522 research outputs found

    Replacement Paths via Row Minima of Concise Matrices

    Full text link
    Matrix MM is {\em kk-concise} if the finite entries of each column of MM consist of kk or less intervals of identical numbers. We give an O(n+m)O(n+m)-time algorithm to compute the row minima of any O(1)O(1)-concise nĂ—mn\times m matrix. Our algorithm yields the first O(n+m)O(n+m)-time reductions from the replacement-paths problem on an nn-node mm-edge undirected graph (respectively, directed acyclic graph) to the single-source shortest-paths problem on an O(n)O(n)-node O(m)O(m)-edge undirected graph (respectively, directed acyclic graph). That is, we prove that the replacement-paths problem is no harder than the single-source shortest-paths problem on undirected graphs and directed acyclic graphs. Moreover, our linear-time reductions lead to the first O(n+m)O(n+m)-time algorithms for the replacement-paths problem on the following classes of nn-node mm-edge graphs (1) undirected graphs in the word-RAM model of computation, (2) undirected planar graphs, (3) undirected minor-closed graphs, and (4) directed acyclic graphs.Comment: 23 pages, 1 table, 9 figures, accepted to SIAM Journal on Discrete Mathematic

    Linear-Space Approximate Distance Oracles for Planar, Bounded-Genus, and Minor-Free Graphs

    Full text link
    A (1 + eps)-approximate distance oracle for a graph is a data structure that supports approximate point-to-point shortest-path-distance queries. The most relevant measures for a distance-oracle construction are: space, query time, and preprocessing time. There are strong distance-oracle constructions known for planar graphs (Thorup, JACM'04) and, subsequently, minor-excluded graphs (Abraham and Gavoille, PODC'06). However, these require Omega(eps^{-1} n lg n) space for n-node graphs. We argue that a very low space requirement is essential. Since modern computer architectures involve hierarchical memory (caches, primary memory, secondary memory), a high memory requirement in effect may greatly increase the actual running time. Moreover, we would like data structures that can be deployed on small mobile devices, such as handhelds, which have relatively small primary memory. In this paper, for planar graphs, bounded-genus graphs, and minor-excluded graphs we give distance-oracle constructions that require only O(n) space. The big O hides only a fixed constant, independent of \epsilon and independent of genus or size of an excluded minor. The preprocessing times for our distance oracle are also faster than those for the previously known constructions. For planar graphs, the preprocessing time is O(n lg^2 n). However, our constructions have slower query times. For planar graphs, the query time is O(eps^{-2} lg^2 n). For our linear-space results, we can in fact ensure, for any delta > 0, that the space required is only 1 + delta times the space required just to represent the graph itself

    Pseudo-Random Number Generators for Vector Processors and Multicore Processors

    Get PDF
    Large scale Monte Carlo applications need a good pseudo-random number generator capable of utilizing both the vector processing capabilities and multiprocessing capabilities of modern computers in order to get the maximum performance. The requirements for such a generator are discussed. New ways of avoiding overlapping subsequences by combining two generators are proposed. Some fundamental philosophical problems in proving independence of random streams are discussed. Remedies for hitherto ignored quantization errors are offered. An open source C++ implementation is provided for a generator that meets these needs
    • …
    corecore