42 research outputs found

    A Verified Certificate Checker for Finite-Precision Error Bounds in Coq and HOL4

    Full text link
    Being able to soundly estimate roundoff errors of finite-precision computations is important for many applications in embedded systems and scientific computing. Due to the discrepancy between continuous reals and discrete finite-precision values, automated static analysis tools are highly valuable to estimate roundoff errors. The results, however, are only as correct as the implementations of the static analysis tools. This paper presents a formally verified and modular tool which fully automatically checks the correctness of finite-precision roundoff error bounds encoded in a certificate. We present implementations of certificate generation and checking for both Coq and HOL4 and evaluate it on a number of examples from the literature. The experiments use both in-logic evaluation of Coq and HOL4, and execution of extracted code outside of the logics: we benchmark Coq extracted unverified OCaml code and a CakeML-generated verified binary

    Certifying floating-point implementations using Gappa

    Full text link
    High confidence in floating-point programs requires proving numerical properties of final and intermediate values. One may need to guarantee that a value stays within some range, or that the error relative to some ideal value is well bounded. Such work may require several lines of proof for each line of code, and will usually be broken by the smallest change to the code (e.g. for maintenance or optimization purpose). Certifying these programs by hand is therefore very tedious and error-prone. This article discusses the use of the Gappa proof assistant in this context. Gappa has two main advantages over previous approaches: Its input format is very close to the actual C code to validate, and it automates error evaluation and propagation using interval arithmetic. Besides, it can be used to incrementally prove complex mathematical properties pertaining to the C code. Yet it does not require any specific knowledge about automatic theorem proving, and thus is accessible to a wide community. Moreover, Gappa may generate a formal proof of the results that can be checked independently by a lower-level proof assistant like Coq, hence providing an even higher confidence in the certification of the numerical code. The article demonstrates the use of this tool on a real-size example, an elementary function with correctly rounded output

    A certified infinite norm for the implementation of elementary functions

    Get PDF
    The version available on HAL is slightly different from the published version because it contains full proofs.International audienceThe high-quality floating-point implementation of useful functions f : R -> R, such as exp, sin, erf requires bounding the error eps = (p-f)/f of an approximation p with regard to the function f. This involves bounding the infinite norm ||eps|| of the error function. Its value must not be underestimated when implementations must be safe. Previous approaches for computing infinite norm are shown to be either unsafe, not sufficiently tight or too tedious in manual work. We present a safe and self-validating algorithm for automatically upper- and lower-bounding infinite norms of error functions. The algorithm is based on enhanced interval arithmetic. It can overcome high cancellation and high condition number around points where the error function is defined only by continuous extension. The given algorithm is implemented in a software tool. It can generate a proof of correctness for each instance on which it is run

    Formalising Mathematics in Simple Type Theory

    Get PDF
    Despite the considerable interest in new dependent type theories, simple type theory (which dates from 1940) is sufficient to formalise serious topics in mathematics. This point is seen by examining formal proofs of a theorem about stereographic projections. A formalisation using the HOL Light proof assistant is contrasted with one using Isabelle/HOL. Harrison's technique for formalising Euclidean spaces is contrasted with an approach using Isabelle/HOL's axiomatic type classes. However, every formal system can be outgrown, and mathematics should be formalised with a view that it will eventually migrate to a new formalism

    A Two-Phase Approach for Conditional Floating-Point Verification

    Get PDF

    Dandelion: Certified Approximations of Elementary Functions

    Get PDF
    Elementary function operations such as sin and exp cannot in general be computed exactly on today's digital computers, and thus have to be approximated. The standard approximations in library functions typically provide only a limited set of precisions, and are too inefficient for many applications. Polynomial approximations that are customized to a limited input domain and output accuracy can provide superior performance. In fact, the Remez algorithm computes the best possible approximation for a given polynomial degree, but has so far not been formally verified. This paper presents Dandelion, an automated certificate checker for polynomial approximations of elementary functions computed with Remez-like algorithms that is fully verified in the HOL4 theorem prover. Dandelion checks whether the difference between a polynomial approximation and its target reference elementary function remains below a given error bound for all inputs in a given constraint. By extracting a verified binary with the CakeML compiler, Dandelion can validate certificates within a reasonable time, fully automating previous manually verified approximations

    Mathematical Proof Between Generations

    Full text link
    A proof is one of the most important concepts of mathematics. However, there is a striking difference between how a proof is defined in theory and how it is used in practice. This puts the unique status of mathematics as exact science into peril. Now may be the time to reconcile theory and practice, i.e. precision and intuition, through the advent of computer proof assistants. For the most time this has been a topic for experts in specialized communities. However, mathematical proofs have become increasingly sophisticated, stretching the boundaries of what is humanly comprehensible, so that leading mathematicians have asked for formal verification of their proofs. At the same time, major theorems in mathematics have recently been computer-verified by people from outside of these communities, even by beginning students. This article investigates the gap between the different definitions of a proof and possibilities to build bridges. It is written as a polemic or a collage by different members of the communities in mathematics and computer science at different stages of their careers, challenging well-known preconceptions and exploring new perspectives.Comment: 17 pages, 1 figur

    Michael John Caldwell Gordon (FRS 1994), 28 February 1948 -- 22 August 2017

    Get PDF
    Michael Gordon was a pioneer in the field of interactive theorem proving and hardware verification. In the 1970s, he had the vision of formally verifying system designs, proving their correctness using mathematics and logic. He demonstrated his ideas on real-world computer designs. His students extended the work to such diverse areas as the verification of floating-point algorithms, the verification of probabilistic algorithms and the verified translation of source code to correct machine code. He was elected to the Royal Society in 1994, and he continued to produce outstanding research until retirement. His achievements include his work at Edinburgh University helping to create Edinburgh LCF, the first interactive theorem prover of its kind, and the ML family of functional programming languages. He adopted higher-order logic as a general formalism for verification, showing that it could specify hardware designs from the gate level right up to the processor level. It turned out to be an ideal formalism for many problems in computer science and mathematics. His tools and techniques have exerted a huge influence across the field of formal verification
    corecore