continental and global flash flood routines
will be developed based on global NWP models.88 In
addition to flash floods, future applications of global
flood forecasting and multi-hazard early warning sys-
tems will begin to include other types of flooding, for
example, coastal storm surges.

Grand Ensemble Techniques
Recent advances in meteorological forecasting and
NWP have moved toward multi-model forecasts and
grand ensemble techniques. Programs such as
TIGGE89 [The Observing System Research and Pre-
dictability EXperiment (THORPEX) Interactive
Grand Global Ensemble] have led to advances in
ensemble forecasting, predictability, and development
of severe weather prediction products in meteorol-
ogy. In hydrology, combining models for flood fore-
casting presents an additional challenge (e.g., due to
different river networks and climatologies), but
despite this, future applications of flood forecasting
should move toward the establishment of grand
ensemble techniques.90 In the future, increased access
to monthly and sub-seasonal (for example, through
the S2S project79) forecasts from multiple centers will
enable us to push the limits of predictability through
use of these grand ensemble techniques.90

New Data Possibilities
Alongside the recent and future advances in forecast-
ing systems, other technologies are constantly advan-
cing and will have beneficial impacts on flood
forecasting across the globe. For example, new satel-
lites and earth observation technologies for flood
observation are being adopted in hydrology to
improve flood forecasts.91,92 García-Pintado et al.92

discuss several earth observation techniques that
have the potential to improve flood detection and
forecasting. Improved data from satellites may be
able to provide more accurate topographical, land
cover, land use, river network and river width infor-
mation93; these are some of the most important data
regarding river basin characteristics, and their accu-
racy is key to flood forecasting systems. Real-time

satellite observations of river width during flooding
would also serve to improve both forecasts and
warnings in real time and verification of the forecast-
ing systems post-event.

Alongside improved databases describing basin
and river characteristics, observations of the data
used as input to flood forecasting systems and in data
assimilation techniques63 could include snowpack
extent, water levels (from altimetry), river discharge,
river width, snow, and soil moisture. Continental-
and global-scale observations of many of these vari-
ables are not currently available, but global coverage
from satellites could prove extremely beneficial in
large-scale flood forecasting applications, particularly
in regions of poor data availability.69

CONCLUSIONS

Here, two global- and four continental-scale opera-
tional flood forecasting systems have been reviewed,
outlining the current state-of-the-art technology in
operational large-scale flood forecasting. Producing
forecasts at the global scale has only become possible
in recent years, with scientific and technological
advances and the increasing integration of hydrologi-
cal and meteorological communities. Due to these
recent advances, large-scale flood forecasting systems
are able to produce coarse-scale discharge forecasts at
spatial scales covering entire continents or the globe
using NWP products and other expertise, comparing
these to observed and modeled historic events in order
to produce medium-range forecasts of flood events.

Many countries are required to prepare for
floods that originate outside of their borders. Interna-
tional and interdisciplinary collaboration is necessary
in order to overcome many of the challenges involved
in transboundary flood forecasting; large-scale fore-
casting systems have the potential to provide valuable
added information about imminent flooding. So far,
results from large-scale flood forecasting systems sug-
gest that river flow and flood forecasts are able to pro-
vide significant added value to the monitoring of rivers
across the globe.9,67 Many challenges remain for
global-scale flood forecasting, from lack of available
data of the quality and scale required to the effective
communication of forecasts and warnings to varying
end users and communities across the globe. Ongoing
research aims to overcome these challenges to further
improve the accuracy and applicability of large-scale
flood forecasting. The systems outlined in this paper
are continuously evolving and are already proving to
be key in supplementing national and local forecasting
capabilities while supporting global-scale activities.
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